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Abstract—Traditional data-driven quality prediction
methods are mainly built from static models using clean
data with a slow sampling rate, leaving the process dy-
namics unused. To make full use of dynamic process
data collected at a fast sampling rate, this article proposes
a novel deep learning-based robust dual-rate dynamic
data modeling method for quality prediction of dynamic
nonlinear processes. A new dynamic data denoising gen-
erative adversarial imputation network is first proposed for
the missing value imputation among the dynamic process
data. Then, a new hint convolutional neural network (HCNN)
is established for dual-rate data based quality prediction.
The proposed HCNN incorporates the information hint
mechanism of channel expansion into the convolutional
neural network to extract the dynamic features with
definitive time and variable information. Finally, the
proposed method is verified using the Dow distillation
process dataset and Beijing multisite air quality dataset.

Index Terms—Data-driven quality prediction, dual-rate
data modeling, dynamic data denoising generative adver-
sarial imputation network (DDGAIN), dynamic process.

I. INTRODUCTION

QUALITY prediction is essential to product quality im-
provement, energy saving, and emission reduction of
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industrial processes. With the wide use of distributed control
systems and Industrial Internet, a large number of process data
and quality data are collected [1]. Data-driven quality prediction
methods that find out the relations between process data and
quality data have attracted much attention in the academia and
industry in the last decades [2], [3], [4].

Traditional data-driven quality prediction methods mainly use
linear models, such as partial least squares (PLS) [5] to extract
the relations between process data and quality data. However,
they have difficulties in establishing nonlinear relations between
process data and quality data. For this reason, some sophisticated
models, such as support vector regression [6], decision tree
models [7], and artificial neural network [8], have been used
for quality prediction. To address complex dynamic nonlinear
relations in industrial processes, deep learning models have been
used in the field of data-driven quality prediction [9], [10]. A
viable class of approaches is to build prediction models using
extracted features by applying transform learning [11], [12],
[13], [14], [15], variational autoencoders (VAE) [16], stacked au-
toencoders (SAE) [17], and etc. Although multilayer perceptron
(MLP) [18] can extract quality-related features, process data,
and quality data are required to be collected at the same sampling
rate. From the practical perspective, industrial processes usually
collect two-level data, including process data at a fast sampling
rate and quality data at a slow sampling rate. The quality data are
used to promote the process operation performance and product
quality, but they are usually obtained by offline lab-analysis
rather than online measurement. Quality prediction using the
real-time process measurements is essential to advanced process
control and operation optimization for the quality improvement
and cost reduction of the industrial processes. This motivates
dual-rate data-based quality prediction.

There are three main solutions for data-driven quality pre-
diction using dual-rate data, i.e., up-sampling, down-sampling,
and dual-rate data modeling methods. Down-sampling and up-
sampling techniques transform the original data into the ones
with the same sampling rate [19]. Using the transformed data,
data-driven quality prediction models are subsequently devel-
oped by applying PLS, MLP, SAE, etc. While down-sampling
inevitably leaves the dynamics unused, up-sampling aims to use
the measurement with the highest sampling rate. However, the
prediction errors may accumulate with the increase of prediction
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steps [20]. Tipping and Bishop proposes an up-sampling method,
namely probabilistic principal component analysis model, by
which missing values can be estimated through the probabilistic
model [21]. Both down-sampling and up-sampling manners,
however, may alter the correlation structure of the dual-rate
data. By contrast, dual-rate data modeling methods can utilize
all of the data samples at a fast sampling rate, thus retaining
the dynamics among the original process data to establish
a more accurate model. For example, paper [22] develops a
principal component regression model for quality prediction.
Also paper [23] incorporates a cooperative training strategy with
PLS to develop a dual-rate data-based quality prediction model.
However, the abovementioned methods cannot effectively find
out the dynamic nonlinear relations among process data for
data-driven quality prediction.

