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Abstract— Ship detection plays a significant role in the
high-resolution remote sensing (HRRS) community, but it is
a challenging task due to the complex contents within HRRS
images and the diverse orientation of ships. Recently, with the
development of deep learning, the performance of the HRRS
ship detection model has been improved greatly. Most of them
employ deep networks and complicate anchor mechanism to get
well ship detection results. Nevertheless, this kind of combination
limits the detection efficiency. To address this problem, a new
approach named accurate and real-time rotational ship detector
(AR2Det) is proposed in this article to detect ships without the
anchor mechanism. Based on the extracted features by the feature
extraction module (FEM) and the central information of ships,
AR2Det adopts two simple modules, ship detector (SDet) and cen-
ter detector (CDet), to generate and improve the detection results,
respectively. AR2Det is efficient due to the simple postprocessing
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and the lightweight network. Also, AR2Det performs satisfacto-
rily due to the effective generation and enhancement strategy
of bounding boxes. The extensive experiments are conducted on
a public HRRS image ship detection dataset HRSC2016. The
promising results show that our method outperforms the state-
of-the-art approaches in terms of both accuracy and speed.

Index Terms— Deep learning, high-resolution remote
sensing (HRRS) image, ship detection.

I. INTRODUCTION

W ITH the development of aerospace and sensor tech-
nologies, the resolution of remote sensing (RS) images

obtained by diverse earth observation (EO) satellites has been
improved dramatically. These high-resolution RS (HRRS)
images can provide rich land-cover/land-use information for
studying our planet. As a fundamental HRRS images’ content
understanding task, object detection always draws researchers’
attention since it can display a lot of refined information
within HRRS images and can be widely used in many realistic
applications, such as geospatial object detection [1], vehicle
detection [2], [3], and target recognition [4]. Nevertheless,
the contents of HRRS are complex, and the objects within
the HRRS images are diverse in type, huge in volume, and
multiscale in size. It turns out that object detection is a
nontrivial task in the RS community. Among various objects
within the HRRS images, ships are a specific class, which are
important in many fields, including marine traffic monitoring,
ship rescue, territorial defense, fisheries management, and
marine situational awareness [5]. Therefore, it is still desirable
to develop an effective and efficient HRRS ship detection
method. This article will concentrate on such a method.

Generally, a basic and important step in the HRRS ship
detection is the feature learning/extraction of the images.
At the very beginning, handcrafted features are popular. The
usual low-/middle-level visual features include scale-invariant
feature transform (SIFT) [6], bag of words (BOW) [7], and
histogram of oriented gradients (HOG) [8]. Based on these
handcrafted features, many ship detection approaches were
proposed [9]–[11]. However, their performance cannot meet
what we expect because the extracted features are not able to
fully describe the complex contents within the HRRS images.
Recently, with the development of deep learning [12], [13],
especially the deep convolutional neural network (DCNN)
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[14]–[16], the representation capacity of the extracted features
has been enhanced due to the hierarchical structure and learn-
ing manner of DCNN. With the help of these deep features,
numerous HRRS ship detection methods were proposed and
achieved the cracking performance [10], [11], [17]. Due to
the excellent results, DCNN-based methods have dominated
the HRRS ship detection community.

The existing DCNN-based ship detection methods can be
divided into two categories [18], i.e., the two-stage meth-
ods and one-stage methods. For the two-stage methods,
the first stage is to generate the region proposals, which
aims to find some regions that may contain ships. To achieve
this goal, many algorithms were proposed. For example,
Zhang et al. [19] proposed the rotated region proposal net-
work (R2PN) for the HRRS ship detection, in which the mul-
tiorientated proposal generation algorithm is developed based
on the common region proposal network. Thus, the ships with
the orientation angle information can be detected accurately.
The second stage consists of the classification and regression,
which focuses on further distinguishing ships and refining their
location. For instance, in the paper [20], the fully connected
layers are added on the top of the network to accomplish the
ship classification and bounding box regression by the specific
loss functions. The two-stage methods usually achieve high
accuracy in ship detection. Nevertheless, they sacrifice the
computation resources and increase the time costs. Thus, it is
difficult for them to perform real-time ship detection [21].

To overcome the disadvantages mentioned above, one-stage
ship detection methods are proposed, which generates the
detection results without the refinement of the region pro-
posal. For example, based on the successful you only look
once (YOLO) algorithm [22], a one-stage HSSR ship detection
method was introduced [23]. By adding the angle information,
the method can detect multiorientated ships rapidly. Although
the one-stage detection methods are efficient, their perfor-
mance is not as good as the two-stage methods. The reasons
behind this can be summarized as follows. First, since there
is no refinement scheme such as the region proposal, the final
detection performance is limited. Second, in the HRRS images,
the numbers of the ships and the backgrounds are imbalanced.
This would harm the performance of one-stage methods as
they do not have the twice classification strategy for ships
(which is a common operation in the two-stage methods).
Third, it is difficult to select accurate bounding boxes from
abundant detection results by the predicted scores since there
is always a lot of noise in the predicted score.

