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Abstract— In recent years, with the development of deep learn-
ing (DL), the hyperspectral image (HSI) classification methods
based on DL have shown superior performance. Although these
DL-based methods have great successes, there is still room to
improve their ability to explore spatial–spectral information.
In this article, we propose a 3-D octave convolution with the
spatial–spectral attention network (3DOC-SSAN) to capture
discriminative spatial–spectral features for the classification of
HSIs. Especially, we first extend the octave convolution model
using 3-D convolution, namely, a 3-D octave convolution model
(3D-OCM), in which four 3-D octave convolution blocks are
combined to capture spatial–spectral features from HSIs. Not
only the spatial information can be mined deeply from the high-
and low-frequency aspects but also the spectral information can
be taken into account by our 3D-OCM. Second, we introduce
two attention models from spatial and spectral dimensions to
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highlight the important spatial areas and specific spectral bands
that consist of significant information for the classification tasks.
Finally, in order to integrate spatial and spectral information, we
design an information complement model to transmit important
information between spatial and spectral attention features.
Through the information complement model, the beneficial parts
of spatial and spectral attention features for the classification
tasks can be fully utilized. Comparing with several existing
popular classifiers, our proposed method can achieve competitive
performance on four benchmark data sets.

Index Terms— Attention mechanism, deep learning (DL),
hyperspectral image (HSI) classification, information comple-
ment, spatial–spectral features.

I. INTRODUCTION

AS an important product of remote sensing image, hyper-
spectral images (HSIs) draw the researchers’ attention

because not only the spatial but also the spectral information
of the land-cover targets can be provided at the same time
[1]. Due to this specific characteristic, HSIs are widely used
in many remote sensing applications, such as forest monitoring
and urban management [2]. To accomplish these applications
comprehensively, many HSI tasks are developed in recent
years, e.g., classification [3], unmixing [4], and anomaly
detection [5], [6]. Among these tasks, HSI classification is a
fundamental task that focuses on assigning the semantic labels
to each pixel within an HSI. Both the classifier design and the
pixel-level features extraction/learning are paramount for the
classification.

To achieve good classification performance, scholars have
made great efforts in the last decades. At the very begin-
ning, many basic machine learning classifiers were chosen to
complete the classification, such as decision tree [7], random
forest [8], support vector machine (SVM) [9] and its extended
variants [10], sparse representation-based classification (SRC)
[11], and extreme learning machine (ELM) [12]. Neverthe-
less, the classification results from the abovementioned pix-
elwise classifiers cannot reach the satisfactory level as only
the spectral features are considered [13]. To address this
problem, many spectral–spatial feature-based classification
methods have been proposed in the literature. For example,
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in order to extract spatial dependencies of HSIs, patchwise
feature extraction methods are utilized [14]. Compared with
the pixelwise feature extraction approaches, apart from the
spectral information, the patchwise algorithms could explore
the relationship between pixels as well. In addition, some
successful statistic models, such as conditional random field
[15] and the Markov random field (MRF) [16], are adopted
or improved to capture the spatial and spectral information
from HSIs for the classification task. Although these methods
improve the classification performance to a certain degree, they
heavily depend on the handcrafted features. In other words, the
classification maps are satisfactory or are not mainly decided
by the low-level features. However, most of the handcrafted
features may not be able to represent the complex contents
within HSIs, which would limit the classification performance.

Recently, with the development of deep learning (DL), an
increasing number of DL-based classification methods have
been proposed for HSIs. Due to the strong capacity of feature
learning, the existing DL-based methods push the classification
performance toward the peak value. For example, the article
[17] introduces a deep belief network (DBN) to extract the
features and complete the classification at the same time.
Similarly, another success network, i.e., stacked autoencoder
(SAE) [18], is selected to obtain the classification maps
for HSIs. However, the input of the two abovementioned
networks is the spectral vector of each pixel, which cannot
provide the spatial information. To address this issue, the
convolutional neural network (CNN) becomes popular in the
HSI community [19]–[21], which utilizes both of the spectral
and spatial information to get the classification results. An
increasing number of popular CNNs are used to classify the
HSIs, such as ResNet [22], CapsNet [23], DenseNet [24], and
dual-path networks [25]. ResNet and DenseNet are good at
combining the deep and shallow features of HSIs for obtaining
the classification results [26], [27]. CapsNet specializes in
capturing the relationships between different spectral bands
and the resemblance between diverse spatial positions for the
HSIs classification tasks [28]. Due to the specific architec-
ture, dual-path networks are apt to explore the spatial and
spectral information from HSIs simultaneously for classifying
HSIs [29]. Both of them make their contributions to improve
the classification performance of HSIs. In addition, many
new HSIs classification methods are proposed based on the
abovementioned networks [30], [31]. Moreover, more specific
networks, such as RNN [32] and LSTM [33], are adopted to
regard the continuous spectral bands as the temporal data and
analyze them.

In recent years, since the attention mechanism can capture
detailed information [34], many methods based on visual atten-
tion have been developed to obtain the classification maps for
HSIs [35]. Although these DL-based methods have achieved
great success, there is still room for improvement. First, some
networks are complex, and the number of parameters is huge.
Thus, it is hard to train them using the limited labeled HSI data
[36]. Second, due to the complexity of HSIs, besides global
information, the significant spatial locations and spectral bands
are also important for classification. However, this specific
information is not fully mined. Finally, most of the acquired

spatial and spectral features are independent of each other so
that the mutual information between them is missed, which
would reduce their contributions to the classification task.

To overcome the abovementioned limitation, we present a
new DL-based classification method for HSIs, named 3-D
octave convolution with spatial–spectral attention network
(3DOC-SSAN)1. First, we apply the octave convolution model
[37] with a small volume of parameters on HSIs to extract
spatial information. Meanwhile, considering the effect of spec-
tral information on the classification task, the extended octave
convolution model based on 3-D convolution is developed to
capture spectral information. Second, we design two attention
mechanisms from both spatial and spectral dimensions [38].
Through adding the attention mechanisms, the interested spa-
tial areas and spectral bands that are beneficial to classification
tasks can be highlighted. Finally, in order to integrate the
contributions of spatial and spectral features, we generate an
information complement method, by which the spatial and
spectral features can be fused in a mutual manner. This is
beneficial to remain the important parts of different features.
The main contributions of this article are summarized as
follows.

1) A 3-D octave convolution model (3D-OCM) is devel-
oped for learning spatial–spectral features from HSIs
simultaneously. In addition, because of the high- and-
low-frequency decompositions (from the spatial aspect),
the volume of parameters can be reduced compared with
the common 3-D convolutional networks.

2) Two attention methods are introduced into our network
for capturing the significant spatial areas and exploring
the specific spectral bands, which can improve the
discrimination of the learned features.

3) An information complement method is proposed to mine
the mutual information between the spatial and spectral
features. Through this method, the spatial and spectral
features can be fused properly for the final classification.

4) Extensive experiments are conducted on four public
HSIs. The encouraging results prove that our network
is useful for HSI classification tasks.