In recent years, deep learning-based methods have attracted
much attention in data-driven quality prediction [24]. Although
recurrent neural networks and long short-term memory (LSTM)
can extract dynamic nonlinear relations, the models are overly
complex [25]. To take advantage of the dynamic nonlinear
feature extraction through convolution kernel operator, convolu-
tional neural network (CNN)-based quality prediction has been
studied recently [24], [26]. The convolution kernel operation on
the windowed fast sampling process data in the form of matrix
is used to extract the latent features for quality prediction. For
example, a finite impulse response-CNN is developed for quality
prediction [24]. This method applies finite impulse responses
to generate the input of the CNN, in order to overcome the
defect of traditional CNN that equally treats historical pro-
cess data samples, leaving the sequence information of the
samples unused. A multichannel CNN-based quality prediction
model is proposed in [26] to find out dynamic relations among
process data. Furthermore, a multidimensional CNN (MDCNN)
that extracts variable correlation, temporal feature, and spatial
feature through three convolutional kernels is proposed for qual-
ity prediction [27]. The work of [24] considers the disadvantages
of CNNs due to shared weights, but it does not consider the
representative information contained in each variable. As far as
we know, dynamic modeling of dual-rate data is still a challenge
for CNN-based methods.

In addition, the abovementioned data-driven quality predic-
tion methods require complete dynamic data samples. However,
dynamic process data at a fast sampling rate may be cor-
rupted with missing values and outliers caused by transmission
anomaly, hardware sensor failure or maintenance, etc. [28].
Direct leaving out the anomaly samples by traditional PauTa
criterion [24] may significantly reduce the number of sam-
ples and corrupt the dynamics among the successive process
data samples. This will make it impossible to extract the la-
tent dynamic features for data-driven quality prediction. Miss-
ing data imputation (MDI) that reconstructs complete samples
by minimizing the estimation error provides a new way for
static data imputation. Typical MDI models include principal
component analysis [29], expectation maximization [30], and
MissForest [31]. However, most of the samples with missing
values in practical industrial processes may be incomplete. In
recent years, denoising-based autoencoders have been used for

incomplete data imputation. However, these methods merge
the data samples with missing values and the ones with no
missing values in the hidden layer. To address the incomplete
data imputation, Yoon et al. proposes a generative adversarial
imputation network (GAIN) that uses a mask matrix to indicate
the positions of the missing values [32]. Although GAIN shows
advantages compared to MissForest and Autoencoder in [32],
it is static data imputation in nature. To the best of authors’
knowledge, dynamic data imputation remains unsolved.

In this article, to make full use of the fast sampling process
data with corrupted values, a novel deep learning-based robust
dual-rate dynamic data modeling method is proposed for quality
prediction of dynamic nonlinear processes. First, to capture
dynamic features among multiple samples of multiple moments
in a moving window, one-dimensional CNN (1D-CNN) is incor-
porated with GAIN to establish a novel dynamic data denoising
generative adversarial imputation network (DDGAIN). During
the data generator stage, data samples generated from the dy-
namic features are reconstructed using a VAE to exclude the data
noises. Second, a hint CNN (HCNN) with channel extension is
proposed for dual-rate dynamic data modeling. Inspired by [33]
that applies CNN to encode position information, the proposed
HCNN incorporates a dual information hint mechanism that
separately organizes temporal flag and variable flag for the
original process data. Two separate convolution kernels are used
to extract the hint information contained in the samples at each
moment and the hint information contained in each variable
during the time period. The hint information and the process
data matrix are then concatenated and transferred to the next
layer for dynamic relationship extraction. These two aspects
constitute the major contributions of this work.

The rest of this article is organized as follows. Traditional
GAIN, VAE, and CNN models are briefly reviewed in Section II.
Then, the proposed robust dual-rate data modeling method that
is composed of DDGAIN and HCNN is presented in Section
III. In Section IV, Dow distillation column process dataset
and the Beijing multisite air quality dataset are used to verify
the effectiveness of the proposed method. Finally, Section V
concludes this article.

II. PRELIMINARIES

A. Generative Adversarial Imputation Network

GAIN used for data imputation is proposed by Yoon et al. [32].
GAIN is derived from the generative adversarial network, with
the main structure composed of a generator, a hint generator,
and a discriminator, as shown in Fig. 1.