To address these problems in one-stage methods, we will
therefore develop a new ship detection method, which can
obtain accurate results efficiently. We name it accurate and
real-time rotational ship detector (AR2Det). AR2Det is a
simple network with three submodules, including a feature
extraction module (FEM), a ship detector (SDet), and a center
detector (CDet). FEM is used to learn the basic features from
HRRS images and enhance the discrimination of the features
through fusing the multiscale information. SDet is developed
to decide the positions and geometric attributes of the ships.
CDet aims to adjust the predicted scores of SDet so that the
final detection results can be obtained more accurately.

The main contributions of this article are summarized as
follows.

1) A one-stage ship detection model AR2Det is proposed,
which can accurately detect ships from HRRS images
with high efficiency. In the inference stage, the detection
speed of AR2Det (based on ResNet34 [16]) can reach
up to 112 frames per second (FPS).

2) In SDet, we propose a relative coordinate scheme to
describe the ships’ locations by considering position
information of feature pixels within the feature maps.
Also, instead of using the intersection over union (IoU)
as scores, we develop score labels to assess the quality of
bounding boxes. The two proposed strategies can ensure
detection accuracy and accelerate the training process
(about eight times).

3) In CDet, to further reduce the computational costs,
the scores of bounding boxes would be adjusted.
Thus, many redundant bounding boxes can be ignored.
Through this step, mean average precision (MAP) val-
ues of AR2Det are increased from 81.79% to 89.57%.
Meanwhile, the inference process can be accelerated by
four times.

The rest of this article is organized as follows. The litera-
ture related to rotated object detection and ship detection is
reviewed in Section II. In Section III, our AR2Det with four
submodels is introduced in detail. The experiments and their
discussion are shown in Section IV. Finally, Section V draws
a brief conclusion.

II. RELATED WORK

Many successful object and ship detection methods have
been proposed in recent years, which can be grouped
into: 1) two-stage RS image object detection methods and
2) one-stage RS image object detection methods.

A. Two-Stage HRRS Image Object Detection Methods

Due to the high accuracy, two-stage object detection meth-
ods are popular in the RS community. As a classical model
of two-stage methods, region convolutional neural network
(R-CNN) [24] achieves cracking performance in many appli-
cations. Considering the specific characteristics of HRRS
images, many variants of R-CNN have been proposed to
deal with the HRRS image object detection. For example,
Cao et al. [25] applied R-CNN to HRRS images directly. The
positive results showed that R-CNN can address the HRRS
image object detection task. Nevertheless, the reported results
cannot achieve what we expect due to the complex contents
within RS images. Also, due to the high time complexity
of R-CNN, the detection process of HRRS images is time-
consuming. To overcome this issue and take more proper-
ties of RS images during the detection, an HRRS object
detection method was proposed in [26] based on the faster
R-CNN [27]. This model combines the pretrained region
proposed network (RPN) [27] and the sharing computation
algorithm to find the diverse objects within the HRRS images
robustly and rapidly. Considering the multiscale information
of the objects, Wang et al. [28] introduced a multiscale block
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fusion object detection for HRRS images. It first divides the
large-scale HRRS images into blocks with different scales.
Then, the detection results corresponding to multiscale blocks
(obtained by faster R-CNN) are fused for the final results.
The other variant of faster R-CNN [29] was designed using
a suitable region of interest (ROI) scale of object detection
to generate accurate results for multiple-scale objects. Apart
from the complex contents and the multiscale information,
the issue of small objects is another tough point in HRRS
object detection tasks. To find them accurately, a network
was presented in [30], which is named RS region-based
convolutional neural network (R2-CNN). Through integrating
the global attention block and Tiny-Net [30], the small objects
within HRRS images can be detected.

As a specific object in HRRS images, except for the general
characteristics of HRRS image objects, ships have many other
properties [31], such as arbitrary orientation and narrow shape.
Therefore, rotational ship detection becomes an important and
challenging task. To predict ships in HRRS images precisely,
a number of two-stage methods have been proposed. For
instance, rotational region CNN (R2CNN) was developed
in [32], where the rotated bounding boxes can be obtained
by adding the angle into the R-CNN stage. Liu et al. [20]
proposed the rotated region-based CNN (RR-CNN) to explore
the rotational ships. Through learning the features of rotated
regions and adopting the rotated region of interest (RRoI)
pooling layer [20], the ships with arbitrary orientations can
be detected accurately. To further improve the ship detection
performance, Zhang et al. [19] introduced the R2PN, in which
not only the rotated RoI but also the rotated anchor boxes
are developed to find and locate different ships. To reduce
the computational complexity of R2PN, the region of interest
transformer (RoI Transformer) was developed in [33]. Instead
of using rotated anchor boxes, RoI Transformer adds the fully
connected layer after the region proposal block to explore
the rotated information using the horizontal anchor boxes.
A similar work was published in [34], where four length ratios
of the relative gliding offsets are regressed to assign the angle
information to the horizontal anchor boxes.

B. One-Stage HRRS Image Object Detection Methods

Although two-stage methods can obtain accurate detection
results for HRRS images, their time complexity is too high for
many realistic applications. To reduce time costs, one-stage
methods attract scholars’ attention.