The remainder of this article is organized as follows.
Section II briefly reviews the DL-based HSI classification
methods. In Section III, the proposed classification framework
is introduced, including the octave convolution model based
on 3-D convolution, the attention methods, and the informa-
tion complement approach. Experimental settings and results
counted on four data sets are shown in Section IV. Finally, the
conclusion is drawn in Section V.

II. RELATED WORK

With the development of DL, an increasing number of
DL-based HSI classification methods are proposed. According
to the feature types extracted by the network, we can divide
these methods into three groups roughly; they are the algo-
rithms based on spectral, spatial, and spectral–spatial features.

1Our source codes are available at https://github.com/smallsmallflypigtang/
Hyperspectral-Image-Classification-Based-on-3D-Octave-Convolution-with-
Spatial–Spectral-AttentionGithub website.
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Due to a large amount of spectral information exists in the
continuous spectral bands, the spectral features are important
for classification tasks of HSIs. In earlier studies, pixels’
spectral vectors are directly input into the networks (e.g.,
SAE and DBN) to learn the features. Then, some successful
classifiers (e.g., SVM) are selected to complete the classifica-
tion. Based on this architecture, many improved methods are
proposed. For example, Liu et al. [39] combined DBN and
active learning (AL) to design a spectral-based classification
method of HSIs. The DBN network is embedded in the AL
pipeline. Through the estimation of the representative and
uncertainty data, a small number of data can be selected
to train the DBN for classifying the HSIs. The article [40]
presented a virtual sample-enhanced method to increase the
number of samples for solving the problem of insufficient
labeled samples and uses 1-D convolution to extract spectral
features for classification tasks. Zhan et al. [41] proposed
a classification method based on 1-D generative adversarial
network (GAN). They used unlabeled samples to train the
network for obtaining a discriminator and then transformed
the trained discriminator into a classification network. Finally,
few labeled samples were utilized to fine-tune the network for
accomplishing the HSI classification.

Apart from the spectral features, spatial information of
HSIs is also important for classification tasks. In order to
classify HSIs accurately, the spatial features obtained by the
DL network are usually fused with spectral features. It is well
known that the classification accuracy can be improved by
adding the spatial characteristics to the classification tasks.
In the article [42], the principal component analysis (PCA)
was performed to reduce the dimensionality of HSIs, and
then, the 2-D CNN was used to convolve the dimension-
reduced data for extracting the spatial information of HSIs.
The combination of PCA and 2-D CNN can obtain spatial
features with low computation cost. Jiao et al. [43] adopted
pretrained full CNN (FCN) to explore multiscale spatial
structural information. Then, they combined original spectral
features and multiscale spatial features for the classification
tasks. Although the multiscale spatial features have much
superiority, the issue of spatial resolution reduction would
influence the classification results. To overcome this drawback,
Niu et al. [44] proposed a novel HSI classification framework
based on the semantic segmentation idea. They applied the
minimum noise fraction (MNF) to reduce dimensions and
acquire the pseudolabels of samples. Then, the spatial features
at multiple scales were extracted by the DeepLab [45] to
complete the classification with SVM. The DeepLab ensures
the effectiveness of multiscale spatial features and avoids the
reduction of the spatial resolution.

In the abovementioned methods, spatial features or spectral
features are always extracted separately for the classifica-
tion tasks. Recently, using the joint spectral–spatial features
to classify HSIs has also got excellent results. Instead of
acquiring spectral and spatial features separately, the joint
spectral–spatial features can be obtained by DL networks
directly. From the structure aspect, HSI is a 3-D cube data.
Thus, it is proper to use 3-D convolution to extract the
spectral–spatial features jointly. For instance, Yang et al. [46]

designed a recurrent 3-D CNN method to learn the joint
spectral–spatial features through shrinking the patch grad-
ually. The learned features contain both spatial and spec-
tral context relations and alleviate the influence of patch
size on classification accuracy. Mou et al. [47] developed
a deep residual convolution–deconvolution network for HSI
classification. They trained a deep residual convolution–
deconvolution network with unlabeled samples. Then, the
encoder of the network was fine-tuned with a small number of
labeled data to complete the spectral–spatial feature learning
and classification at the same time. Hang et al. [48] created
a spectral–spatial cascaded RNN model for the classification
tasks of HSIs. They set a gated recurrent unit consists of two
layers of RNN to process the joint spectral–spatial features.
The redundant information of spectral bands can be reduced
by the first-layer RNN, and the second-layer RNN is used
to learn complementary features from the different reduced
information.

Besides the abovementioned methods, the attention mecha-
nism has received increasing attention in the HSI processing
community recently. By adding the visual attention, the impor-
tant spatial areas and the paramount spectral bands can be
highlighted, which are beneficial to improve the classification
performance. Sun et al. [38] proposed a spectral–spatial atten-
tion network to increase the classification accuracy of HSIs.
They set spectral and spatial models with 3-D convolution to
extract the joint spectral–spatial features. Then, the attention
model was embedded between two models to suppress the
effects of interfering pixels and capture attention areas in an
HSI cube. Mou and Zhu [49] proposed a learnable spectral
attention model for classification of HSIs. They produced a
spectral gate with a global convolution to exploit the global
spectral–spatial context relationship. Then, multiplying the
spectral gate with original HSI data to recalibrate spectral
information, this can effectively improve the classification
results. Haut et al. [35] designed a visual attention network of
two paths, i.e., trunk path and mask path, for classifying HSIs.
The trunk path aims to extract spectral–spatial features, and the
mask path focuses on calculating and multiplying the attention
mask to the trunk path. Due to the visual attention techniques,
the abovementioned methods can improve the discrimination
of features and enhance the stability of the model.

III. PROPOSED METHOD

The proposed framework of 3DOC-SSAN is illustrated in
Fig. 1, which consists of the 3D-OCM, the spatial–spectral
attention model (SSAM), and the spatial–spectral information
complement model (SSICM). First, the 3D-OCM block is
developed to capture the spatial–spectral features Fo from the
HSIs. By combining the octave convolutional network and the
3-D convolution subtly, not only the spatial information but
also the spectral information can be explored from the HSIs
simultaneously. Second, to improve the discrimination of Fo,
the SSAM block is introduced, in which the significant areas
within Fo can be fully explored using the channelwise and
spatialwise attention methods. After this operation, two feature
maps Aspa and Aspe can be obtained, and they would bring
much more discriminative information. The information within
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Fig. 1. Flowchart of 3DOC-SSAN.

Fig. 2. (a) and (b) Octave convolution block and the 3-D octave convolution
block.

Aspa and Aspe is different and complementary. Considering
this point, we develop the SSICM block to integrate the
contributions of Aspa and Aspe for the classification results
in a mutual learning manner. Through the SSCIM block, the
important information within Aspa and Aspe can be remained,
and the redundant information within Aspa and Aspe can be
removed. Note that similar to the existing methods [50]–[52],
we pick up an image patch centered at each pixel rather than
the individual pixel to build our classification model. Now, we
introduce each model of the 3DOC-SSAN.

