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Hyperspectral Image Classification via Spatial
Window-Based Multiview Intact Feature Learning

Yue Zhao, Yiu-ming Cheung , Fellow, IEEE, Xinge You , Qinmu Peng ,
Jiangtao Peng, Peipei Yuan, and Yufeng Shi

Abstract— Due to the high dimensionality of hyperspectral
images (HSIs), more training samples are needed in general
for better classification performance. However, surface materials
cannot always provide sufficient training samples in practice. HSI
classification with small size training samples is still a challenging
problem. Multiview learning is a feasible way to improve the
classification accuracy in the case of small training samples by
combining information from different views. This article proposes
a new spatial window-based multiview intact feature learning
method (SWMIFL) for HSI classification. In the proposed
SWMIFL, multiple features that reflect different information of
the original image are extracted and spatial windows are imposed
on training samples to select unlabeled samples. Then, multiview
intact feature learning is performed to learn the intact feature of
the training and unlabeled samples. Considering that neighboring
samples are likely to belong to the same class, labels of spatial
neighboring samples are determined by two factors including
the labels of training samples that locate in the spatial window
and the labels learned from the intact feature. Finally, unlabeled
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samples that have same labels under these two factors are treated
as new training samples. Experimental results demonstrate that
the proposed SWMIFL-based classification method outperforms
several well-known HSI classification methods on three real-
world data sets.

Index Terms— Hyperspectral image (HSI) classification, mul-
tiview intact feature learning, small size training samples, spatial
window.

I. INTRODUCTION

HYPERSPECTRAL images (HSIs) contain spectral infor-
mation by reflecting electromagnetic waves in differ-

ent bands. As different materials have different spectral
reflectances, the spectral information can be used to distinguish
pixels [1]. HSI classification aims to classify each pixel into
one of land cover classes, which is an important part of
hyperspectral image (HSI) analysis and has been applied
in different fields, such as skin imaging, ground elements
identifying, and mineral exploration [2].

For HSI classification, some pixel-based works that only
utilize the spectral information have been proposed [2]. How-
ever, those methods often provide inconsistent salt-and-pepper
classification results because they do not consider the spatial
information [1]. In HSIs, pixels in the same homogeneous
region are more likely to be in the same class [3]. Thus,
in order to enhance the classification accuracy, some methods
have been proposed to jointly exploit the spatial–spectral
information of the HSI. For example, Fauvel et al. [4] clas-
sified HSIs with support vector machines (SVMs) using the
spectral information and the spatial information derived by
mathematical morphology. Li et al. [5] fused the spectral
information with the intrinsic spatial information that con-
tained in homogeneous regions of different sizes captured
by the multiscale strategy. Shao et al. [6] incorporated the
spatial information into sparse representation model via the
graph Laplacian regularization, and obtained a more accurate
coefficient matrix provided that spatial neighbors have similar
representation coefficients. Pan et al. [7] proposed an ensemble
learning-based HSI classification method that is composed of
joint spectral–spatial features of different scales. Li et al. [8]
exploited the spatial information by an iterative relaxation
procedure which considers discontinuities existing in the data
cube. Besides those, there are a number of work that utilized
the spatial–spectral information for HSI classification [9]–[16].
Additionally, benefiting from the capacity of deep learning,
some deep-learning-based methods have been proposed.
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Liu et al. [17] used a deep residual 3-D convolutional neural
network to extract the spectral–spatial features of HSIs to
reduce the labeling uncertainty. Rao et al. [18] proposed a
spatial–spectral relation network (SS-RN) for HSI classifi-
cation. Ma et al. [19] proposed a network that takes the
advantage of extra knowledge for information supplement
and learns to compare rather than to classify for informa-
tion exploration. Zhu et al. [20] proposed a well-designed
1-D-GAN as a spectral classifier and a robust 3-D-GAN as a
spectral–spatial classifier. Pan et al. [21] utilized spatial infor-
mation and spectral characteristics to construct the network
and achieved higher accuracy when the number of training
samples is limited. Zhong et al. [22] designed an end-to-end
spectral–spatial residual network that takes raw 3-D cubes as
input data without feature engineering for HSI classification.
Pan et al. [23] proposed a small-scale data-based method to
explore the application of deep learning approaches in HSI
classification.