The generator observes the real components of the original
data vector and uses the observations to estimate the missing
values. The mask matrix is used to hint at the position of the
missing elements in the generator. The discriminator discrimi-
nates whether the input is the real component or the interpolated
component. The hint generator displays partial information to
the discriminator on which components are missing from the
original sample. This hint mechanism makes the generator learn
the real data distribution. The generator and discriminator com-
pete with each other to coevolve and reach Nash equilibrium.
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Fig. 1. Structure of GAIN [32].

Fig. 2. Graphical model of the VAE.

B. Variational Autoencoder

VAE, as a typical deep generative model, is established
based on variational Bayesian inference proposed by Kingma
et al. [16]. VAE consists of an input layer, an encoder layer,
a latent variable layer, a decoder layer, and an output layer.
The structure of the probability graph of VAE is shown in
Fig. 2, where the solid line indicates the generative model qφ(z)
pθ(x | z). The dashed line indicates the inference model qφ(z |
x), which is an approximation of the intractable true posterior
distribution pθ(z | x). Here, x represents the observed variable,
z represents the latent variable, and the variational parameter θ
is learned jointly with the generative model parameter φ.

The marginal likelihood of x can be given as

log p(x) = DKL (qφ(z | x)‖pθ(z | x)) + L(θ, φ;x) (1)

where DKL denotes the Kullback–Leibler divergence of the
approximation from the true posterior. L(θ, φ;x) is called the
(variational) lower bound on the marginal likelihood of data
sample x. It could also be written as

log pθ(x) ≥ L(θ, φ;x)
= Eqφ(z|x) [− log qφ(z | x) + log pθ(x, z)]

= −DKL (qφ(z | x)‖pθ(z)) + Eqφ(z|x) [log pθ(x | z)] . (2)

The loss function used to train the VAE is given as

L = −Eqφ(z|x) [log pθ(x | z)] +DKL (qφ(z | x)‖pθ(z)) . (3)

The VAE algorithm that reconstructs the input through the
decoder shows an advantage on noise suppression, it is incorpo-
rated into the dynamic data imputation in Section III-A.

C. Convolutional Neural Network

Two convolution operations of the popular two-dimensional
CNN (2D-CNN) are as follows:

H2 =
H1 −Kh + 2p

S
+ 1 (4)

W2 =
W1 −Kw + 2p

S
+ 1 (5)

where the size of the original feature map is (H1 ×W1), the
size of the convolution kernel is (Kw,Kh). p is the filling size.
The size of the feature obtained by convolution operation is
(H2 ×W2).

The work of [24], [26], [34] demonstrates the advantage
of 2D-CNN on local feature extraction. However, 2D-CNN
equally treats the historical process data samples. 1D-CNN that
commonly used for sequence modeling and natural language
processing is applicable to dynamic data modeling.

III. PROPOSED DDGAIN-HCNN FOR QUALITY PREDICTION

USING DUAL-RATE DYNAMIC DATA

A. Dynamic Data Denoising GAIN

Traditional GAIN does not take into account the dynamic
relations among the process data. To make use of the dynamic
relations for dynamic data imputation, this section proposes a
novel DDGAIN. The DDGAIN is built from the framework in
Fig. 1, while the dynamic relations and denoising are taken
into account. The overall structure of DDGAIN consists of a
data moving window processing, an 1D-CNN-based generator,
an 1D-CNN-based discriminator, a hint generator, and a loss
function.

1) Data Moving Window Processing: The moving window
technique is first applied to preprocess the data. The moving
window is a window with a fixed size. There are two main
parameters, that is, the size of the window in the time dimen-
sion l and the step size s. The size of the other side of the
moving window is equal to the dimension of the variable. The
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Fig. 3. Moving window diagram of process data in dual rate data.

Fig. 4. Generator and discriminator in DDGAIN. The base component
is 1D-CNN.

subset after the moving window processing can be represented
as Xl={xt−l+1,xt−l+2, . . . ,xt}, where xt is the sample of
the moment xt=[x1

t , x
2
t , . . . , x

d
t ] ∈ Rd. The dual-rate data and

the moving window processing are shown in Fig. 3. It can be
seen that process variables are sampled at every moment, while
quality variables are sampled at every tn moments (tn > 1).
Therefore, the length of the moving window is set to l = tn, so
that each subset contains all the process data samples between
two adjacent quality samples.