A. 3D-OCM

Before explaining 3D-OCM, we introduce the octave con-
volution (Oct-Conv) first. The Oct-Conv block was proposed
in the literature [37], and the basic flowchart is shown in
Fig. 2(a).

The Oct-Conv block is developed for the natural image orig-
inally, and it assumes that a natural image can be decomposed
into low and high frequencies, which could represent global
structures and local fine details, respectively. Thus, a two-
branch convolutional framework is developed in the Oct-Conv
block to capture global and local information. Due to the low-
frequency branch, the number of parameters can be decreased,

the channelwise redundancy can be reduced, and the receptive
field is enlarged [37], [53]. In addition, to ensure the integrity
of the information, a communication mechanism is established
between two frequencies to compliment the diverse informa-
tion corresponding to high and low parts mutually.

In detail, suppose that the input and output data of an Oct-
Conv block are X = {

XH , XL
}

and F = {
FH , FL

}
, where the

superscript H and L indicate the high and low frequencies,
respectively. The Oct-Conv model defines FH = FH→H +
FL→H and FL = FH→L + FL→L , where FH→H and FL→L

mean the intrafrequency transition, while FH→L and FL→H

denote the interfrequency update. In order to accomplish
the information update and interaction mentioned earlier, the
weights of the Oct-Conv block W should be divided into
two parts

[
WH , WL

]
as well. Furthermore, each element can

be partitioned into the intra- and inter-frequency components,
e.g., WH = [

WH→H , WL→H
]

and WL = [
WH→L, WL→L

]
.

Thus, FH and FL can be calculated by the following equations:

F H = F H→H + F L→H

=
∑(

W H
)T

X

=
∑(

W H→H
)T

X H + upsample
(∑(

W L→H
)T

X L
)

(1)

F L = F H→L + F L→L

=
∑(

W L
)T

X

=
∑(

W H→L
)T

pool
(

X H
) +

∑(
W L→L

)T
X L (2)

where T represents the transposition of the weights, and
upsample and pool stand for the upsampling and average
pooling operation, respectively. Although the Oct-Conv block
has obvious superiorities, it is improper to apply it to the
HSIs classification tasks directly. Due to the characteristic of
HSIs, apart from the spatial regions, the continuous spectral
bands should be taken into account for the classification task.
In the Oct-Conv block, all the convolution operations use
2-D convolution. Although the 2-D convolution can extract
spatial and spectral features from HSIs at the same time, the
consistency of different spectral bands cannot be explored by
the 2-D convolution as it only works on the spatial dimension.
Comparatively speaking, due to the cube structure, the 3-D
convolution can not only work on the spatial dimension but
also convolve several continuous spectral bands at one time.
Thus, the 3-D convolution can explore more comprehensive
spectral–spatial information from HSIs [46]. Considering the
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above-discussed properties, we expand the traditional Oct-
Conv to the 3-D version, named 3DOct-Conv. Its structure
is shown in Fig. 2(b). The 3DOct-Conv block takes 3-D
convolution to convolve spatial regions and spectral bands.
Thus, the spatial and spectral contexts of HSIs can be extracted
simultaneously.

To illustrate the difference between 3DOct-Conv and
Oct-Conv clearly, we introduce 3-D convolution and 2-D
convolution here. The 2-D convolution operator is formulated
as

v
xy
out =

Di −1∑
p=0

Ei −1∑
q=0

w pqv
(x+p)(y+q)
in (3)

where v
xy
in and v

xy
out stand for the input and output at position

(x, y) of the feature maps, w pq is the value at the position
(p, q) of the convolution kernel, and Di and Ei are the width
and height of the kernel. Compared with 2-D convolution, the
kernel of the 3-D convolution adds one dimension, and the
3-D convolution is formulated as

v
xyz
out =

Di −1∑
p=0

Ei −1∑
q=0

Ki −1∑
r=0

w pqrv
(x+p)(y+q)(z+r)
in (4)

where v
xyz
in and v

xyz
out represent the input and output at position

(x, y, z) of the feature maps, w pqr is the value at the position
(p, q, r) of the convolutional kernel, and Ki is the size of the
3-D kernel along to the z dimension. Compared with the 2-D
convolution, 3-D convolutional kernel could slip x , y, and z
dimensions at the same time. Thus, applying 3-D convolution
to HSIs, both spatial and spectral information can be learned
at the same time.

Based on the 3DOct-Conv block, we construct 3D-OCM,
and its structure is shown in Fig. 3. 3D-OCM involves four
3DOct-Conv blocks, an average pooling operation layer, and
an upsampling operation layer. The original HSI is regarded
as a high frequency because it contains the complete spatial
and spectral information. Therefore, in the first 3DOct-Conv
block, only high-frequency data XH are input to our 3D-OCM
network. After the second 3DOct-Conv block, the pooling
operation is used to downsample the high-frequency fea-
ture maps FH

2 . Then, the downsampled results and the low-
frequency feature maps FL

2 are combined to be the input Fpool

of the third 3DOct-Conv block. This can preserve significant
features and reduce the feature maps’ dimension of HSIs.
Like the first 3DOct-Conv block, Fpool represents the high
frequencies. Since the input of the network is considered to be
the high frequency with local fine details, the output Fo is also
regarded as the high frequency. Moreover, in order to ensure
the integrity of information, we need to fuse low-frequency
features maps FL

4 into FH
4 . Thus, an upsampling operation is

used for FL
4 that from the last 3DOct-Conv block.

B. SSAM

Although 3D-OCM can capture spatial–spectral features, the
discrimination of features needs to be improved. To this end,
we introduce the SSAM network to capture the discriminable
information from spatial and spectral aspects, respectively.

The SSAM network consists of two parts: spatial attention
model and spectral attention model. The spatial dependencies
between two positions of feature maps and the relation of
spatial context of HSIs can be captured by the spatial attention
model, while the spectral dependencies between two bands of
feature maps and the emphasized informative bands of HSIs
can be obtained by the spectral attention model.

1) Spatial Attention Model: The basic flowchart is shown
in Fig. 4(a). Let Fo ∈ R

h×w×c denote the input of the spatial
attention model, where h, w, and c indicate the height, width,
and band of Fo. First, FspaC ∈ R

h×w×c can be obtained by
taking Fo through a convolution layer. Then, FspaC is reshaped
to FspaS ∈ R

n×c, where n = w × h. Second, in order to acquire
spatial attention map Mspa ∈ R

n×n, a softmax layer is applied
to the product of the matrix FspaS and FspaT , where FspaT is
transposed by FspaS . The formulation of Mspa is given as

Mspa
j i =

exp
(

FspaS
i ⊗ FspaT

j

)

∑n
i=1 exp

(
FspaS

i ⊗ FspaT
j

) (5)

where Mspa
j i represents the i th position’s relationship with

the j th position, and ⊗ denotes the matrix multiplication
operation. After that, we multiply Mspa with FspaS and reshape
the result to R

h×w×c. Then, we add the result with Fo to obtain
the output AspaA ∈ R

h×w×c. The formulation of AspaA is

AspaA = reshape(Mspa ⊗ FspaS) + Fo (6)

where reshape(·) represents the reshaping operation.
The output AspaA contains the spatial features of all the

positions and highlights the information of important spatial
locations. In order to enhance the nonlinearity of Aspa, we take
AspaA through a convolution layer with the kernel size of 1×1
at the end of the model.