Except the pixel-based and the spatial–spectral-based meth-
ods, many other HSI classification approaches focused on
extracting effective features. For example, Li et al. [24]
extracted the local spatial texture information of HSIs by
the local binary pattern operator. Kuo et al. [25] extracted
the kernel nonparametric weighted feature of HSIs, which
possesses the advantages of both linear and nonlinear transfor-
mation. Chang et al. [26] extracted low-dimensional features
of HSIs via a nearest feature line embedding transforma-
tion. Shen et al. [27] selected informative and nonredundant
Gabor features of HSIs through a symmetrical-uncertainty-
based and Markov-blanket-based approach. Kuo et al. [28]
extracted the kernel-based feature of HSIs with a criterion
that contains the between-class and within-class informa-
tion. Qian et al. [29] extracted 3-D discrete wavelet trans-
form texture features of HSIs. Xia et al. [30] modeled the
spatial-contextual information of the HSI by the extended
multiattribute profiles. Tuia et al. [31] defined an active
set feature learner to improve the HSI classification results.
Zhao et al. [32] extracted the spectral feature and spatial-
related features via balanced local discriminant embedding
algorithm and convolutional neural network (CNN), and then
stacked the spectral and spatial features together. Li et al. [33]
learned more discriminative pixel-pair features of HSIs by uti-
lizing deep CNN. Moreover, some works focused on extracting
multiple features of HSIs. Li et al. [34] adaptively exploited
information from both linear and nonlinear derived features
of HSIs. Xu et al. [35] exploited multiple textural features
of HSIs based on multiple morphological component analy-
sis. Di et al. [36] generated multiple views by incorporat-
ing several hyperspectral data classification approaches with
dynamic view updating and feature space bagging strategies.
Volpi et al. [37] proposed a method for semi-supervised
multiview feature extraction based on the multiset regular-
ized kernel canonical correlation analysis. Zhang et al. [38]
proposed a classification framework which can encode
semantic context-aware representation to obtain promising
features.

In the literature, multiview learning has a widespread
application in machine learning community [39]. It aims

to learn complementary information among multiview data.
Multiview data is a set of data which is derived from dif-
ferent data sources that can describe objects from different
aspects. If there is no natural source for multiview data, it is
easy to manually generate multiview data by multiple feature
extractors [40]. In this case, each feature is regarded as one
view. In general, multiview data can improve the classification
performance because they contain diversity and complemen-
tarity information of different single views. Some multiview
learning-based HSI classification methods have been proposed
recently. Fang et al. [2] proposed a multiple-feature-based
adaptive sparse representation method for HSI classification.
Xu et al. [40] proposed a new multiview active learning frame-
work for HSI classification. Appice et al. [41] designed an
application-specific co-training scheme to utilize both spectral
information and spatial information for HSI classification.
Di et al. [42] explored the intrinsic multiview information
that is embedded in the hyperspectral data, then focused on
samples with high uncertainty and built a contention pool
to mitigate the computational cost, and they also proposed
a multiview-based active learning method to optimally con-
struct the training set for supervised HSI classification [43].
Zhou et al. [44] utilized a three-dimensional redundant wavelet
transform to generate multiple views and integrated them
in a multiview active learning framework. Chen et al. [45]
treated different band sets as different views of land-covers and
proposed a multiview graph embedding method to improve the
performance of HSI classification.

Although the aforementioned methods applied multiview
learning into HSI classification, none of them focused on
learning multiview intact information of the HSI. In this
article, we propose a spatial window-based multiview intact
feature learning (SWMIFL) method for HSI classification.
The proposed SWMIFL could extract multiview intact features
from HSIs and also generate new training samples automati-
cally. In detail, it imposes a spatial window on each training
sample and predicts a label for each unlabeled neighboring
pixel in the spatial window. On one side, due to the spa-
tial homogeneous distribution of HSI, the unlabeled spatial
neighboring pixels are likely to have the same label of the
training sample located in the spatial window. On the other
side, multiview intact feature is learned on both training
samples and unlabeled spatial neighboring pixels. Unlabeled
neighboring pixels can be labeled by classifying the intact
feature using the nearest neighbor (NN) [46] classifier. For
unlabeled sample xi , we can assign label xl1 to it using
NN classifier based on the intact feature, and meanwhile
assign a label xl2 to it based on the labels of training
samples in its spatial window. If xl1 and xl2 are the same,
the unlabeled sample xi will be regarded as new training
samples otherwise the unlabeled sample is discarded. The
above process will be repeated until all unlabeled samples are
accessed. In summary, the main contributions of this article are
threefold.

1) We are the first to attempt to utilize the multiview
intact feature in HSI classification. The multiview intact
feature contains intact information of the HSI, which
can improve the classification performance.
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TABLE I

FREQUENTLY USED NOTATION AND DESCRIPTIONS

2) The spatial window is utilized in the intact feature
learning process to utilize the spatial information of
samples.

3) Taking into account the spatial neighborhood similar-
ity and predicted labels on multiview intact features,
the training set is gradually enlarged by automatically
labeling pixels in the spatial neighborhood of training
samples.