2) Generator in DDGAIN: The generator (G) in DDGAIN
is shown on the left in Fig. 4. G is composed of two parts:
the generation layer and the reconstruction layer. Both parts
are built using 1D-CNN. Internally the generation layer will
generate dataXg based on the real data and the mask matrix. The
reconstruction layer reconstructs Xg into X by VAE to depress
the noises in the generated data. Externally, the generator takes
X̃ and M as the inputs, where X̃ is obtained from the following

X̃ = M�X+ (1−M)� Z. (6)

In the abovementioned equation, � denotes an element-wise
multiplication. X is the original data matrix, M is the mask ma-
trix, and Z is the noise. Each element in M denotes whether the
corresponding value is missing or not. “0” represents missing,
while “1” represents not missing.

In practice, noise is filled into the X̃, generating a new X. The
missing values in X̃ are filled with the newly generated data in
X to form the interpolated data X̂

X = G(X̃,M) (7)

X̂ = M� X̃+ (1−M)�X. (8)

3) Discriminator in DDGAIN: The discriminator (D) is mod-
eled by 1D-CNN, as shown in Fig. 4. It is expected to distinguish,
which components are observed or imputed. Discriminator takes
H and X̂ as the inputs, withP as the outputs.H is the hint matrix
generated by the hint generator. X̂ is the interpolated matrix. P
(i, j) corresponding to the probability that X̂ (i, j) is observed
rather than imputed. P that varies from 0 to 1 is computed
from (9). The objective of the discriminator is to distinguish
the generated components and real components. In other words,
the mask matrix M determined by the dataset is reconstructed

P = D(X̂,H). (9)

4) Hint Generator in DDGAIN: The hint generator transfers
partial information on the binary mask matrix M to D to en-
sure that G generates data samples according to the real data
distribution. The hint generator takes the mask matrix M as the
input, with H as the output. H controls the information content
of the mask matrix M, which is transferred to D. If H does not
contain “sufficient” information about M, it cannot guarantee
that G learns the real data distribution [35]. We thus define a
matrix B, whose element B (i, j) is randomly sampled from
[0, 1]. H is calculated as

H = B�M+ 0.5(1−B). (10)

As for h, it can be concluded h(i, j) = m(i, j) when
b(i, j) = 1. When b(i, j) = 0, h(i, j) = 0.5 and no useful in-
formation from m(i, j) is transmitted.

5) Loss Function of DDGAIN: The loss function of the dis-
criminator is computed from (11). The cross-entropy loss is in-
volved only when b(i, j) = 0, with B0 the number of 0 elements
in B

LD(M,P,B)

= − 1
B0

I∑

i=1

J∑

j=1;B(i,j)=0

[M(i, j)

log (P(i, j)) + (1 −M(i, j)) log (1 −P(i, j))] . (11)

The loss function of the generator is computed from (12) and
consists of two terms. The first term, similar to D loss, determines
whether the interpolated values cheat G. The second term is the
mean square error of the actual values and interpolated values
at the nonmissing position

LG(M,P,B,X,X)

= − 1
B0

I∑

i=1

J∑

j=1;B(i,j)=0

(1 −M(i, j)) log(1 −P(i, j))

− α
1
M0

I∑

i=1

J∑

j=1

(M(i, j)X(i, j)−M(i, j)X(i, j))2 (12)
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Fig. 5. Structure of the HCNN with a temporal information hint mechanism and a variable information hint mechanism.

where M0 is the number of 0 elements in M and α is a hyper-
parameter.

B. HCNN With Channel Expansion for Quality Prediction

Traditional CNN uses convolution kernels to extract space
features of the images. Convolution kernels have the property
of weight sharing, with the same convolution kernel parameters.
The benefit of weight sharing is that the number of parameters is
greatly reduced and the depth of the network can be increased.
However, process data are normally dynamic with temporal
information. CNN treats historical process data samples equally,
rather than assigns different weights based on their temporal
snapshots. Since each variable has representative information on
quality variables, it is necessary to extract the difference between
each variable. To address this, we propose to overlay temporal
information hint and variable information hint on the feature
maps of the process data to find the dynamics in process data.