2) Spectral Attention Model: The framework is shown in
Fig. 4(b). Similar to the spatial attention model, Fo is also
the input data. First, Fo is reshaped into FspeS ∈ R

n×c, and
then, FspeS is transposed into FspeT . Second, we apply a
softmax layer to the product of the matrix FspeT and FspeS

for generating spectral attention map Mspe ∈ R
c×c. The

formulation of Mspe is

Mspe
j i =

exp
(

FspeT
i ⊗ FspeS

j

)

∑c
i=1 exp

(
FspeT

i ⊗ FspeS
j

) (7)

where Mspe
j i indicates the spectral relationship of i th and j th

bands. In order to obtain the improved feature map AspeA ∈
R

h×w×c, the attention map and the feature maps should be
combined together. Thus, we reshape the product of Mspe

and FspeS to R
h×w×c and add Fo to the result. The contents

discussed earlier can be formulated as

AspeA = reshape(Mspe ⊗ FspeS) + Fo. (8)

The output AspeA includes spectral relationships of all the
bands and emphasizes informative bands. Finally, AspeA is
convoluted with a 1 × 1 convolution kernel to get the output
Aspe that contains the information of all bands.
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Fig. 3. 3D-OCM.

Fig. 4. Two parts of SSAM. (a) and (b) Spatial and spectral attention models.

C. SSICM

Compared with applying spatial or spectral features for the
classification task, high accuracy can be obtained by using
the fused spatial–spectral features [44], [54], [55]. Here, we
design SSICM to establish information flows for transmitting
important information between spatial and spectral features
so that their contributions can be fully fused. The key to the
information flows is to learn a complement matrix. Thus, the
complementary spatial features Tspa contain important spectral
information, and the complementary spectral features Tspe

contain detailed spatial information.
For clarity, we illustrate the information flows between

the two features. Its structure is shown in Fig. 5. First, the
features Aspe and Aspa are reshaped into AspeW ∈ R

n×c and
AspaW ∈ R

n×c. Then, AspeW and AspaW are transposed to AspeT

and AspaT . Second, the information transmissions between two
kinds of attention features are calculated as follows:

Cspa→spe = [
softmax(AspeW ⊗ AspaT )

] ⊗ AspaW (9)

Cspe→spa = [
softmax(AspaW ⊗ AspeT )

] ⊗ AspeW (10)

Fig. 5. SSICM.

where Cspa→spe donates the information flows from spa-
tial feature to spectral feature and Cspe→spa is opposite,
softmax(AspaW ⊗AspeT ) represents spatial complement weight
from spatial-to-spectral feature that can stress useful position
of the spatial feature, and so f tmax(AspaW ⊗AspeT ) represents
spectral complement weight from spectral-to-spatial feature
that can highlight the detailed spectral bands. By multiplying
the spatial complement matrix with AspaW , the information
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Fig. 6. (a) and (b) Image and labels of the Indian Pines data set.

transmitted from spatial-to-spectral feature can be obtained.
In the same way, multiplying the spectral complement matrix
with AspeW can acquire information which transmitted from
spectral-to-spatial feature. In order to integrate spatial infor-
mation into spectral features, we add Ispa→spe with AspeW to
obtain Tspe. Similarly, Tspa is calculated in the same way. The
two formulations are

Tspe = Cspa→spe + AspeW (11)

Tspa = Cspe→spa + AspaW . (12)

D. Optimization Strategy

In order to enhance feature representations of Tspa and Tspe,
we separately use cross-entropy functions for Tspa and Tspe

to optimize the two branches of the network. At the same
time, in order to make all the spatial and spectral information
contributed to the classification task, we add Tspa with Tspe to
get the fusion feature Tall. Similarly, a cross-entropy function
is applied to the feature Tall to optimize the whole network.
As three cross-entropy functions are used to optimize the
network, the loss function of 3DOC-SSAN is the sum of
these three cross-entropy functions. Finally, due to the fusion
feature Tall consisting of all important location information and
emphasized spectral bands, the classification result obtained by
Tall is regarded as the output of 3DOC-SSAN.

IV. EXPERIMENTS

A. Data Description

Four popular HSI data sets, i.e., Indian Pines, Pavia Uni-
versity scene, Botswana, and Houston, are utilized to evaluate
the performance of the proposed method.

The Indian Pines data set was collected by the Airborne
Visible/Infrared Imaging Spectrometer (AVIRIS) sensor over
the Indian Pines test site in Northwestern Indiana. It consists
of 145 × 145 pixels and 224 spectral reflectance bands with
the wavelength range of 0.4–2.5 µm. After removing water
absorption bands, there are 200 spectral bands remained.
A total of 10 249 pixels are manually labeled and divided into
16 land covers. The false-color image and its corresponding
ground-truth map of the Indian Pines data set are shown in
Fig. 6, while the number of labeled pixels of each land cover
is shown in Table I.

The University of Pavia data set was acquired by the Reflec-
tive Optics Imaging Spectrometer (ROSIS) sensor during a
flight campaign over Pavia, Northern Italy. The number of
original spectral bands with a range of 430–860 nm is 115.

TABLE I

NUMBER OF CLASSES AND PIXELS OF THE INDIAN PINES DATA SET

TABLE II

NUMBER OF CLASSES AND PIXELS OF THE

UNIVERSITY OF PAVIA DATA SET

Fig. 7. (a) and (b) Image and labels of the University of Pavia data set.

After eliminating 12 noisy bands, 103 bands have remained
for the classification task. The size of the University of Pavia
data set is 610 × 340, and the geometric resolution of pixels
is 1.3 m. There are nine semantic categories defined in the
University of Pavia data set. The false-color image of the Uni-
versity of Pavia data set and its ground-truth map are shown
in Fig. 7, while the numbers of labeled pixels corresponding
to different categories are summarized in Table II.

The Botswana data set was collected by the NASA
EO-1 Hyperion sensor over the Okavango Delta, Botswana,
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TABLE III

NUMBER OF CLASSES AND PIXELS OF THE BOTSWANA DATA SET

TABLE IV

NUMBER OF CLASSES AND PIXELS OF THE HOUSTON DATA SET

in 2001–2004. It has 242 bands covering the 400–2500-nm
portion of the spectrum. After removing uncalibrated and noisy
bands, there are 145 spectral bands used for the land-cover
classification. The size of the Botswana data is 1476 × 256,
and it has 14 identified classes. The false-color image of the
Botswana data set, and its ground-truth maps are shown in
Fig. 8, while the numbers of labeled pixels corresponding to
different categories are summarized in Table III.