One-stage methods can locate and classify the object
directly without region proposals, which greatly improves the
efficiency of detection. The most popular one-stage method
would be YOLO [22]. Based on YOLO, many successful
methods have been developed for HRRS images recently. For
example, a network named you only look twice (YOLT) was
proposed in [35] for HRRS images. Through the data aug-
mentation and the output size modification, the performance
of YOLT for HRRS images is pleasurable. To eliminate the
inference of the complex background within HRRS images,
Hou et al. [36] developed the refined single-shot multibox
detector (RSSD). RSSD consists of three blocks, including a

single-shot multibox detector (SSD) [37], a refined network
(RefinedNet), and a class-specific spatial template match-
ing (STM) module. Combining them together, the object detec-
tion results are enhanced to a big degree. Wang et al. [38]
introduced another model to reduce the influence of the com-
plex background, named feature-merged single-shot detection
(FMSSD). By aggregating the context information in the
multiscale and single-scale feature learning, the objects can
be detected accurately and rapidly.

For ships, many one-stage detection methods have been
proposed in recent years, which push the ship detection
toward the real-time stage [18]. For example, inspired by SSD,
detector rotatable bounding box (DRBox) [39] was proposed.
DRBox defines the rotatable bounding box to predict the poly
directional ships, which improves the degree of overlapping
between the bounding boxes and ships. To further improve
the ship detection accuracy, a single-shot anchor refinement
network (SSARN) was developed in [40]. It imitates the
two-stage method, which regresses the anchor boxes twice
and obtains superior results. Yang et al. [17] developed a
refined rotation retinanet (R3Det) to address the HRRS object
detection, in which a feature refinement module is introduced
to improve the discrimination of the ship features.

III. PROPOSED APPROACH

The architecture of AR2Det is shown in Fig. 1, which
contains an FEM, an SDet, and a CDet. FEM aims to extract
the discriminative features from HRRS images, SDet aims at
generating the ship bounding boxes and their scores, and CDet
focuses on obtaining the ship centers and their confidence.
To train AR2Det, four specific loss functions are formulated
with the consideration of characteristics of HRRS images.
In the inference phase, when the user inputs an HRRS,
the trained AR2Det is used to generate the ships’ centers,
centers’ confidence, bounding boxes, and boxes’ scores. Then,
a postprocessing method, named score ad strategy, is devel-
oped to eliminate the redundant and inaccurate bounding boxes
according to the centers and their confidence for the final
detection results.

A. Feature Extraction Module

The visual features play a vital role in HRRS image object
detection. How to obtain effective and discriminative features
from HRRS images is always a challenging task. Due to the
complex contents within HRRS images, both the low-level
features (e.g., color, texture, and shape) and the deep-level
features (e.g., context and semantics) should be considered
during the representation exploration. Therefore, we adopt
ResNet [16] and the feature pyramid network [41], [42] to
complete the feature extraction in this article. In addition,
to further enhance the discrimination of features, a simple yet
useful fusion scheme is developed. The flowchart of FEM is
shown in Fig. 2.

As discussed in [42], ResNet can be divided into four resid-
ual blocks according to its structure. Thus, when the HRRS
image I is inputted into FEM, the features with different scales
and various semantics can be learned by different residual
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Fig. 1. Architecture of AR2Det, which consists of an FEM, a CDet, and an SDet. The SDet is used to predict the bounding boxes and their scores. The
CDet is used to predict the center of ships. The predicted centers are used for adjusting scores of bounding boxes to select the final bounding boxes.

Fig. 2. Framework of features extraction module. It adopts the top-down
dense connection to fusing the semantics with different scales and introduces
the lateral connection manner to highlight the precise location of various
semantic information.

blocks. Here, we denote them C2, C3, C4, and C5. Then,
the feature pyramid network is employed to fuse them for
integrating the useful information from different aspects. The
feature pyramid network consists of the top-down dense and
lateral connections. The top-down dense connection focuses
on fusing the semantics with different scales, and the lateral
connection aims at highlighting the precise locations of the
various semantic information.

Through the feature pyramid network, we can get the
fused feature P2. Although P2 contains rich information of
HRRS images and can be fed into the following modules
for generating the detection results, its discrimination and
effectiveness could be enhanced further. Taking the charac-
teristics of HRRS images and the ship detection task into
account, apart from the high-level semantics and the multiscale
information, the low-level features are also important to predict
the ships. For example, color and texture features can be

Fig. 3. Features Fboxes with five channels. For each ship, the feature pixels
within the region R1 are used to be the training data for predicting ships.

used to distinguish the ships from the floating woods and
trashes. Also, the shape features are good at finding ships from
backgrounds. Therefore, it is necessary to add the low-level
features to P2. To this end, we first convolute the image I with
two convolutional layers (the kernel sizes are 3 × 3 and the
stride values are 2 × 2) to get C1. Then, P2 and C1 are fused
in accordance with the rules of the feature pyramid network
to get the final visual features P1 with the size of Wp × Hp.

B. Ship Detector

As a specific location of ship geometry, the ship centers can
provide unique information for ship detection. For example,
a predicted bounding box has a high overlap with a ship, if its
center is closer to the ship center [43]. Also, the complex
backgrounds of HRRS images will influence the performance
of ship detection negatively. To utilize the center information
and reduce the influence of backgrounds, we design an SDet
to detect ships within the HRRS image. After inputting the
HRRS image into the AR2Det, SDet only occupies the center
region of each ship to eliminate the influence of backgrounds.
Then, the information from the local (center regions) to the
global (whole ships) is fused by continuously convoluting
and pooling the HRRS image. Finally, the fused information
will be transformed into bounding boxes and their scores by
outputting layers.

