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APPENDIX A
PROOFS FOR SECTION III

A1. Proof of Proposition 8

Proof. Define the indicator function of set C as follows,

XC(A) =

{
0, A ∈ C
∞, A /∈ C.

(1)

We prove the Proposition by computing the Fenchel bi-
conjugate of the indicator function of set C(sp)k . Recall the
block diagonal matrix AF. XC(sp)k

(A) can be equivalently
interpreted as,

C(sp)k =
{
AF : ‖AF‖2 = ‖σAF

‖∞ ≤ α,
n3∑
i=1

rank(A
(i)
F ) = rank(AF) = ‖σAF

‖0 ≤ k
}
.

(2)

We first compute the Fenchel conjugate of XC(sp)k

(A) by

X ∗
C(∞)
k

(B) = sup
A

〈A,B〉 − XC(sp)k

(A)

= sup
AF

1

α
〈AF,BF〉 − XC(sp)k

(AF)

(i)
= sup

σAF

〈 1
α
σAF

,σBF
〉 − XC(∞)

k

(σAF
)

= ‖(σBF
)[1:k]‖1,

(3)

where the equality (i) is by Von Neumann’s trace inequality
with BF sharing the same unitary matrices UF and VF

with AF; the last equality is by the property of the `1-
norm and eq.(2) (please note that eq.(2) also amounts to
C(∞)
k = { 1ασAF

: ‖ 1ασAF
‖∞ ≤ 1, ‖σAF

‖0 ≤ k}). Then, the
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Fenchel bi-conjugate is computed by the Fenchel conjugate of
X ∗
C(sp)k

(B) as follows,

X ∗∗
C(sp)k

(A) = sup
A

〈B,A〉 − X ∗
C(sp)k

(B)

= sup
σBF

1

α
〈σBF

,σAF
〉 − ‖(σBF

)[1:k]‖1

=

{
0, ‖ 1ασAF

‖∞ ≤ 1, 1k‖σAF
‖1 ≤ 1

∞, otherwise

= X
conv(C(sp)k )

,

(4)

which indicates that the convex envelop of the sum of tubal
rank on the α-scaled tensor spectral norm ball is the general
α-tensor nuclear norm. In addition, by substituting α = 1 or
n3 into the above proof process, one can immediately recover
the relaxation of 1-TNN and n3-TNN.

A2. Proof of Proposition 10
Proof. We prove the Proposition by computing the Fenchel
bi-conjugate of the indicator function of the set C(Fro)k . The
set C(Fro)k can be equivalently interpreted as,

C(Fro)k =
{
AF : ‖AF‖F = ‖σAF

‖2 ≤ n3,
n3∑
i=1

rank(A
(i)
F ) = rank(AF) = ‖σAF

‖0 ≤ k
}
.

(5)

In particular, we extract the part of the singular values from
above (note that σAF

/n3 has the same cardinality as σAF
)

and denote the singular vector by

C(sv)k =
{
σAF

: ‖σAF
/n3‖2 ≤ 1, ‖σAF

/n3‖0 ≤ k
}
, (6)

which amounts to

C(2)k =
{
v ∈ RD : ‖v‖2 ≤ 1, ‖v‖0 ≤ k

}
. (7)

With the above equivalence relationships, the Fenchel conju-
gate of XC(Fro)k

(A) can be computed by

X ∗
C(Fro)k

(B) = sup
A

〈A,B〉 − XC(Fro)k

(A)

= sup
AF

1

n3
〈AF,BF〉 − XC(Fro)k

(A)

(i)
= sup

σAF

1

n3
〈σA,σBF

〉 − XC(Fro)k

(A)

= sup
σAF

〈σAF
/n3,σBF

〉 − XC(sv)k

(σAF
)

= ‖(σBF
)[1:k]‖2 = ‖σBF

‖∗vp,k = ‖BF‖∗msp,k,

(8)
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where the equality (i) is by Von Neumann’s trace inequality
with AF sharing the same unitary matrices UF and VF from
SVD with BF. Then, the Fenchel bi-conjugate is computed
by the Fenchel conjugate of X ∗

C(Fro)k

(B) as follows,

X ∗∗
C(Fro)k

(A) = sup
A

〈B,A〉 − X ∗
C(Fro)k

(B)

= sup
σBF

1

n3
〈σBF

,σAF
〉 − ‖σBF

‖∗2

= X‖ 1
n3

σAF
‖vp,k≤1(σAF

),

(9)

where the last equality is because the Fenchel conjugate of a
norm (i.e. dual norm of the k-support norm) is the indicator
function of the unit ball of its dual norm (i.e. the k-support
norm). Also, the constraint ‖ 1

n3
σAF
‖2 ≤ 1 (again by applying

the property of the k-support norm to vector 1
n3

σAF
) gives

‖ 1
n3

σAF
‖2 =

√
n3

n3
‖A‖F ≤ 1, which is the

√
n3-scaled tensor

Frobenius norm ball of ‖A‖F ≤
√
n3. As a result, the TSP-k

norm takes the form as

‖A‖tsp,k =
1

n3
‖σAF

‖vp,k =
1

n3
‖AF‖msp,k. (10)

A3. Proof of Proposition 11

Proof. When k = 1, we have l = 0, and subsequently we have
‖A‖tsp,1 = 1

n3
‖σAF

‖1 = 1
n3

∑n3

i=1 ‖σ
(i)
AF
‖1 = ‖A‖t∗,avg;

When k = D, the dual norm becomes

‖A‖∗tsp,k = ‖(σ↓AF
)[1:D]‖2 = ‖σAF

‖2 = ‖AF‖F = ‖AF‖∗msp,k,
(11)

which indicates the primal norm ‖A‖tsp,k = 1
n3
‖AF‖msp,k =

1
n3
‖σ‖2 = 1

n3
‖AF‖F = 1√

n3
‖A‖F .