The Houston data set was acquired by the ITRES-CASI
1500 sensor over the University of Houston campus and its
neighboring urban area on June 23, 2012. There are 144
spectral bands in this HSI. Its size is 349 × 1905, and its
spatial resolution is 2.5 m. It was published in the 2013
IEEE Geoscience and Remote Sensing Society (GRSS) data
fusion contest. The labeled data are grouped into 15 land-
cover classes. Also, the training data and testing data of this
HSI are defined apart, which enhances the difficulty of the
classification. The details of the semantic classes and the
numbers of the training and testing data corresponding to each
class can be found in Table IV. The false-color image of the
Houston data set and its ground-truth map are shown in Fig. 9.

Fig. 8. (a) and (b) Image and labels of the Botswana data set.

Fig. 9. (a) and (b) Image and labels of the Houston data set.

TABLE V

NETWORK PARAMETERS OF 3DOC-SSAN IN THE

INDIAN PINES DATA SET

B. Experimental Settings and Assessment Criteria

To accomplish the classification task, we randomly select a
few numbers of labeled pixels to construct the training data,
and the rest of the labeled data are used as the testing data.
For different HSIs, the numbers of training and testing pixels
are displayed in Tables I–IV. Due to the structure of our
3DOC-SSAN, we use the image patches rather than the pixels
to be the input, and the patch size is 13 × 13 in the following
experiments unless otherwise stated. The influence of different
patch sizes will be discussed in Section IV-F. In this article,
we select the Adam algorithm to train the proposed network.
In addition, the learning rate is fixed as 1×10−4, the batch size
is equal to 16, and the epochs are set to be 300, 100, 200, and
300 for the Indian Pines, the University of Pavia, Botswana,
and the Houston data sets. Besides the above-discussed issues,
some key parameters of our model are summarized in Table V.

To evaluate the performance of our method, three assess-
ment criteria are chosen: overall accuracy (OA), average
accuracy (AA), and kappa coefficient (K). OA is the ratio of
the number of correctly predicted test samples to the number
of all test samples. AA is the mean of classification accuracies
in all categories. K is defined to measure the consistency
between the classification results and ground truth. The higher
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Fig. 10. Classification maps of different methods on the Indian Pines data set. (a) SVM (85.25%). (b) RF-200 (87.48%). (c) Conv-Deconv-Net (95.34%).
(d) 2D-CNN (97.02%). (e) C-2D-CNN (96.24%). (f) 3D-CNN (93.42%). (g) SpecAttenNet (98.50%). (h) CAPSNET (99.01%). (i) DPRESNET (98.99%).
(j) SSRN (98.98%). (k) DRNN (96.86%). (l) 2DOC-SSAN (98.89%). (m) 3DOC-SSAN (99.14%).

the values of OA, AA, and K, the better the classification
results.

C. Compare With Other Methods

In order to verify the effectiveness of 3DOC-SSAN, we
select different methods for the comparison, including the
traditional machine learning algorithms and the DL-based
approaches. The traditional machine learning algorithms are
SVM [9] and random forest [8] with 200 decision trees
(RF-200). The DL-based approaches are Conv-Deconv-Net
[47], 2D-CNN [46], recurrent 2-D CNN (C-2D-CNN) [46],
3D-CNN [40], spectral attention network (SpecAttenNet) [49],
CAPSNET [28], DPRESNET [26], SSRN [52], and DRNN
[51]. In addition, we change 3-D convolution into a common
2-D convolution to study our 3DOC-SSAN model deeply,
and this model is recorded 2DOC-SSAN. For the sake of
fairness, all of the comparisons are conducted under the same
conditions as 3DOC-SSAN, including parameter settings and
data preprocessing.

1) Analysis of Indian Pines Data Set: The visual and
numerical classification results of different methods counted
on the Indian Pines data set are shown in Fig. 10 and
Table VI. From the observation of Fig. 10, we can easily
find that the classification map obtained by our 3DOC-SSAN
model is clearer than that of the compared methods. Not
only the regional consistency but also the boundaries
between regions are classified well. For the numerical results
(displayed in Table VI), the proposed model achieves the
best performance from the overall aspect. Compared with the
other methods, the OA scores’ enhancements obtained by our
model are 13.89% (SVM), 11.66% (RF-200), 3.80% (Conv-
Deconv-Net), 2.12% (2D-CNN), 2.90% (C-2D-CNN),
5.72% (3D-CNN), 0.64% (SpecAttenNet), 0.13%
(SAPSNET), 0.15% (DPRESNET), 0.16% (SSRN),
2.28% (DRNN), and 0.25% (2DOC-SSAN). The AA
scores’ improvements are 6.98% (SVM), 6.81% (RF-
200), 1.81% (Conv-Deconv-Net), 1.62% (2D-CNN), 1.35%
(C-2D-CNN), 2.57% (3D-CNN), 0.34% (SpecAttenNet),
0.39% (CAPSNET), 0.33% (DPRESNET), 0.38% (SSRN),
2.42% (DRNN), and 0.12% (2DOC-SSAN). The kappa
coefficient’s increases are 16.04% (SVM), 13.42% (RF-200),

4.41% (Conv-Deconv-Net), 3.48% (2D-CNN), 3.36%
(C-2D-CNN), 6.62% (3D-CNN), 0.84% (SpecAttenNet),
0.12% (CAPSNET), 0.33% (DPRESNET), 0.29% (SSRN),
2.41% (DRNN), and 0.40% (2DOC-SSAN). These promising
results illustrate that both the spectral information and spatial
information are fully captured by the proposed 3D-OCM,
SSAM, and SSICM models.

Furthermore, by observing the different categories, it is
obvious that our method outperforms the other counter-
parts in most cases. An encouraging observation is that
the 3DOC-SSAN model can get superior results in some
categories that are hard to identify, such as “Corn-mintill.”
For this land cover, the highest performance among all of
the compared methods is obtained by 2D-CNN (99.40%).
However, our model can achieve performance as high as
99.47%. There is another point that we want to touch on,
i.e., the comparison between 2DOC-SSAN and 3DOC-SSAN.
The only difference between these two models is that the con-
volution operation used in the Oct-Conv block. Compared with
the 2-D convolution that focuses on exploring the information
from the single feature map, 3-D convolution can mine the
rich knowledge from all of the feature maps at the same time.
This characteristic makes 3-D convolution more suitable to
extract the features from the HSIs, which is proved by the
classification results. The encouraging results discussed earlier
demonstrate that our 3DOC-SSAN network is effective for the
Indian Pines data set.