The rest of this article is organized as follows. Section II
introduces the proposed method, including the introduction
of multiview intact space learning, the description of the
proposed SWMIFL method and its optimization process,
the detailed description of the proposed method in steps.
Section III discusses the experimental results and analysis,
including the comparison of experiments between the pro-
posed method and the state-of-the-art methods on three hyper-
spectral data sets. Section IV concludes the proposed method.

II. SPATIAL WINDOW-BASED MULTIVIEW INTACT

FEATURE LEARNING FRAMEWORK

A. Notation

In this article, vectors are appeared in lowercase letters (e.g.,
z) and matrices are indicated by uppercase letters (e.g., Z).
Specifically, I stands for the identity matrix. We represent a
n sample set as Z = {z1, z2, . . . , zn}, where zi |ni=1 denotes
the i th column (sample) in Z. Moreover, Z v represents the
vth view of sample set Z: Z v = {zv

1, zv
2, . . . , zv

n}. Furthermore,
Wv and εv are the generation function and generation error
for the vth view, respectively. For clarity, we summarize the
frequently used notation and their corresponding descriptions
in Table I.

B. Multiview Intact Space Learning Framework

Xu et al. [47] proposed the multiview intact space learning
framework and verified the framework’s superiority in face
recognition, human motion recognition, and RGB-D object
recognition. In the multiview intact space learning framework,
it assumes that individual view captures partial information,
and multiple views together possess redundant information
of the object. The framework can address insufficiency in
each individual view and integrate the encoded complementary
information in multiple views to discover a latent intact
representation of multiview data. For a n-sample and v-view
training set: Z v |mv=1 = {zv

1, zv
2, . . . , zv

n}, the multiview intact
space learning framework is defined as

min
Wv ,X

1

mn

n∑
i=1

m∑
v=1

log

(
1 +

∥∥zv
i − Wv xi

∥∥2

c2

)

+ C1

m∑
v=1

‖Wv‖2
F + C2

n∑
i=1

‖xi‖2 (1)

where c is a constant scale parameter, and C1 and C2 are
nonnegative constants that can be determined using cross
validation.

Motivated by the multiview intact space learning frame-
work, we will obtain the intact feature of HSI. As multiview
intact space used an unsupervised learning process, we extend
it to a semi-supervised method for HSI classification based on
the characteristics of HSIs.

C. Spatial Window-Based Multiview Intact Feature Learning
Framework

Adding information of unlabeled samples into learning
process is a way to solve the small size training sample
problem. In this process, unlabeled samples are automati-
cally labeled by the proposed SWMIFL method and then
treated as new training samples. In order to improve the
classification performance, there are two factors needed to
be considered: 1)the classification performance of the learned
feature; 2) how to choose the new training samples. In the
proposed spatial window-based multiview intact feature learn-
ing framework, we extract multiview intact feature of HSI
to improve the classification performance. For the training
samples, we use the objective function (1) to acquire the
optimal intact feature generation function: W �

v |mv=1 and intact
feature of training samples: X train. Then, we establish a spatial
window on each training sample. Unlabeled samples located
in the spatial window are labeled in each iteration. In order
to get the labels of these samples, we extract their intact
features by

min
Xnew

1

mn

n∑
i=1

m∑
v=1

log

(
1 +

∥∥zv
i − W �

v xi

∥∥2

c2

)
+ C2

n∑
i=1

‖xi‖2

(2)

where zv
i is the i th unlabeled samples under view v, and xi

is the intact feature of i th unlabeled sample. After classifying
unlabeled samples by the intact feature using NN classifier,
we further consider the label of training samples located in
the same spatial window. Only unlabeled samples that have
consistent labels under these two factors will be regarded as
new training samples.

D. Optimization of Spatial Window Based Multiview Intact
Feature Learning Framework

According to the iteratively reweight residuals (IRR) opti-
mization technique proposed in [47], we know that given fixed
view generation functions {Wv}m

v=1 or fix all data points {xi}n
i=1

in the intact feature space X , generation function Wv and intact
feature X can be solved by two subproblems separately

min
Wv

g =
{

1

n

n∑
i=1

log

(
1 + ‖zv

i − Wv xi‖2

c2

)
+ C1‖Wv‖2

F

}

(3)

min
xi

h =
{

1

m

m∑
v=1

log

(
1 + ‖zv

i − Wv xi‖2

c2

)
+ C2‖xi‖2

}
.

(4)
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Setting the gradient of g with respect to {Wv} to 0, we have

Wv =
n∑

i=1

zi Qi x
T
i

(
n∑

i=1

xi Qi x
T
i + nC1

)−1

. (5)

Setting the gradient of h with respect to {xi} to 0, we have

xi =
(

m∑
v=1

W T
v Qv Wv + mC2

)−1 m∑
v=1

W T
v Qv zv

i (6)

where Qv and Qi are described in Algorithm I.