The input of CNN is usually four dimensions (batch size,
channel, height, and width). In general, image data occupies
3 channels and process data occupies 1 channel. As shown
in Fig. 5, the proposed HCNN with a dual information hint
mechanism extracts the representation information of time and
variables by expanding the process data on channel dimension.

Temporal information hint mechanism: The input data matrix
X with a dimension (batch size, 1, d, n) is expanded along the
time axis as (batch size, n, d, 1). The representation information
of time in n channels is extracted using n different convolution
kernels of size (d× 1) to form a temporal information vector,
which contains features unique to n different moments. Then,

the temporal information vector is expanded into a matrix T
with the same dimension as the input.

Variable information hint mechanism: Variable information
is extracted similarly to temporal information. By expanding X
along the variable axis as (batch size, d, 1, n), the representation
information in the d channels is extracted using d different con-
volution kernels of size (1 × n). A vector of variable information
is constructed, which encapsulates features that are unique to
d different variables within the time window. The vector of
variable information is thereafter expanded into a matrix V with
the same dimension as the input.

The data matrices X, T, and V are superimposed to obtain

Xinput = X⊕T⊕V (13)

where ⊕ represents the sum of each element of the matrix. Each
element in Xinput is superimposed with different information as
(T(i,j), V(i,j)).

In order to extend the receptive field for global information ex-
traction, multilayer convolutions, and pooling layers are applied,
as shown in Fig. 5. Five convolutional layers are used to extract
sample-related dynamic features. The Avgpool can extract the
overall features to prevent losing much global information, and
the Maxpool can filter out useless features and extract far apart
features relevant to quality prediction. Two blocks including
Block 1 and Block 2 are first established. Each block contains
a convolution layer, a batch normalization (BN) layer, and a
rectified linear unit (ReLU) layer. BN is a commonly used adap-
tive reparameterization method, which can alleviate the gradient
disappearance or explosion phenomenon in CNN training, and
accelerate the training. ReLU in the following is to enable the
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hierarchical nonlinear mapping learning:

ReLU(x) = max(0, x). (14)

Block 1 extracts the maximum value of adjacent features by
maximum pooling. Block 2 maps the feature values to feature
vectors by average pooling. The first four layers of the network
use Block 1 to extract the dynamic. After each convolution,
most of the information on the feature map is retained through
maximum pooling. The fifth layer uses Block 2 to integrate the
extracted dynamics into vectors. The last two layers use the fully
connected layer to obtain the predicted value. The mean squared
error is used as the loss function of the HCNN to converge the
algorithm [36]. The loss function is defined as follows:

Loss =
1
n

n∑

i=1

‖yi − ŷi‖2 (15)

wheren is the number of samples, ŷi is the predicted value of the
ith sample,yi is the true value of the ith sample. The loss function
that measures the distance between the predicted value and the
true value can be minimized using backpropagation algorithm.

Note that the proposed method works well only when
the relations between the dual-rate data remain unchanged.
While there are significant difference on data distribution be-
tween the training dataset and the test dataset, one can incorpo-
rate the idea of transfer learning and adaptive modeling. In addi-
tion, the data quality is essential to data-driven modeling. When-
ever there are a large number of missing values, data-driven
modeling including the proposed quality prediction method may
fail. For the situation when there are a small number of missing
values for the process data, the proposed DDGAIN-HCNN can
be robust to the missing values. In this work, the validation
set is used to select the appropriate parameters based on the
grid search. When there is a significant prediction performance
degradation caused by model mismatch, it is necessary to collect
a new training dataset to train the model or develop an adaptive
modeling method similar to the recursive PLS in [37].

IV. EXPERIMENTAL STUDIES

A. Dow Distillation Tower Experiment

1) Dow Process Description: The Dow challenge problem
in [38] and [39] is used to demonstrate the proposed DDGAIN-
HCNN model. The refining system as shown in Fig. 6 is com-
posed of three distillation columns: a primary column, a feed col-
umn, and a secondary column. The primary column is controlled
according to the reflux feed ratio. Accumulation of impurities
leads to accelerated catalyst aging and degrades the operation of
the refining system. The process has to operate in a suboptimal
manner to remove impurities that can affect the quality of the
final product, evenly making the operation unsaleable. It is, thus,
necessary to online measure the concentration of impurities.