2) Analysis of University of Pavia Data Set: The visual and
numerical classification results of different methods counted
on the University of Pavia data set are shown in Fig. 11
and Table VII. As shown in Fig. 11, the classification map
obtained by our method is close to the ground-truth map.
Almost all of the samples can be predicted correctly and
the boundaries of different categories are clear. As shown
in Table VII, the behavior of our model is the strongest.
The OA, AA, and Kappa scores are 99.87%, 99.85%, and
99.82%, respectively. Compared with other methods, the
increases of OA scores obtained by our model are 7.41%
(SVM), 4.26% (RF-200), 1.06% (Conv-Deconv-Net), 0.45%
(2D-CNN), 0.19% (C-2D-CNN), 0.21% (3D-CNN), 0.12%
(SpecAttenNet), 0.20% (CAPSNET), 0.72% (DPRESNET),
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Fig. 11. Classification maps of different methods on the University of Pavia data set. (a) SVM (92.46%). (b) RF-200 (95.61%). (c) Conv-Deconv-Net
(98.81%). (d) 2D-CNN (99.42%). (e) C-2D-CNN (99.68%). (f) 3D-CNN (99.66%). (g) SpecAttenNet (99.75%). (h) CAPSNET (99.67%). (i) DPRESNET
(99.15%). (j) SSRN (99.78%). (k) DRNN (99.44%). (l) 2DOC-SSAN (99.82%). (m) 3DOC-SSAN (99.87%).

Fig. 12. Classification maps of different methods on the Botswana data set. (a) SVM (95.22%). (b) RF-200 (95.35%). (c) Conv-Deconv-Net (98.27%).
(d) 2D-CNN (98.34%). (e) C-2D-CNN (98.53%). (f) 3D-CNN (97.18%). (g) SpecAttenNet (98.97%). (h) CAPSNET (98.45%). (i) DPRESNET (97.26%).
(j) SSRN (99.21%). (k) DRNN (99.01%). (l) 2DOC-SSAN (99.34%). (m) 3DOC-SSAN (99.66%).

0.09% (SSRN), 0.43% (DRNN), and 0.05% (2DOC-SSAN).
The improvements of AA scores are 6.28% (SVM), 2.79%
(RF-200), 0.92% (Conv-Deconv-Net), 0.48% (2D-CNN),
0.23% (C-2D-CNN), 0.28% (3D-CNN), 0.08% (SpecAt-
tenNet), 0.15% (CAPSNET), 1.55% (DPRESNET), 0.20%
(SSRN), and 0.35% (DRNN). Different from other comparison
methods, the AA scores of 2DOC-SSAN and 3DOC-SSAN
are same to each other. The enhancements of kappa coef-
ficient are 9.9% (SVM), 5.76%(RF-200), 1.44% (Conv-
Deconv-Net), 0.48% (2D-CNN), 0.24% (C-2D-CNN), 0.28%
(3D-CNN), 0.17% (SpecAttenNet), 0.10% (CAPSNET),
0.95% (DPRESNET), 0.12% (SSRN), 0.43% (DRNN), and
0.01% (2DOC-SSAN). These experimental results illustrate
that our network can capture more discriminative features.

For some categories in the University of Pavia data set,
such as “Painted Metal Sheets” and “Bare Soi,” our method
can reach 100% classification accuracy. For other categories,

the classification accuracies obtained by our method can also
reach a high level. In addition, for the class “Gravel,” the
classification accuracies of networks with attention mecha-
nism, i.e., SpecAttenNet, 2DOC-SSAN, and 3DOC-SSAN,
are more than 99%, which are significantly better than the
networks without attentional mechanisms. This successfully
demonstrates that the attentional mechanism plays a positive
role in feature learning. From the abovementioned discussion,
it can be seen that our method is effective in the University
of Pavia data set.

3) Analysis of Botswana Data Set: The visual and numer-
ical results of different methods counted on the Botswana
data set are shown in Fig. 12 and Table VIII. As shown
in Fig. 12, we can find that our method can generate
clear classification map. As shown in Table VIII, the values
of OA, AA, and Kappa of our method are higher than
that of other comparison methods. The increases of OA
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Fig. 13. Classification maps of different methods on the Houston data set. (a) SVM (66.91%). (b) RF-200 (74.43%). (c) Conv-Deconv-Net (78.57%).
(d) 2D-CNN (80.50%). (e) C-2D-CNN (85.27%). (f) 3D-CNN (79.73%). (g) SpecAttenNet (79.51%). (h) CAPSNET (85.96%). (i) DPRESNET (81.62%).
(j) SSRN (86.12%). (k) DRNN (85.81%). (l) 2DOC-SSAN (85.26%). (m) 3DOC-SSAN (87.59%).

scores obtained by our model are 4.44% (SVM), 4.31%
(RF-200), 1.39% (Conv-Deconv-Net), 1.32% (2D-CNN),
1.13% (C-2D-CNN), 2.48% (3D-CNN), 0.69% (SpecAt-
tenNet), 1.21% (CAPSNET), 2.40% (DPRESNET), 0.45%
(SSRN), 0.65% (DRNN), and 0.32% (2DOC-SSAN). The
improvements of AA scores are 5.66% (SVM), 3.42%
(RF-200), 1.45% (Conv-Deconv-Net), 1.76% (2D-CNN),
0.99% (C-2D-CNN), 2.22% (3D-CNN), 0.69% (SpecAt-
tenNet), 1.39% (CAPSNET), 2.15% (DPRESNET), 0.40%
(SSRN), 0.75% (DRNN), and 0.32% (2DOC-SSAN). The
enhancements of kappa coefficient are 5.21% (SVM), 4.59%
(RF-200), 1.51% (Conv-Deconv-Net), 1.43% (2D-CNN),
1.23% (C-2D-CNN), 2.69% (3D-CNN), 0.75% (SpecAt-
tenNet), 1.24% (CAPSNET), 2.61% (DPRESNET), 0.65%
(SSRN), 0.71% (DRNN), and 0.34% (2DOC-SSAN).

It is encouraging that the proposed 3DOC-SSAN achieves
the best performance in most of the categories. For nine
categories, including “Water,” “Hippo grass,” “Floodplain
grasses1,” “Firescar2,” “Island interior,” “Acacia shrublands,”
“Short mopane,” “Mixed mopane,” and “Exposed soils,” our
method can obtain 100% classification accuracy. For the
other five categories, the classification accuracy of our model
exceeds 98.85%. Since the volume of labeled samples is small,
but the size of Botswana data is large, the distribution of
labeled samples of some categories (such as “Reeds1”) is
relatively scattered. In other words, there are many interference
pixels around the center pixel, which would influence the clas-
sification results negatively [56]. Fortunately, our method still
works on these categories. Taking “Reeds1” as an example, the
highest performance among all of the comparisons is 97.69%
(DRNN). However, our model can achieve performance as
high as 98.86%. The above-discussed results demonstrate that
our 3DOC-SSAN network is also effective for the Botswana
data set.