E. Detailed Description of Spatial Window-Based Multiview
Intact Feature Learning in Steps

In this section, we will describe the proposed method in the
following steps.

1) Step 1: Input the nonnegative parameters: c, C1 and C2

and extract multiview data Z v = {zv
1, . . . , zv

n}|mv=1 of the
HSI. m is the number of views.

2) Step 2: Randomly select training samples.
3) Step 3: For the training samples, we randomly generate

the original generation function W (0)
v |mv=1 and intact

feature X (0) = {x (0)
1 , . . . , x (0)

n }. Generation function
W (0)

v |mv=1 can generate the v-th view data: Z v |mv=1 from
the intact feature X (0).

4) Step 4: According to the randomly generated generation
function W (0)

v |mv=1, we calculate Q(0)
v and the intact

feature X (1) = {x (1)
1 , . . . , x (1)

n } by (6). Then, Q(1)
i and

the generation function W (1)
v can be calculated by (5).

5) Step 5: If ‖x (1)
i − x (0)

i ‖n
i=1 and ‖W (1)

v − W (0)
v ‖m

v=1 satisfy
the convergence conditions, we output the intact feature
of training samples: Xl = {x (1)

1 , . . . , x (1)
n } and generation

function: W �
v = W (1)

v |mv=1. Otherwise, we will repeat
step 4 until ‖x (t)

i − x (t−1)
i ‖n

i=1 and ‖W (t)
v − W (t−1)

v ‖m
v=1

converge.
6) Step 6: For each training sample, we impose a 3 × 3

spatial-window on it to select unlabeled samples.
7) Step 7: We randomly generate the intact feature X (0) =

{x (0)
1 , . . . , x (0)

n } of unlabeled data, then calculate Q(0)
v

and the intact feature X (1) = {x (1)
1 , . . . , x (1)

n } by (2).
8) Step 8: If ‖x (1)

i − x (0)
i ‖n

i=1 satisfies the convergence
conditions, we output the intact feature of unlabeled
samples: Xu = {x (1)

1 , . . . , x (1)
n }. Otherwise, we will

repeat step 7 until ‖x (t)
i − x (t−1)

i ‖n
i=1 converges.

9) Step 9: Classify the unlabeled samples by the intact
feature.

10) Step 10: Classify the unlabeled samples by the class
labels of training samples located in the spatial windows.

11) Step 11: Unlabeled samples which have same class
labels by step 9 and step 10 are chosen as new training
samples.

12) Step 12: Repeat Step 3 to Step 11 until all the unlabeled
samples are classified or no sample satisfies Step 11.

According to the above descriptions, the spatial window
based multiview intact feature learning framework is summa-
rized in Algorithm I.

Algorithm 1

Input: non-negative parameters: c, C1, C2

multi-view data: Z v = {zv
1, . . . , zv

n}|mv=1
Initialize: randomly generated:
W (t)

v |t=0,v=1,...,m, x (t)
i |t=0,i=1,...,n

while(1)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

for training data, i = 1, . . . , n; v = 1, . . . , m;

t=0,1,2,…, do

Q(t)
v = 1

c2+||zv
i −W (t)

v x(t)
i ||2

x (t+1)
i =

(
∑m

v=1(W (t)
v )T Q(t)

v W (t)
v +mC2)

−1∑m
v=1(W (t)

v )T Q(t)
v zv

i

Q(t+1)
i = 1

c2+||zv
i −W (t)

v x(t+1)
i ||2

W (t+1)
v =∑n
i=1zi Q(t+1)

i (x (t+1)
i )T(

∑n
i=1x (t+1)

i Q(t+1)
i (x (t+1)

i )T +nC1)
−1

if the estimates of xi and Wv converge then

break

end if
end for

Output: intact feature: Xl = {x1, . . . , xn}
generation function: W �

v = {W �
1 , . . . , W �

m}
Establish the spatial window on each training sample to
extract testing samples.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

for testing data, i = 1, . . . , n; t = 0, 1, 2, . . ., do

Q(t)
v = 1

c2+||zv
i −W �

v x(t)
i ||2

x (t+1)
i =(

∑m
v=1(W �

v )T Q(t)
v W �

v +mC2)
−1
∑m

v=1(W �
v )T Q(t)

v zv
i

if the estimates of xi converge then

break

end if

end for
Output: intact feature: Xu = {x1, . . . , xn}

Choose new training samples.
if meet the convergence conditions.
break
else repeat the above process.
end
end

III. EXPERIMENTAL RESULTS AND ANALYSIS

In this section, we will first introduce the data sets and
experimental settings in this article. Then, we will describe
the multiview feature extraction process. Furthermore, we will
discuss the parameter setting. At last, the experimental results
and analysis are listed.