Specifically, we can first obtain the features Fboxes with five
channels by convoluting the features P1 with the kernel size
of 3 ×3 and the stride of 1 ×1. Then, for each ship, its center
region R1 (a square with the side length of dc) is selected
from Fboxes, and all the feature pixels with five channels that
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Fig. 4. Transformation of coordinates. The coordinates of ship are trans-
formed from absolute coordinates (based on the top-left corner of the image)
to the relative coordinates (based on the position of each feature pixel).

are located in the region R1 are trained for predicting the
bounding box of the ship. The example is shown in Fig. 3. The
ground truth of bounding box (the center coordinates x and y,
the long and short side w and h, and the rotation angle θ with
the horizontal axis) can be obtained by the annotated HRRS
image.

However, for the different feature pixels, the distances
between them and the ship center are different. To utilize the
position information of feature pixel to optimize relevant para-
meters adaptively, we predict the relative center coordinates
of ship [xr , yr ] rather than the absolute center coordinates
[x, y] of ship, where [xr , yr ] is the coordinates of the ship
center relative to the feature pixel location. We show the
transformation of coordinate in Fig. 4. Therefore, for each
of features pixel in region R1, the ground truth of xr and yr

can be computed by subtracting the feature pixel coordinates
[xl, yl] from the center coordinates [x, y].

With the definitions mentioned above, the loss function of
bounding boxes for an HRRS image can be formulated as
follows:

Lboxes = 1

NR1

∑
i

�
R1

⎛
⎝∑

j

smoothL1(t j )

⎞
⎠

txs = x̂rs − (x − xl)

dc
× (1 + |sinθ |)

tys = ŷrs − (y − yl)

dc
× (1 + |cosθ |)

tw = L(ŵ, w), th = L(ĥ, h)

tθ = (θ̂ − θ) × w

h

smoothL1(x) =
{

0.5x2, if |x | < 1

|x | − 0.5, otherwise

L(x, y) =

⎧⎪⎨
⎪⎩

log

(
x

y

)
, x >= y

log
( y

x

)
, x < y

(1)

where NR1 is number of features pixels that locate in region
R1, i is the index of a feature pixel, �R1 denotes the feature
pixel in the region R1, j is the index of the five parameters
(xs , ys , w, h, and θ ), x̂rs and ŷrs are the predicted relative
coordinates, x and y are the ground truth of ship center
coordinates, xl and yl are the coordinates of feature pixel,
dc is the side length of region R1, and (ŵ, ĥ, θ̂ ) and (w, h, θ)

Fig. 5. Process of generating score label.

denote the predicted value and ground truth of width, height,
and angle of ship, respectively.

According to the contents discussed above, we can get
Wp × Hp bounding boxes. However, since only the center
region is selected from Fboxes to train SDet, not all the
bounding boxes are accurate. To evaluate their accuracies,
we need to predict an extra parameter score for each bounding
box. A common way to get score is computing IoU between
the predicted bounding box and the corresponding ground truth
[27], [44], [45]. Nevertheless, it is a time-consuming process,
especially in the training stage. To handle this problem, a sim-
ple way is to estimate whether a feature pixel corresponding
to a bounding box is in the region R1 or not. In other words,
if the feature pixel is located in the region R1, the score of its
corresponding bounding box equals 1; otherwise, the score is
equal to 0. However, it loses the information about the width
and height of the ship since the region R1 is a square, and
we cannot assume that all pixels without R1 would generate
incorrect bounding boxes (scores are 0) for ship detection.
Therefore, we develop a simple strategy to define the score
label (the set of all the scores) with size of Wp × Hp in this
article.

In detail, we first set the pixel value of score label
within/without R1 to be 1 and 0, and we record R1 in the
first box. Second, a subbox is generated by expanding the
first box with the interval of one pixel, and the pixel value
of score label within this subbox is added by 1. Third, repeat
the second step until the size of the subbox is the same as
the ground truth of the bounding box. Finally, the score label
is normalized into [0, 1] as the final scores set. The graphic
example of this procedure is shown in Fig. 5.

Therefore, the loss function of score for each HRRS image
is formulated as

Lscores = 1

NS

∑
i

(I(s) · L(s, ŝ) − (1 − I(s)) · log(1 − ŝ))

I(x) =
{

1, x >= 0

0, x = 0
(2)

where NS denotes the pixels number of score label, i is
the index of pixel, s and ŝ denote the ground truth and
predicted values of score, respectively, and L is the loss
function mentioned above.

C. Center Detector

To predict the ship centers, the features Fcenters with two
channels are generated by convoluting the visual features P1
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Fig. 6. Features Fcenters with two channels. For each ship, the feature pixels
within the region R2 are used to be the training data for predicting the ship
centers.

with the kernel size of 3 × 3 and the stride of 1 × 1. For each
ship, we select a region R2 (a rectangle that is surrounded by
the ground truth of bounding box) from features Fcenters, and
all the features pixels with two channels of the region R2 are
trained for predicting the relative center coordinates xr and
yr (shown in Fig. 6). Therefore, for each of features pixel in
region R2, the ground truth of xr and yr can be computed by
subtracting the feature pixel coordinates [xl, yl] from the ship
center coordinates [x, y].