4) Analysis of Houston Data Set: To study the performance
of 3DOC-SSAN on the Houston HSI data set, we use the
training set to train our model under the experimental

settings mentioned in Section IV-B. Then, the trained
network is utilized to predict the testing data. The visual
and numerical results of different methods counted on
the Houston data set are shown in Fig. 13 and Table IX.
As shown in Fig. 13, the classification map acquired
by 3DOC-SSAN is close to the original image. For the
fuzzy parts of the original image, we can also predict
most of the categories well. As shown in Table IX, the
increases of the OA score obtained by 3DOC-SSAN are
20.68% (SVM), 13.16% (RF-200), 9.02% (Conv-Deconv-
Net), 7.09% (2D-CNN), 2.32% (C-2D-CNN), 7.86%
(3D-CNN), 8.08% (SpecAttenNet), 1.63% (CAPSNET),
5.97% (DPRESNET), 1.47% (SSRN), 1.78% (DRNN), and
2.33% (2DOC-SSAN). The improvements of the AA score
achieved by our method are 22.11% (SVM), 14.98% (RF-200),
10.97% (Conv-Deconv-Net), 8.37% (2D-CNN), 3.33%
(C-2D-CNN), 11.28% (3D-CNN), 9.41% (SpecAttenNet),
2.70% (CAPSNET), 7.30% (DPRESNET), 2.50%
(SSRN), 2.25% (DRNN), and 3.03% (2DOC-SSAN).
The enhancements of the Kappa coefficient obtained
by 3DOC-SSAN are 22.27% (SVM), 13.18% (RF-200),
9.45% (Conv-Deconv-Net), 7.58% (2D-CNN), 3.45%
(C-2D-CNN), 8.87% (3D-CNN), 8.65% (SpecAttenNet),
2.71% (CAPSNET), 6.10% (DPRESNET), 1.37% (SSRN),
1.83% (DRNN), and 1.84% (2DOC-SSAN).

For most categories, our method achieves good perfor-
mance. For example, the accuracy of 3DOC-SSAN can be
reached 100% on “Soil” and “Tennis Cou.” However, since
the training and testing sets within this HSI are defined apart
(which increases the difficulty of classification), the results
of different methods on some categories are not satisfactory,
such as “Commercial” and “Highway.” Even though, our
method still obtains the best performance among all of the
methods. Taking “Commercial” as an example, the highest
performance among all of the compared methods is 77.82%
(SSRN). Nevertheless, our model can achieve performance
as high as 79.54%. The above-discussed encouraging results
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TABLE X

OAS (%) WITH DIFFERENT FEATURE EXTRACTION
MODELS ON THE FOUR DATA SETS

demonstrate that our 3DOC-SSAN network is effective for the
Houston data set.

D. Analysis of Submodels

1) Analysis of 3D-OCM: In order to verify the importance
of 3D-OCM, we design three additional models to replace
3D-OCM for extracting features, i.e., a CNN based on 2-D
convolution (CNN-2D), a CNN based on 3-D convolution
(CNN-3D), and the octave convolution model based on 2-D
convolution (2D-OCM). The classification networks based
on four feature learning models are recorded 2D-SSAN,
3D-SSAN, 2DOC-SSAN, and 3DOC-SSAN here. Since there
are four Oct-Conv blocks in 3D-OCM, we also use four
convolution blocks in the other three models for fairness.
For three test data sets, OA scores of different classification
networks are summarized in Table X. It is obvious that
3DOC-SSAN outperforms the others. The reason behind this
is that the 3D-OCM model can capture spatial and spectral
information simultaneously. Compared with the other meth-
ods, the OA scores’ enhancements obtained by our model are
0.46% (2D-SSAN), 0.44% (3D-SSAN), and 0.34% (2DOC-
SSAN) on the Indian Pines data set, 0.17% (2D-SSAN), 0.12%
(3D-SSAN), and 0.05% (2DOC-SSAN) on the University of
Pavia data set, 0.79% (2D-SSAN), 0.68% (3D-SSAN), and
0.32% (2DOC-SSAN) on the Botswana data set, and 4.12%
(2D-SSAN), 3.2% (3D-SSAN), and 2.33% (2DOC-SSAN).
The above-discussed promising results demonstrate that the
features obtained by 3D-OCM are comprehensive and repre-
sentative.

2) Analysis of SSAM: In this section, we study the function
of SSAM. As mentioned in Section III-B, SSAM is proposed
to generate the attention maps from the spectral and spatial
aspects. It consists of two components: the spatial attention
model (SPAM) and spectral attention model (SPEM). To
illustrate the importance of SSAM, we do the following
experiments. First, we eliminate SSAM from our classification
network, and we name it 3D-OCM for clear. Second, only
the SPAM model is adopted in our network, and we record
it 3D-OCM+SPAM for short. Third, only the SPEM model
is added in our network, and we record it 3D-OCM+SPEM
for convenience. Finally, the SSAM model is embedded in
the classification network, and we name it 3D-OCM+SSAM.
Since the input of the SSICM model requires two feature
maps, but the first three comparative experiments only gen-
erate one feature map, we remove the SSICM model in all
experiments. The OA scores of the four schemes counted on
different data sets are shown in Table XI.

TABLE XI

OAS (%) WITH DIFFERENT ATTENTION MODELS
ON THE FOUR DATA SETS

TABLE XII

OAS (%) WITH INFORMATION COMPLEMENTARITY

ON THE FOUR DATA SETS

It is obvious that the OA score of 3D-OCM + SSAM is
the highest among the four schemes. On the Indian Pines
data set, the OA score of 3D-OCM + SSAM is 98.79%, and
it is 0.66%, 0.44%, and 0.40% higher than the OA values
of 3D-OCM, 3D-OCM + SPAM, and 3D-OCM + SPEM.
Similar to the Indian Pines data set, the increases of OA
scores obtained by 3D-OCM + SSAM are 0.14% (3D-OCM),
0.07% (3D-OCM + SPAM), and 0.06% (3D-OCM + SPEM)
on the University of Pavia data set, 0.82% (3D-OCM), 0.48%
(3D-OCM + SPAM), and 0.41% (3D-OCM + SPEM) on the
Botswana data set, and 4.41% (3D-OCM), 1.45% (3D-OCM +
SPAM), and 1.53% (3D-OCM + SPEM) on the Houston data
set. The results shown in Table IX show that the performance
of the schemes with the attention mechanism (3D-OCM +
SPAM, 3D-OCM + SPEM, and 3D-OCM + SSAM) is better
than that of the scheme without attention method (3D-OCM).
This demonstrates that the attention method plays a positive
role in the HSIs’ feature learning and classification. Moreover,
since the SSAM model takes the spatial and spectral factors
into account at the same time, 3D-OCM + SSAM performance
is better than that of 3D-OCM + SPAM and 3D-OCM +
SPEM. The experimental results show that the two attention
models designed in this article can capture important spatial
and spectral information and improve the discrimination of
features.