A. Data Sets and Experimental Setting Description

Three real-world hyperspectral data sets are used to validate
the performance of the newly proposed SWMIFL framework.
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TABLE II

NUMBER OF TRAINING AND TESTING SAMPLES
ON INDIAN PINES DATA SET

TABLE III

NUMBER OF TRAINING AND TESTING SAMPLES ON THE

UNIVERSITY OF PAVIA DATA SET

The first data set is gathered by the AVIRIS sensor over
the Indian Pines test site in North-western Indiana. It con-
sists of 145 × 145 pixels and 224 spectral reflectance bands
in the wavelength range 0.4 × 10(−6) − 2.5 × 10(−6) m.
The ground truth is designated into 16 classes and is not
all mutually exclusive. By removing bands covering the
region of water absorption, 200 bands are retained for the
classification.

The second data set is acquired by the ROSIS sensor during
a flight campaign over Pavia, northern Italy. It consists of
610 × 340 pixels. The number of spectral bands is 103 and the
geometric resolution is 1.3 m. The ground truth is designated
into nine classes.

The third data set is collected by the AVIRIS sensor over
Salinas Valley, California, and is characterized by high spatial
resolution (3.7-m pixels). It contains 512 × 217 pixels and
224 spectral reflectance bands. The ground truth is designated
into 16 classes. The number of bands is reduced to 204 by
removing bands covering the region of water absorption:
[108–112], [154–167], 224.

In our experiments, we randomly choose 3, 5, 7, and
10 samples per class as training samples and the rest of the
samples forms the testing set. The detailed sample number
settings on three data sets are listed in Tables II–IV. The
size of the spatial window used in this article is 3 × 3.
Based on the extracted multiview intact features, the NN
classifier is used for classification. The overall accuracy (OA),
average accuracy (AA), κ coefficient, as well as classification
accuracy of each class (CA) are used to evaluate different
methods. All methods are implemented on MATLAB 2015b
with 64 GB memory. All the results listed in this article
are averaged on ten trails and the best results are marked in
bold.

TABLE IV

NUMBER OF TRAINING AND TESTING SAMPLES ON SALINAS DATA SET

B. Multiview Feature Extraction

In order to generate multiview feature with diversity and
complementarity, we use multiple morphological component
analysis (MMCA) method to extract multiple features of
HSI [35]. MMCA method can adaptively exploit information
from both linear- and nonlinear-derived features. It separates
the image into multiple pairs of morphological components:
enhanced attribute component xs and weakened attribute
component xt . Each pair of components represents a linear
combination of the original image x

x = xs + xt + n (7)

where n is the residual. Five attribute features, namely content,
coarseness, contrast, horizontal, and vertical, are extracted
by the MMCA method. The content feature includes the
standard cartoon and texture components. The coarseness
feature represents the edge intensity information in a local
region. The contrast feature represents the variance rate of
the pixel intensity. The horizontal and vertical ones are two
directionality features that describe the orientation attribute of
the local texture. Previous results have demonstrated that each
view contains some information and multiple views contain
complementary information of different views [40].

In this article, we use the above five views and also consider
the spectral feature (original image) and maximum noise
fraction transform (MNF) [48] feature. That is, seven views
are used.

C. Visualization of the Multiview Intact Feature Learning
Process

We use the “swiss roll” data to show the intermediate results
of multiview intact feature learning process. The “swiss roll”
data were widely used in machine learning. The data were
created by randomly sampling from a Gaussian mixture model
with centers/means at (7.5, 7.5), (7.5, 12.5), (12.5, 7.5), and
(12.5, 12.5). The covariance for each gaussian was the 2 × 2
identity matrix. We uniformly sample 2000 3-D data points
from the benchmark “swiss roll” data as shown in Fig. 1(a)
and project these points into xy-plane, xz-plane, and yz plane
to construct three different views [see Fig. 1(b)], two of them
are flats, and the remaining one is a surface. We then utilize
these three views to learn the intact feature. The original
“swiss roll” data are the intact space of three views as it is
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Fig. 1. Visualization of the multiview intact feature learning process. (a) Original “swiss roll” data. (b) Three views of the original data. (c) Feature learned
in the 1# iteration. (d) Feature learned in the 2# iteration. (e) Learned multiview intact feature.

Fig. 2. Classification results with different values of parameter c with five
training samples per-class.

the source domain of them. If the learned multiview intact
feature contains intact information of three views, it should
appear like a “swiss roll.” In the learning process, it needs
three iterations to get the final result. The intermediate results
are shown in Fig. 1(c) and (d) and the final learned multiview
intact feature is shown in Fig. 1(e). It can be seen that the
proposed method can gradually learn intact feature within
three iterations and the final learned intact feature is indeed a
“swiss roll.”