The loss function of ship centers is defined as follows:

Lcenters = 1

NR2

∑
i

�
R2

⎛
⎝∑

j

smoothL1(t j )

⎞
⎠

txc = x̂rc − (x − xl)

dc
× (1 + |sinθ |)

tyc = ŷrc − (y − yl)

dc
× (1 + |cosθ |) (3)

where NR2 is the number of features pixels that locate in region
R2, i is the index of a feature pixel, �R2 denotes the feature
pixel in the region R2, j is the index of the two parameters
(xc and yc), x̂rc and ŷrc are the predicted relative coordinates,
x and y are the ground truth of ship center coordinates, xl and
yl are the coordinates of feature pixel, θ is the ground truth of
angle of ship, dc is the side length of region R1, and smoothL1

is the function mentioned above.
According to the mentioned above, we can get Wp × Hp

[xr , yr ]. To evaluate their accuracies, we predict a parameter
confidence. The ground truth of confidence of each [xr , yr ]
is 0/1, if the feature pixel that generates this [xr , yr ] is
without/within the region R2.

For learning confidence, we can adopt the standard cross
entropy (CE) to be the loss function in general, and its
definition is

− 1

n

∑
(c · log(ĉ) + (1 − c) · log(1 − ĉ)) (4)

where c and ĉ are the ground-truth and predicted values
of confidence and n equals the pixel number of features
Fcenters. However, the standard CE pays attention to ship and
backgrounds equally, which is not suitable for our task. In the
HRRS ship detection task, the volume of ships is much less
than that of the backgrounds. The proper loss function should
focus on the ships rather than the backgrounds. Therefore,
we develop a new loss function for the prediction of confidence
based on the standard CE. We name it biased CE (BCE) and

its definition is

Lconfs = − 1

nt

∑
(c · log(ĉ) + (1 − c) · log(1 − T(ĉ)))

T(x) =
{

0, x < t

x, x ≥ t
(5)

where yc and ŷc are the ground-truth and predicted values
of confidence, nt equals the number of times that T(ŷc) is
not 0, and t is a hyperparameter that controls the influence of
backgrounds. Similar to the standard CE, two terms of BCE
aim at pushing the ships and backgrounds toward the positive
and negative directions. Unlike the standard CE, due to the
threshold scheme, our BCE pays more attention to the ships
during the optimization so that the influence of the ships and
backgrounds imbalanced problem can be reduced.

D. Training and the Inference With Score Adjustment

In the training stage, four parts should be optimized, which
contains Lboxes and Lscores of SDet and Lcenters and Lconfs of
CDet. In this article, we optimize them jointly and the loss
function for training AR2Det is formulated as follows:

L = (Lboxes + Lscores) + (Lcenters + Lconfs). (6)

In the inference stage, when users input an HRRS image
into the trained AR2Det, we can obtain the ships’ bounding
boxes, their scores, centers, and their confidences. Generally
speaking, we can choose the bounding boxes according to their
scores and overlap for ships (i.e., rotational nonmaximum sup-
pression (NMS) [46]). Nevertheless, the incorrect scores may
disturb the selection of bounding boxes. Therefore, we develop
a score adjustment strategy to eliminate or adjust the noisy
scores for improving the final detection results.

Here, we record the set of scores (generated by SDet) and
relative coordinates (generated by CDet) S and C for clarity,
and the size of S and C is Wp×Hp. First, the hyperparameter t
[see (5)] is used to be its threshold to select accurate relative
coordinates [xr , xr ] from C . Then, for each of the selected
relative coordinates, we can find the posterior feature pixel
in C by adding feature pixel coordinates to the relative
coordinates (we call this process as offset for short) and adjust
a score of S. Finally, only the adjusted scores will remain
and others are set to be 0. The schematic of the two steps of
score adjustment strategy is shown in Fig. 7. In the adjustment
process, the posterior coordinate is getting closer and closer
to the ship center, so its scores should be increased. If its
score decreases, our strategy would replace its score value
with the score of previous coordinate. At the same time,
some incorrect high scores (i.e., the coordinates are far from
the ship center, but their scores are high) will be eliminated
by our strategy. Consequently, the remained scores are more
“correct” for generating the final detection results. The simple
processes of training and inference stages are described in
Algorithms 1 and 2, respectively.

IV. EXPERIMENT RESULTS

A. Dataset Introduction

The dataset HRSC2016 [47] is used to evaluate the proposed
AR2Det. It is a public HRRS image dataset for multiple
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Fig. 7. Process of adjusting score set. The scores set is adjusted to obtain
more accurate bounding boxes.

Algorithm 1 Training Process of AR2Det
Input: The training Dataset; the side length dc of R1; the

influence factor of background t; iteration number N ;
1: // Initialize the parameters of model and the score label;
2: for n = 1 → N do
3: Step1: Extract features by ResNet and feature pyramid

network;
4: Step2: Calculate the loss value according to Eq. 6;
5: Step3: Update the parameters of model by Adam

optimizer;

6: end
Output: Trained AR2Det.