3) Analysis of SSICM: SSICM is proposed to fuse the
spatial and spectral features in a mutually complementary
manner. Through SSICM, we can transmit important spatial
information to spectral features and infuse significant spectral
information to spatial features. In this section, we study this
model by eliminating it from our classification network. In
other words, we compare the classification results between
3DOC-SSAN and 3DOC-SSAN without SSICM. The OAs
of the two experiments are shown in Table XII. From the
observation of Table XII, we can easily find that the perfor-
mance of 3DOC-SSAN is better than that of 3DOC-SSAN
without SSICM in all scenarios. These results show that
the information complementary model SSICM is useful to
improve our network for the HSIs’ classification task.
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TABLE XIII

OAS (%) WITH DIFFERENT SUBMODELS ON THE FOUR DATA SETS

TABLE XIV

NUMBER OF PARAMETERS ON DIFFERENT DATA SETS (M: MILLION)

Fig. 14. OAs with different patch sizes on different data sets.

E. Ablation Study

In the 3DOC-SSAN model, there are three parts: 3D-OCM,
SSAM, and SSICM. The 3D-OCM block aims to capture
the spatial–spectral features from the HSIs. The SSAM block
is introduced to improve the discrimination of the obtained
features from the 3D-OCM block. The SSICM block is devel-
oped to integrate important information and remove redundant
information. To study the contributions of each submodel to
our method, we construct three networks to complete the HSI
classification, as follows.

1) NET_1: 3D-OCM.
2) NET_2: 3D-OCM + SSAM.
3) NET_3: 3D-OCM + SSAM + SSICM.

Their OA values counted on four HSIs are summarized in
Table XIII, where we can easily find that each component
has its positive contributions to the classification task. Taking
the Indian Pines data set as an example, we can find the
following three points. First, the OA score of Net_1 is 98.13%.
This classification accuracy is acceptable, which indicates that
3D-OCM is suitable for the HSI classification task. Second,
by comparing the results of Net_1 and Net_2, we can find the
attention mechanism is useful for improving the discrimination
of features. Third, by observing the results of Net_2 and
Net_3, it is apparent that the SSICM model can also bring
an encouraging improvement (0.35%). The reason is that the
important information within the outputs of different attention
models is highlighted, and the redundant information is sup-
pressed. These positive results demonstrate that each submodel
can make positive contributions to the HSIs classification.

F. Impact of Patch Size

As mentioned in Section IV-B, we select the image patch
centered at each pixel as the input of our 3DOC-SSAN, and
the patch size is 13 × 13. However, the size of the patch has
a great influence on the classification results [57], [58]. To
obtain a suitable patch size for our model, we select image
patches with different sizes for accomplishing the classification
experiments. In detail, the image patches’ sizes are varied
from 3 × 3 to 19 × 19 with the interval of 2, and the OA
values of our 3DOC-SSAN model counted on different HSI
data sets are shown in Fig. 14. From the observation of the
bars, we can find the weakest performance appears when the
patch size equals 3 × 3. This illustrates that small patches
bring less information, which cannot support our model to
get a good performance. As the patch size becomes larger,
each patch contains more spatial and spectral information,
the performance of our method is increased to an appropriate
extent, and the peak values for different data sets appear in
13 × 13. When the patch size is larger than 13 × 13, the
performance of our method is decreased, especially for the
Houston data set. The reason behind this is that, with the
increase in the patch size, the redundant information contained
in the patch will increase, which will harm the classification
tasks. Therefore, when the size of the patch is too large or too
small, the classification accuracy would be affected negatively.
To sum up, we set the image patch size at 13 × 13 for our
network.

G. Impact of Proportion of Training Samples

For the HSI classification, finding sufficient labeled samples
to train a classifier is a difficult and time-consuming task.
Therefore, the classification performance of a model with the
limited training samples becomes an important assessment
criterion. In the previous experiments, we fixed the number of
samples to testify the performance of our model. The positive
classification results counted on four data sets demonstrate
the effectiveness of our 3DOC-SSAN model. In addition, to
study if 3DOC-SSAN is useful or not when the number of
training data is limited, and to observe the influence of various
volumes of the training set on our method, we design the
following experiments. For different data sets, we randomly
select 1%, 3%, 5%, 10%, 15%, and 20% of samples to train
our 3DOC-SSAN model. Then, the rest of the samples are used
to test 3DOC-SSAN. Here, we adopt two networks, SSRN
and DPRESNET, as the reference, which performs well in the
small training set scenario.

The results counted on four data sets are summarized in
Fig. 15, where we can find the following points. First, our
3DOC-SSAN outperforms the other two compared methods
in most cases. Second, the performance of different networks
is acceptable but satisfactory when there are only 1% samples
in the training set. However, when the proportion of training
samples increases, their performance is improved drastically.
Especially, when the proportion of training samples changes
from 1% to 10%, the behavior of various methods is enhanced
dramatically. The above-discussed observations illustrate that:
1) the proposed 3DOC-SSAN can classify the HSIs well even
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Fig. 15. OAs with different training percent of different data sets. (a) Indian Pines. (b) University of Pavia. (c) Botswana. (d) Houston.

though the number of the labeled data is few and 2) our
3DOC-SSAN outperform the other two popular methods no
matter the number of the labeled data is enough or not.

H. Impact of the Number of Parameters

In DL, the network’s complexity is an important assessment
criterion that can be measured by the number of parameters
apparently [59]. In this section, we study the number of
parameters in our network. As mentioned in Section III, there
are three submodels in 3DOC-SSAN: 3D-OCM, SSAM, and
SSICM. Thus, we provide the numbers of parameters corre-
sponding to each model for deeply studying the complexity
of 3DOC-SSAN. The details are summarized in Table XIV,
where the volume of parameters is counted on different data
sets. We can find that the parameters of our model are
concentrated upon the 3D-OCM submodel, which consists
of an octave convolution network with the 3-D convolution.
Since the main operations within the SSAM submodel are
transposition and dot product, its parameters’ volume is not
too large. For the SSICM submodel, the number of parameters
is zero as it only contains the reshaping and summation
operations.

V. CONCLUSION

In this article, we have proposed an end-to-end network
named 3DOC-SSAN for the HSI classification task, which
can capture and highlight important spatial and spectral
information. First, we use an octave convolution model that
consists of four Oct-Conv blocks to process the spatial
information for fusing high- and low-frequency information
and reduce the number of network parameters. In order to
process spatial and spectral information simultaneously, we
have extended the octave convolution model to a 3-D version

(named 3D-OCM), and then, the spatial–spectral features can
be acquired simultaneously. Second, due to the characteristics
of HSIs, two attention mechanisms from spatial and spectral
aspects have been employed in our network. Through these
models, the significant spatial areas and special spectral bands
are highlighted to improve the discrimination of features.
Finally, in order to ensure the integrity of the information,
we have designed SSICM that can remain the important parts
of different features. In SSICM, the information flows are
established to transmit mutual information between spatial
and spectral features. Not only important spatial information
but also particular spectral information makes contributions to
the classification tasks. Experiments with four common data
sets of HSIs show that our method can obtain good results.
However, since the use of 3-D convolution in our network, the
training time of our method is relatively long. Therefore, our
further work mainly focuses on decreasing the training time
while ensuring the classification accuracy of HSI classification
tasks.
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