D. Parameter Setting

There are three nonnegative parameters in the proposed
SWMIFL framework: c, C1, and C2. We first discuss para-
meter c in the proposed algorithm. The classification OA,
AA, and κ coefficient with different values of parameter c
on the University of Pavia data set are shown in Fig. 2.
We can see that the SWMIFL algorithm shows relatively
stable results when c is smaller than 3.5. In the following
experiments, c is set as 2. C1 and C2 values used in SWMIFL
are tuned in the range {10−10, 10−9, 10−8, 10−6, 10−4} and
{10−8, 10−7, 10−6, 10−5} respectively. We select one C1 and
one C2 in the range each time, and obtain the classification
accuracy with the selected values. After traversing all values
of C1 and C2, the value with higher classification accuracy
is used in comparison experiments. The results on the Salinas
data set are showed in Fig. 3. Based on the results in Fig. 3,
we fix C1 = 10−8 and C2 = 10−7 in all experiments.
We then discuss the size of the spatial window in the proposed
algorithm. The classification OA, AA, and κ coefficient with
different widths of spatial window on the University of Pavia
data set are shown in Fig. 4. We can conclude from the results
that it is better to choose the 3 × 3 spatial window. This is
because one of the factors we need to consider is that unlabeled
samples may have the same label of training sample in the
spatial window. The closer the samples locate, the more likely
they belong to the same class. Choosing the 3 × 3 spatial
window is to select the closest neighboring samples.

Additionally, we discuss parameter m (number of views) of
the proposed method. Multiview data contain more informa-
tion than single view data, this is why multiview data can be

Fig. 3. Classification results with different values of C1 and C2 with five
training samples per-class. (The axis is transformed through log10.) (a) OA
values. (b) AA values. (c) κ coefficients.

Fig. 4. Classification results with different values of window width with five
training samples per-class.

used to improve the classification results. As we have said in
Section III-B, seven views are used in the proposed method. In
order to analysis the influence of m, we show the classification
results of the proposed method by using two views (spectral
and MNF features), three views (spectral, MNF, and coarse-
ness features), four views (spectral, MNF, coarseness, and
horizontal features), five views (spectral, MNF, coarseness,
horizontal, and contrast features), six views (spectral, MNF,
coarseness, horizontal, contrast, and content features) and all
seven views on University of Pavia and Salinas data set. The
results are shown in Fig. 5(a) and (b) respectively. It can be
seen that the results are bad when only two views are used.
As the number of views increases, the performance of the
proposed method is dramatically improved at first and remains
stable when the number of views is larger than four. From the
results in Fig. 5, we can conclude that the proposed method
shows relatively stable results when the number of views is
between four and seven. In the experiments, seven views are
used.
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TABLE V

CLASSIFICATION RESULTS OF SWMIFL WITH NN CLASSIFIER AND SVM CLASSIFIER ON INDIAN PINES DATA SET

Fig. 5. Classification results with different numbers of views with five
training samples per-class. (a) Results on PaviaU data set. (b) Results on
Salinas data set.

As the proposed method focuses on the feature extraction
via multiview intact feature learning, the simplest classifier,
i.e., NN classifier, is used. To show the effect of classifier,
here we test the classification performance of the proposed
SWMIFL with NN classifier and SVM classifier [49] on Indian
Pines data set. In the SVM, radial basis function (RBF) kernel
is used. There are two parameters in the RBF kernel: γ and C .
They are tuned in {0.001, 0.01, 0.1} and {10, 100, 1000,
10000}, respectively. The classification results with C = 1000,
γ = 0.01 are listed in Table V. From the results, we can see
that the classification results with SVM classifier is slightly
higher than these with NN classifier. No matter which classifier
is used, the results are excellent. That is, the performance
of the proposed method is less dependent on the classifier.
Considering that the NN classifier is free of parameters, we use
it in the experiments.

E. Experimental Results Analysis

In this section, we will compare the proposed SWMIFL
method with eight related methods, namely multiple-feature-
based adaptive sparse representation (MFASR) [2], multi-
ple logistic regression-based discontinuity preserving relax-
ation with spatial preprocessing (ppMLRpr) [8], local binary
patterns and extreme learning machine (LBP-ELM) [24],
hierarchical guidance filtering-based ensemble classification
(HiFi-we) [7], multiple morphological component analysis
(MMCA) [35], multiview intact space learning (MISL) [47],
spatial and class structure regularized sparse representation
graph (SCSSR) [6], semi-supervised partial label learning
(SSPL) [50], and rolling guidance filter and vertex component
analysis network (RVCANet) [21]. Among these methods,
MFASR and MISL are multiview learning-based methods,
HiFi-we is very similar to multiview learning-based methods,
SSPL and SCSSR are semi-supervised methods, RVCANet is
deep learning-based method and reveals better performance
when the training samples available is limited. Specially,
we compare SWMIFL framework with SCSSR by choosing
15 samples per-class as training samples on Indian Pines data
set. The comparison experimental results and analysis are
listed below.