The impurity concentration at the top of the primary column
is selected as the quality variable. A total of 44 process variables
x1–x44 and a quality variable y are listed in Table I. According
to [39], data samples during operating condition change from
August 22, 2016 to December 16, 2016 are excluded. In addition,

Fig. 6. Block diagram of the Dow challenge problem [38], [39].

TABLE I
DEFINITION OF DOW PROCESS VARIABLES AND QUALITY VARIABLE

x16 and x17 with seasonal variations are replaced by two newly
generated variables [39].

It is further observed that real measurements of the quality
variable are taken at a slow sampling interval, which is typical
for lab-test measurements. In this work, process data and quality
data are collected at dual-rates (1 h for process variables and
5 h for the quality variable). Moreover, the missing values are
taken into account during the modeling stage. These two aspects
motivate the application of the proposed robust dual-rate data
modeling method. For this study, the numbers of samples for the
training dataset, verification dataset, and test dataset are 1200,
203, and 1133, respectively.

2) Modeling and Result Analysis: The adaptive moment es-
timation (Adam) optimizer using the exponentially weighted
averaging technique is adopted for the proposed method and the
baselines. The hyperparameters of the models are optimized by
grid search to tradeoff model complexity against generalization
error. The learning rate is chosen from [0.1, 0.01, 0.001, 0.0001],
batch size is chosen from [15, 25, 35, 45], α is chosen from [1,
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TABLE II
COMPARISON RESULTS OF DYNAMIC DATA IMPUTATION FOR DOW

Fig. 7. DDGAIN imputation data distribution for Dow with the original
data at 0.5 missing rates.

10, 30, 50], the DDGAIN epoch is chosen from [15 000, 30 000,
45 000], and the HCNN epoch is chosen from [50, 75, 100,
125, 150]. The optimal parameters for the GAIN, DGAIN, and
DDGAIN models are set as follows: batch size is 25, learning
rate is 0.001, α is 10, and the number of epoch is 30 000. The
optimal parameters of the prediction model for HCNN are set as
follows: batch size is 25, learning rate is 0.0001, and the number
of epoch is 100.

In the imputation experimental part, the training data are
randomly missing at a rate of 0.1 to 0.5. GAIN, dynamic
data GAIN (DGAIN) without VAE denoising, and the pro-
posed DDGAIN with VAE denoising are used to compare the
imputation performance. It is compared with the traditional
k-nearest neighbors (KNN) [40] and multivariate imputation
by chained equations (MICE) [41] methods. The results are
shown in Table II. It can be seen that the dynamic data imputa-
tion methods including DGAIN and DDGAIN outperform the
traditional GAIN, with DDGAIN achieving the most excellent
performance. Meanwhile, DDGAIN outperforms the KNN and
MICE methods in the case of 0.1–0.3 missing rates, achieving
the best performance. The data distributions using the proposed
DDGAIN and with no data imputation at 0.5 missing rates are
shown in Fig. 7.

Using the clean data that retain the process dynamics by
dynamic imputation, data-driven quality prediction is performed
by the proposed HCNN, and the baseline models including MLP,
LSTM, and CNN, as well as the state-of-the-art models includ-
ing temporal convolutional networks (TCN) [42] and MDCNN.
In order to achieve a fair comparison, the parameters for each
model are optimally selected. The moving window length is

TABLE III
DEFINITION OF BEIJING MULTISITE AIR QUALITY DATASET VARIABLES AND

QUALITY VARIABLE

TABLE IV
COMPARISON RESULTS OF DYNAMIC DATA IMPUTATION FOR AIR QUALITY

DATA

set to l = 5. MLP uses fine-grained data modeled with each
sample dimension of (44×1), and the network contains two
hidden layers (22, 12). LSTM, CNN, TCN, and MDCNN use
dynamic data with a window size of (44×5). The LSTM has a
hidden layer (22), the TCN uses two temporal blocks of channel
size 20, where each temporal block contains two convolutional
layers with convolution kernel size 3. The network structures of
CNN and MDCNN are consistent with HCNN, with a 5-CNN
layer convolutional kernel of (3×3) and three layers of fully
connected networks (40, 16, 1). Note that the MDCNN uses
three convolutional kernels (3×3), (1×3), (3×1) for parallel
computation.