Algorithm 2 Inference Process of AR2Det
Input: The testing Dataset; the influence factor of back-

ground t ; NMS threshold ξ ; trained AR2Det;
1: Step1: Extract features by ResNet and feature pyramid
network;
2: Step2: Generate the bounding boxes and
their scores and the ship centers and their confidence
by SDet and CDet, respectively;
3: Step3: Adjust the scores of bounding boxes by the score
adjustment strategy;
4: Step4: Generate the final detection results according to t
and ξ ;
Output: Detection results.

orientation ship detection, which was collected from Google
Earth. The size of HRRS images within HRSC2016 ranges
from 300 × 300 to 1500 × 900, and the ships within these
images are either on the sea or near the inshore. In this dataset,
the training, validation, and testing sets contain 436 images
with 1207 samples, 181 images with 541 samples, and
444 images with 1228 samples, respectively.

B. Implementation Details

The training and inference are implemented by PyTorch [55]
on a high-performance computer with GeForce RTX 2080 Ti
and 11-GB memory. In the training stage, the ResNet of
FEM is initialized by the pretrained parameters (using the

ImageNet dataset [14]), and other parts of our network are
initialized randomly. We employ the Adam optimizer [56]
with eight images per minibatch, and the model is trained
with the learning rate of 10−4 and the epoch number of 1000.
In addition, the horizontal and the vertical flipping are adopted
for the data augmentation.

In the following experiments, all the RS images are resized
to 512×512 so that the sizes of features Fboxes and Fcenters are
equal to 128 × 128 (Wp × Hp). Here, dc (the side length of
region R1) is set to be 4.0, and the hyperparameter t [see (5)]
is set to be 0.5. The threshold of overlap in the rotational NMS
is equal to 0.5. The influence of different free parameters is
discussed in Section IV-F.

Furthermore, we would like to explain how to choose
appropriate values for two free parameters dc and t . For dc, its
value could be decided according to the following two factors.
First, its value should not be less than 2 to ensure that SDet
can find ship centers accurately. Second, it should not be too
large because the size of region R1 is directly proportional to
the volume of training data for AR2Det. Considering diverse
experimental results, we empirically find that AR2Det achieves
good performance when the ratio of dc to the side length of
Fboxes is in the range of 0.03–0.04. Therefore, we let dc be 4 in
this article because the size of Fboxes equals 128 × 128. For t ,
its value indicates the proportion of backgrounds to objects.
To reduce the influence of backgrounds on ship detection,
we suggest that the value of t could be close to 0.7/0.3 if the
areas of backgrounds are more/less than that of ships distinctly.
In the HRSC2016 dataset, the areas of ships and back-
grounds are relatively balanced. Thus, we set t at 0.5. Readers
could set these two variables according to the datasets they
select.

C. Evaluation Metrics

To evaluate our AR2Det numerically, we select two common
assessment criteria, including the MAP and FPS. To calculate
MAP, we should define the true positive (TP), false positive
(FP), and false negative (FN) first. Generally, if the IoU value
between a predicted bounding box and a ground truth of
bounding box is greater than the threshold (we chose 0.5 in this
article), then this predicted box can be as a TP; otherwise, it is
regarded as an FP. Meanwhile, the redundant predicted boxes
are also treated as FP. The ground truth of bounding boxes
is the FN if they have not the matched predicted bounding
boxes. According to TP, FP, and FN, recall and precision can
be defined as

precision = TP/(TP + FP)

recall = TP/(TP + FN). (7)

Then, we can get average precision (AP) that is the area
under the precision–recall curve (PRC). Furthermore, MAP is
defined as the mean of AP across all the categories. The other
evaluation index FPS represents the speed of the proposed
AR2Det during the operation process, and the postprocess
(i.e., rotational NMS) is included in the operation
process.
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TABLE I

COMPARISONS WITH THE OTHER METHODS IN BOTH ACCURACY AND SPEED

D. Results on HRSC2016

To study the performance of AR2Det, we select the fol-
lowing two- and one-stage methods as the compared meth-
ods. The two-stage methods contain Fast-RCNN + SRBBS
[20], BL2 [20], R2CNN [32], RC1&RC2 [20], RRPN [48],
R2PN [19], R-DFPN [49], RoI-Transformer [33], Gliding
Vertex [34], and OPLD [50]. The one-stage methods include
IENet [51], Rotated YOLO-v2 [23], TOSO [52], DRBox [39],
RetinaNet-H [17], RRD [53], S2ARN [40], RetinaNet-R [17],
R3Det [17], and GRS-Det [54]. Note that, in the following
experiment, ResNet34 and ResNet18 are adopted as our back-
bone to deeply analyze the behavior of our AR2Det.

The results of performance comparison are shown in Table I.
It is easy to find that most of the time, our AR2Det
outperforms other compared methods in both the accu-
racy (MAP) and the speed (FPS). For two-stage methods,
twice detection mechanism leads them to obtain satisfactory
accuracy, and RoI-Transformer [33], Gliding Vertex [34],
and OPLD [50] achieve the superior performance. However,
their detection speed is not satisfactory enough. The fastest
method (RoI-Transformer [33]) can only achieve 12 FPS. For
one-stage methods, they obtain the predicted results with once

detection process so that the speed can be increased. The
fastest compared methods (Rotated YOLO-v2 [23]) can up
to 69 FPS. Meantime, with the appearance of the new ideas,
their behavior is getting strong increasingly. For example,
MAP values of RetinaNet-R [17] with ResNet101, R3Det [17]
with ResNet152, and GRS-Det with ResNet101 are 89.18%,
89.33%, and 89.57%, respectively.