Fig. 6. Number of classes that each method outperforms other methods on
three data sets.

1) Experimental Results on the Indian Pines Data Set: On
the Indian Pines data set, the dimensionality of intact feature
learned by SWMIFL framework is 20. Table VI shows the
classification results of the proposed SWMIFL framework and
the comparison methods. We can see from the results that the
OA, AA, and κ coefficient of the proposed SWMIFL frame-
work are better than other methods, including both multiview
learning-based methods and other outstanding classification
methods. In detail, the OA of SWMIFL is 10% higher than
the second-best method in the case of three and five training
samples per class. To show the specific results on each class,
we show the classification accuracy of each class in the case
of 5 training samples per class in Table VII and also list the
number of classes that each method outperforms other methods
in Fig. 6. It is clear that the proposed SWMIFL method obtains
the highest classification accuracy on 11 out of 16 classes. On
the classes “Corn-no till,” “Corn-min till,” “Soybeans-notill,”
and “Soybeans-min till,” all the comparison methods show bad
results while our SWMIFL provides acceptable results and
improves other methods nearly 10% in accuracy. In particular,
the proposed SWMIFL shows excellent performance (100%
accuracy) on the classes with extremely limited samples (i.e.,
“Grass/Pasture-mowed” and “Oat” with 28 and 20 samples).
It is demonstrated that the proposed method is effective for
the classification in the case of small training samples. Fig. 7
shows the classification maps of all the methods when the
training sample number of each class is 5. Compared with
other methods, the classification map of our method is more
similar to the classification map of the ground truth. The
classification results with 15 training samples per-class on
Indian Pines data set are shown in Table VIII. We can see
from Table VIII that the proposed method also has the highest
OA, AA, and κ coefficient and outperforms other methods on
most classes.

Here, we show the effect of the number of training samples
on each methods and present the OA, AA, and κ coefficient
results as the change of training samples in Fig. 8. As can
be seen, the classification accuracy gaps between methods
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TABLE VI

CLASSIFICATION RESULTS WITH DIFFERENT TRAINING SAMPLE NUMBERS ON INDIAN PINES DATA SET

TABLE VII

CLASSIFICATION RESULTS OF EACH CLASS WITH FIVE TRAINING SAMPLES PER-CLASS ON INDIAN PINES DATA SET

Fig. 7. Classification maps of all the compared methods with five training samples per-class on Indian Pines data set. (a) Groundtruth. (b) MFASR. (c) ppMLRpr.
(d) LBP-ELM. (e) RVCANet. (f) HiFi-We. (g) Horizontal. (h) Content. (i) Contrast. (j) Coarseness. (k) Vertical. (l) SSPL. (m) MISL. (n) SWMIFL.

TABLE VIII

CLASSIFICATION RESULTS WITH 15 TRAINING SAMPLES PER-CLASS ON INDIAN PINES DATA SET

are gradually reduced and the classification accuracies tend
to be stable when the number of training samples increases.
In particular, the classification accuracies of SWMIFL are
always higher than other methods, and can achieve acceptable
classification results when the number of training samples is

small. It means the proposed SWMIFL method is more robust
to the change of training sample number.

Moreover, the run time of all methods on the Indian Pines
data set with five training samples per-class is recorded. The
results are shown in Table IX. It can be seen that the run

Authorized licensed use limited to: Hong Kong Baptist University. Downloaded on February 26,2021 at 13:03:07 UTC from IEEE Xplore.  Restrictions apply. 



2302 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 59, NO. 3, MARCH 2021

Fig. 8. Classification results with different training sample numbers on Indian Pines data set. (a) OA values. (b) AA values. (c) κ coefficients.

TABLE IX

RUN TIME (SECONDS) FOR THE CLASSIFICATION OF THE INDIAN PINES DATA SET WITH FIVE TRAINING SAMPLES PER-CLASS

TABLE X

CLASSIFICATION RESULTS WITH DIFFERENT TRAINING SAMPLE NUMBERS ON UNIVERSITY OF PAVIA DATA SET

TABLE XI

CLASSIFICATION RESULTS OF EACH CLASS WITH FIVE TRAINING SAMPLES PER-CLASS ON UNIVERSITY OF PAVIA DATA SET

time of SWMIFL is not the longest when compared with
comparison methods, and the best classification accuracy of
SWMIFL can be achieved in an acceptable time.