The root mean square error (RMSE), the coefficient of deter-
mination index R2, and the mean absolute error (MAE) are used
to evaluate the prediction accuracy, with the results listed in
Table V. From this table, the prediction with DDGAIN im-
putation performs better than the one with GAIN imputation.
Although the imputation accuracy of MICE is slightly higher
than that of DDGAIN at 0.4 and 0.5 missing rates, the predic-
tion using DDGAIN is significantly better than that of MICE,
indicating that DDGAIN exploits the dynamics of the data. The
interpolated values are more consistent with the distribution of
the original data. Moreover, the performance of DDGAIN is
more significant in the case of a large missing rate. It is worth
noting that MLP and LSTM achieve a good prediction perfor-
mance when mean imputation is applied, but process dynamics
used for quality prediction are missing. MLP and LSTM display
lower prediction accuracy since the process dynamics are not
extracted well.

Compared with the traditional MLP, LSTM, CNN, as well as
TCN and MDCNN models, HCNN achieves the best prediction.
Although CNN, TCN, MDCNN, and HCNN are all CNN-based
dual-rate models, they are sensitive to the imputation accuracy.
The predictions using CNN, TCN, MDCNN, and HCNN with
mean imputation perform worse than the ones with GAIN,
DGAIN, and DDGAIN. The TCN achieves a further improve-
ment compared to the LSTM model. The MDCNN model
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TABLE V
COMPARISON RESULTS OF QUALITY PREDICTION FOR THE DOW PROCESS

Fig. 8. Prediction results of Dow data at 0.5 missing rates. The predic-
tion methods including MLP, LSTM, CNN, TCN, MDCNN, and HCNN,
are trained by the DDGAIN imputation data.

Fig. 9. Information hint mechanism grayscale for Dow process.
(a) Temporal information vector within the window (l = 5). (b) Variable
information vector extracted from 44 variables within the window. (c) T
⊕ V information matrix within the window.

Fig. 10. DDGAIN imputation data distribution for air quality data with
the original data at 0.5 missing rates.

Fig. 11. Prediction results of air quality data at 0.1 missing rates. The
prediction methods including MLP, LSTM, CNN, TCN, MDCNN, and
HCNN, are trained by the data after DDGAIN imputation.
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TABLE VI
COMPARISON RESULTS OF QUALITY PREDICTION FOR AIR QUALITY DATA

achieves the worst prediction in the case of mean imputation,
since three parallel networks lead to error accumulation in the
case of poor imputation accuracy. By contrast, HCNN which
efficiently takes into account the temporal and variable informa-
tion of dynamic data performs the best among the four models.
HCNN outperforms CNN, TCN, and MDCNN in all imputation
methods except mean imputation, reflecting the robustness of
the proposed method. Especially, the more accurate the impu-
tation, the better the model performance. The prediction perfor-
mance of the robust dual-rate data-driven quality prediction with
the combination of DDGAIN and HCNN is the best. In the case
of 0.5 missing rates, the prediction performance still performs
well. Moreover, the prediction accuracy of DDGAIN-HCNN is
much higher than that of GAIN-HCNN, indicating the strong
robustness of the DDGAIN model.

The prediction results of five models with DDGAIN im-
putation under the 0.5 missing rate condition are shown in
Fig. 8. It can be seen that MLP, LSTM, and CNN do not
predict well during the 800 to 1000 samples. The TCN performs
better than LSTM, but still does not predict the trend of impu-
rity values well. Whereas MDCNN-based prediction fluctuates
significantly, HCNN that makes use of intersample temporal
features and variable spatial features achieves a more accurate
prediction. The grayscale image with superimposed informa-
tion is shown in Fig. 9. Fig. 9(a) displays the image temporal
information vector, while Fig. 9(b) displays the variable spatial
information vector, with Fig. 9(c) the information matrix to be
superimposed, i.e., T⊕V. The difference of information for
each moment and each variable can be seen in Fig. 9(a) and (b),
respectively. From Fig. 9(c), the information to be superimposed
is different for each element of the data matrix X, indicating the
dynamic information of the process data used for prediction.