Although the compared methods perform well, our AR2Det
can still achieve better performance, no matter the aspects
of Map values and FPS. For instance, compared with the
classical two-stage detection method RC1&RC2 [20], our
model’s (with ResNet34) MAP values are increased by 18.36%
and its FPS is more than 110 times as much with RC1&RC2
[20]. For another example, compared with two-stage methods,
RoI-Transformer [33], Gliding Vertex [34], and OPLD [50],
the enhancements achieved by our AR2Det (with ResNet34)
in MAP are 3.38%, 1.38%, and 1.14%, respectively. Also,
our model’s detection speed is almost ten times as much with
RoI-Transformer, Gliding Vertex, and OPLD. For one-stage
methods, taking three advanced models RetinaNet-R [17],
R3Det [17], and GRS-Det [54] as examples, the improvements
of AR2Det (with ResNet34) in MAP are 0.4%, 0.25%, and
0.01%, and our FPS is more than about ten times as much
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Fig. 8. Predicted results of the proposed AR2Det in four different scenarios. (a) Ships on the sea. (b) Ships close inshore. (c) Ships with multiple scales.
(d) Ships with complex background. The ground-truth and prediction results of bounding boxes are marked with green and yellow, respectively. Also, the red
bounding boxes are utilized to denote the incorrect prediction of ships.

with three compared networks. The encouraging experiments
discussed above confirm that the proposed AR2Det is effective
in ship detection.

There is another point we want to touch on, that is, different
from most of the compared methods, the backbone of our
AR2Det is a relative light network (ResNet34). Nevertheless,
our model can still achieve the best performance that proves
the usefulness of AR2Det again. The reasons why AR2Det
performs the best can be summarized as follows. First, the light
backbone network and the simple bounding boxes prediction
scheme ensure the efficiency of AR2Det. Second, the intro-
duced score label and developed BCE loss guarantee the
accuracy of our model. Finally, the developed scores adjust-
ment strategy in the inference stage can further improve the
performance of AR2Det. Besides the accuracy and speed, our
model also has an advantage in the volume of parameters. The
scale of parameters (Params) of AR2Det is shown in Table II.
We also report Params of two two-stage methods and two
one-stage methods for reference. The selected four compared
methods have stronger behavior than others. It is easy to find
that the Params of AR2Det is less than 50% of that of the
other methods.

TABLE II

COMPARISONS IN THE PARAMS

Apart from the numerical assessment, we also provide
some ship detection examples visually in Fig. 8. There are
four columns of detection results. The ships in the first
column images are on the sea and the ships in the sec-
ond column images are near the inshore. The third col-
umn images illustrate the performance of AR2Det under the
ships with multiple-scale scenario, whereas the fourth column
images demonstrate the behavior of AR2Det under the ships
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Fig. 9. Visual detection results of different methods on the HRSC2016 dataset. (a) Ground Truth. (b) AR2Det. (c) RoI-Transformer [33]. (d) R3Det [17].
The red bounding boxes are utilized to denote the incorrect and inaccurate prediction of ships.
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Fig. 10. Comparison with other methods in both MAP and FPS. The blue and
green points represent the one-stage and the two-stage methods respectively,
and the red points indicate the behavior of our AR2Det with different backbone
networks. It is easy to find that the proposed AR2Det outperforms others
methods in speed and accuracy.

with complex background. The ground-truth and prediction
results of bounding boxes are marked with green and yellow,
respectively. Also, the red bounding boxes are utilized to
denote the incorrect prediction of ships. According to the
results, we can find that AR2Det has good robustness and
performance. In addition, the visual detection results of three
methods are shown in Fig. 9, including the proposed AR2Det,
the best two-stage method (RoI-Transformer) [33], and the
best one-stage method (R3Det) [17]. It is noticed that AR2Det
has distinct advantages. To illustrate the performance of our
method more clearly, we draw the scatter diagram to illustrate
the performance of different methods (both MAP and FPS)
in Fig. 10, where blue and green points represent the one- and
two-stage methods, respectively, and the red points indicate
the behavior of our AR2Det with different backbone networks.
It is worth noting that the proposed method is superior to other
methods in both speed and accuracy.

E. Ablation Study

In the AR2Det, SDet with FEM can be regarded as a basic
detection model. However, its performance is not satisfactory.
Therefore, based on the basic model, we propose three blocks
to improve the performance of SDet, including the relative
coordinates (RCs) for improving the accuracy of the predicted
ship center coordinates, the scores label (SL) for optimizing
the ground truth of scores, and CDet for adjusting the pre-
dicted scores. To study their contributions, four models are
constructed to complete ship detection, and their components
and accuracy are shown in Table III. We implement the
experiments of four models based on the ResNet34 and keep
the other components the same in the training and inference.

For RC, compared with the absolute coordinates, it utilizes
the position information of feature pixel to search the ship
center in a smaller range. It makes the model2 can find
ship centers rapidly and accurately. Therefore, the accuracy
is increased significantly from 76.19% to 80.31%. We also

TABLE III

CONSTRUCTED MODELS AND THEIR COMPONENTS

Fig. 11. Diagram about MAP and loss values in the different epoch. We can
find that the performance of model2 is better.

draw the curve of the loss and MAP about the model1 and
model2 in Fig. 11. It shows that RC is superior to the absolute
coordinates in both the convergence rate and MAP growth rate
simultaneously.