2) Experimental Results on the University of Pavia Data
Set: On the University of Pavia data set, the dimensionality
of intact feature learned by the SWMIFL framework is 12.
Table X lists the OA, AA, and κ coefficient of different meth-
ods when the training sample number of each class is 5. It can
be seen that the proposed SWMIFL provides consistent better
results than other methods in different numbers of training
samples. In particular, in the case of extremely limited training
samples (i.e., three training samples per class), the OA of our
SWMIFL is about 15% higher than methods. We can also se
that the OA and κ of MFASR are far lower than the SWMIFL
method, but its AA is closer to the proposed method. The
reason is that the classification accuracy of classes with fewer
samples (i.e., “Gravel,” “Trees,” “Metal sheets,” “Bitumen,”

and “Shadows”) are high, and the classification accuracies of
classes with larger samples (i.e., “Meadows” and “Bare soil”)
are low. This can be from Table XI, where the accuracy of
each class is listed. Fig. 6 counts the number of classes that
each method outperforms other methods, where our method
outperforms other methods on six out of nine classes. In gen-
eral, by exploiting multiview intact information, our SWMIFL
method provides the highest OA, AA, and κ coefficient. Fig. 9
shows the classification maps of all the methods when the
training sample number of each class is 5. It can be seen that
the SWMIFL method shows relatively better results than other
methods in terms of consistent classification results with little
salt and pepper noise. In particular, the classification map of
the proposed method has overwhelming advantage on class
“Meadows.”

3) Experimental Results on the Salinas Data Set: On the
Salinas data set, the dimensionality of intact feature learned
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Fig. 9. Classification maps of all the compared methods with five training samples per-class on University of Pavia data set. (a) Groundtruth. (b) MFASR.
(c) ppMLRpr. (d) LBP-ELM. (e) RVCANet. (f) HiFi-We. (g) Horizontal. (h) Content. (i) Contrast. (j) Coarseness. (k) Vertical. (l) SSPL. (m) MISL. (n) SWMIFL.

TABLE XII

CLASSIFICATION RESULTS WITH DIFFERENT TRAINING SAMPLES ON SALINAS DATA SET

TABLE XIII

CLASSIFICATION RESULTS OF EACH CLASS WITH FIVE TRAINING SAMPLES PER-CLASS ON SALINAS DATA SET

by SWMIFL framework is 12. Table XII lists the OA, AA,
and κ coefficients of all methods with different numbers of
training samples. The classification results with five training
samples per class are shown in Table XIII. Fig. 6 lists the
number of classes that each method outperforms other meth-
ods. Due to the learned multiview intact feature, the proposed
method can obtain the best OA, AA, and κ coefficients
in all experiments. SWMIFL acquires the best classification
results on six classes. It is worth noting that, the improved
classification accuracy of SWMIFL on Salinas data set is
lower than its on Indian Pines data set and University of Pavia

data set. One possible reason is that the classification edges
between different classes on Salinas data set are smoother
and flatter, which is easier to classify than complex edges.
In this case, although the improvement of SWMIFL is not
as obvious as its on other two data sets, it still achieves the
best classification performance and can achieve OA more than
88% with only three training samples each class. These can
prove the classification performance of SWMIFL sufficiently.
Fig. 10 shows the classification map of different methods.
It can be seen that most of methods produce poor results on
the large classes “Grapes-untrained” and “Vinyard-untrained.”
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Fig. 10. Classification maps of all the compared methods with five training samples per-class on Salinas data set. (a) Groundtruth. (b) MFASR. (c) ppMLRpr.
(d) LBP-ELM. (e) RVCANet. (f) HiFi-We. (g) Horizontal. (h) Content. (i) Contrast. (j) Coarseness. (k) Vertical. (l) SSPL. (m) MISL. (n) SWMIFL.

Because these two classes are spatially adjacent, their spectral
characteristics show certain similarity. It is very difficult to
classify them. Notwithstanding, our SWMIFL produces rel-
atively better results on these two classes even if only five
training samples per class is used.

IV. CONCLUSION

In this article, a spatial window-based multiview intact
feature learning model is proposed for HSI classification. The
multiview intact features that contain diversity information of
HSIs are learned. Experimental results on three real-world
data sets demonstrate that the proposed method reveals better
classification when the number of training sample is small.
However, the proposed method can be further improved. For
example, the new training samples are unlabeled samples
in the spatial windows whose labels classified by the intact
feature are consistent with labels of training samples in the
same windows. How to optimize this process to improve the
reliability of the selected new training samples is a problem
that needs to be solved.
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