B. Experiments on Beijing Multisite Air Quality Dataset

1) Beijing Multisite Air Quality Dataset Description: The Bei-
jing multisite air quality dataset [43] includes hourly pollution

TABLE VII
ABLATION EXPERIMENTAL RESULTS OF HCNN

data from 12 air quality monitoring sites. Since the quality vari-
able PM2.5 is usually influenced by meteorological conditions,
meteorological data from around the stations are included. That
is, the data for each station consisted of air quality data and
meteorological data, for a total of 12 valid variables, as shown in
Table III. The data from the Wanshugong site are selected for the
validation of the proposed method, with the nonnumerical wind
data discarded. The remaining 10 process variables are sampled
on an hourly basis and the quality data are sampled every four
hours. Each sample consists of fine-grained data within a moving
window, as shown in the red box in Fig. 3. The window length
is 4. A number of 7000 samples are used for model training,
500 samples for model verification, and 707 samples for model
testing.

2) Modeling and Result Analysis: The Adam optimizer is
adopted for the proposed method and the baselines. The optimal
parameters for the GAIN, DGAIN, and DDGAIN models are as
follows: batchsize is 25, learning rate is 0.001, α is 100, and the
number of epoch is 30 000. The optimal parameters of HCNN
are set as follows: batch size is 75, learning rate is 0.001, and
the number of epoch is 100.

In the imputation experimental part, the window lengths for
DGAIN and DDGAIN are 4. The results are shown in Table IV.
From this table, DDGAIN achieves the best performance for 0.1
to 0.5 missing rates. The imputation accuracy is higher than that
of MICE. It also illustrates that in data with dynamic relation-
ships, DDGAIN not only taps into the dynamic relationships,
but also senses the time-series changes of variables. The data
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distributions using the proposed DDGAIN at 0.5 missing rates
are shown in Fig. 10.

In the prediction experimental part, MLP uses a (10, 5, 1)
structure, LSTM hidden layer has a number of 5 features,
TCN uses two temporal Blocks with a channel number of 5,
and the convolution kernel size is 3. The basic structure and
convolution kernel size of the CNN, MDCNN, and HCNN
remain unchanged, and the fully connected layer is (200, 1).
The dynamic window size of LSTM, CNN, TCN, MDCNN,
and HCNN is set to (10 × 4). The prediction results are shown
in Table VI. The DDGAIN shows significant advantages. The
proposed HCNN is better than the other five methods, especially
at the missing rate of 0.1 to 0.3. Taking 0.1 missing rates as an
example, HCNN is superior to MLP, LSTM, CNN, TCN, and
MDCNN under Mean, KNN, GAIN, DGAIN, and DDGAIN
imputation methods. Meanwhile, the DDGAIN-HCNN method
performs the best at various missing rates. The prediction curves
for the six prediction models using DDGAIN imputation at 0.1
missing rates is shown in Fig. 11. It can be seen that the green
curve (HCNN) fits the actual values well.

Ablation experiments for the HCNN are carried out using
DDGAIN imputation method with a 0.1 missing rates. The
results are shown in Table VII. It can be seen that HCNN achieves
a better performance than CNN using temporal information
T alone and variable information V. HCNN with a dual hint
mechanism (T+V) performs the best.

V. CONCLUSION

In this article, a robust dual-rate dynamic data modeling
method, i.e., DDGAIN-HCNN, has been proposed for quality
prediction of dynamic nonlinear processes with missing values.
The highlights of this article are two-fold: 1) The proposed
DDGAIN provides a new way for dynamic data imputation
of missing values; 2) The proposed HCNN quality prediction
model addresses the limitations of traditional methods by su-
perimposing the temporal and variable information of process
data in the original data through an information hint mechanism.
Future work will focus on the following three aspects:

1) incorporating attention mechanism to extract far apart
dynamics;

2) developing quality-relevant data imputation method;
3) extending dual-rate data modeling to multirate data mod-

eling for quality prediction.
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