For SL, it is proposed to optimize the ground truth of
scores in SDet. SL expands the scores from region R1 to the
ground truth of bounding box. The overlap can be computed
more precisely, and the information of the width and height
of ship can be saved effectively. Therefore, the performance
of model3 (MAP) is increased from 80.31% to 81.79%.
In addition, the speed of training can be accelerated from
4.72 to 37.36 FPS (about eight times) since the SL abandons
the complex computation of the IoU.

For the CDet, it is developed to adjust the scores of SDet
in the inference, which can eliminate the inaccurate bounding
boxes effectively. Therefore, the detected accuracy of model4
can be improved from 81.79% to 89.57%. To demonstrate the
reason why CDet works, we draw four curves of the precision
and recall in Fig. 12 according to whether the adjustment
(score adjustment strategy) is applied or not on the predicted
scores and the true scores (ground truth of scores). Here,
considering the accuracy, the ground truth of scores is obtained
by computing the IoU between the ground truth of bounding
boxes and the predicted bounding boxes. From the observation
of four curves, the accuracy of the true and predicted scores is
improved dramatically although the adjustment leads the recall
rate to decrease slightly. In Table IV, we list the numerical
results, where the predicted number and the true number
represent the number of bounding boxes. It is worth noting
that CDet removes the most of inaccurate bounding boxes
successfully. Consequently, the predicted number is closer
to the true number, and the accuracy is improved greatly.
It proves that CDet is an effective block.
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Fig. 12. Curves of precision and recall according to whether the adjustment
(scores adjustment strategy) is applied or not on the predicted scores and
the true scores. It is worth noting that adjustment improves the accuracy in
both the true and predicted scores significantly although the highest recall rate
decreases slightly.

TABLE IV

THE NUMBERS OF BOUNDING BOXES AND MAP VALUES

WITH/WITHOUT CDET

TABLE V

MAP WITH THE CHANGE OF SIDE LENGTH dc

F. Sensitivity Analysis

To analyze the effect of hyperparameters of AR2Det, two
experiments are conducted, i.e., dc (the side length of region
R1) and the threshold t of BCE. To ensure the stability of
experiments, we change dc when fixing the value of t to 0.5.
Analogously, t is changed when the value of dc is fixed to 4.0.
All the other settings remain the same in our experiments.

1) Side Length of Region R1: The change of dc can influ-
ence the performance of AR2Det slightly since dc decides the
number of the feature pixels that are trained for predicting the
ships. Thus, we select five different values of dc (1.0, 2.0, 4.0,
6.0, and 8.0) to study the sensitivity of dc. Table V shows the
final results of MAP. It is obvious that the model has the best
accuracy when dc is set to 4.0. However, setting dc to 1.0
(i.e., the region R1 is shrunken to a point) can result in
a significant decrease in the final accuracy. It proves that
selecting a region from features for predicting bounding boxes
is more effective compared with selecting a point.

2) Hyperparameter t of BCE: BCE is utilized to compute
loss for training CDet. As the hyperparameter of BCE, t can

TABLE VI

MAP WITH THE CHANGE OF t

control how much attention is paid to the background. Here,
two special values of t need to be explained. First, setting t
to 0.0 would degenerate BCE into the standard CE. Second,
setting t to 1.0 would disable CDet. Therefore, we set t from
0.1 to 0.9 with the interval of 0.2 for studying the sensitivity
of t , and the results are shown in Table VI. According to
the results, the optimal value of t is 0.5. Compared with the
standard CE, BCE improves the accuracy from 87.06% to
89.58% when t is set to 0.5.

In addition, we explore the reason why the optimal value
of t is 0.5. First, AR2Det is initiated randomly. Then,
the HRRS images are input to AR2Det, and the mean value
of predicted confidences (MPC) of CDet is counted. Finally,
the first two steps are repeated 400 times. We find that the
mean of MPC is 0.5004464, which means that the initial values
of confidences are close to 0.5. Therefore, AR2Det can be
trained rapidly and simply for distinguishing the ships from
backgrounds when t is set to 0.5.

V. CONCLUSION

In this article, considering the characteristics of HRRS
images, we have proposed an end-to-end one-stage ship detec-
tion method named AR2Det, which can be used to accom-
plish the rotational ship detection task rapidly accurately.
To ensure detection accuracy, two submodels (SDet and CDet)
have been developed for generating the bounding boxes and
enhancing their quality. To keep the high speed of detection,
AR2Det adopts a lightweight network and simple postprocess-
ing scheme. Experimental results on the public ship detection
dataset HRSC2016 have demonstrated the effectiveness and
efficiency of AR2Det in the HRRS ship detection task.

Although our AR2Det is developed for HRRS ship detec-
tion, it can also be used to detect multiclass targets from HRRS
images. To justify this, we have investigated the proposed
model on the NWPU VHR-10 dataset [57]. The encouraging
experimental results demonstrate that AR2Det can handle more
challenging detection tasks. The details of multiclass detection
experiments can be found in the Supplementary Material.
From the observation of detection results counted on NWPU
VHR-10, we can find that the performance of the proposed
model is acceptable, although there is still a room to further
enhance its performance. Therefore, we will extend AR2Det
to multiclass HRRS object detection tasks in the future.
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