APPENDIX B
PROOFS FOR SECTION IV

B1. Proof of Proposition 16

Proof. In order to compute L#:

L# = arg min
L

β

2
(‖L‖∗tsp,k)2 +

1

2
‖L− T‖2F , (12)

we can first convert the problem to Fourier domain via FFT
and then recover the result via IFFT. The equivalent problem
after FFT is

L
#
F = arg min

LF

β

2
(‖LF‖∗msp,k)2 +

1

2n3
‖LF − TF‖2F , (13)

With L
#
F sharing the same unitary matrices UF and VF with

TF, it suffices to compute the proximal operator of the vector
dual k-support norm:

σ
L

#
F

= argmax
σLF

βn3
2

(‖σLF
‖∗vp,k)2+

1

2
‖σLF

−σTF
‖22. (14)

To obtain σ
L

#
F

, we follow the derivation of the proximal
operator the 1

2 (‖ · ‖∗vp,k)2 in [1] (i.e. the proximal operator of
the dual k-support norm in the vector case). Let [σ↓TF

, idx] =

sort(σTF
, ‘descend’). Substituting the form of 1

2 (‖ · ‖∗vp,k)2

in to Eq.(14), it can then be written as

σ↓
L

#
F

= arg min
vi≥vi+1

h(v) = v>G
1
βn3 v − 2

βn3
(σ↓TF

)>v,

(15)

where G
1
βn3
ij =


1 + 1

βn3
, i = j ≤ k

1
βn3

, i = j > k

0, i 6= j

. Apparently, for

large enough (σ↓TF
)i, vi =

1
βn3

1+ 1
βn3

(σ↓TF
)i and for small

enough (σ↓TF
)i, vi = (σ↓TF

)i, where the “large/small e-

nough” means we need not worry
1
βn3

1+ 1
βn3

(σ↓TF
)i < (σ↓TF

)j ,
for i < j. However, for intermediate i < j around k,
there is possibility that

1
βn3

1+ 1
βn3

(σ↓TF
)i < (σ↓TF

)j , which
breaks the non-increasing constraint of “vi ≥ vj , for i <
j”. To avoid this, we find an interval [klow, kupp] = I∗
around k, and vi for i ∈ I∗ will take the same value:

vi =
1
βn3

∑
j∈I∗ (σ

↓
TF

)j∑
j∈I∗ (G

1
βn3 )jj

=

∑kupp

j=klow
(σ↓

TF
)j

(1+ 1
βn3

)(k−klow+1)+ 1
βn3

(kupp−k) .

To find the interval [klow, kupp] = I∗, we follow [1] to
repeatedly use two binary searches from the intervals of
[1, k] and [k,D] for klow and kupp, respectively. In par-
ticular, we search for the largest klow that (σ↓TF

)klow <
(1+ 1

βn3
)
∑kupp

j=klow
(σ↓

TF
)j

(1+ 1
βn3

)(k−klow+1)+ 1
βn3

(kupp−k) and search for the small-

est kupp that (σ↓TF
)kupp >

∑kupp

j=klow
(σ↓

TF
)j

(1+ 1
βn3

)(k−klow+1)+ 1
βn3

(kupp−k) ,
which are the conditions in eq.(22).

B2. Proof of Proposition 21

Proof. We proceed the derivation with the FFT transformed
block diagonal matrix, which gives the equivalent formulation
of eq.(25) in the paper in Fourier domain as

A#
F = argmax

1
n3
||AF||msp,k≤1

1

n3
〈TF,AF〉. (16)

The maximum is obtained when A#
F /n3 shares the same

UF,VF of TF, which further converts computation to

σ↓
A#

F
/n3

= argmax
‖v‖vp,k≤1

〈v,σ↓TF
〉. (17)

The above eq.(17) is the polar operator of the vector k-support
norms which ensures v the following closed-form computation

(σ↓
A

#
F

/n3)j = vj =


(σ↓

TF
)j

‖(σ↓
TF

)[1:k]‖2
, j ∈ [1 : k],

0, j ∈ [k : D].
(18)

Hence, after reshuffling the elements of σ↓
A

#
F

back to their
position in the original frontal slices according to idx kept
during the sort operation, the polar map is proved to take
the form as in eq.(26) and (27) in the paper.
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APPENDIX C
PROOFS FOR SECTION V

C1. Proof of Proposition 24

Proof. Beginning with the Lagrangian dual reformulation, the
following sequence of equivalence relationship holds,

max
J

min
L,||E||s≤τ

[1
2
||L||2tsp,k + 〈J,M(L) + E−M(X)〉

]
⇔max

J

[(
min
L

1

2
||L||2tsp,k + 〈J,M(L)〉

)
+
(

min
||E||s≤τ

〈J,E〉
)
−
(
〈J,M(X)〉

)]
⇔max

J

[
min
L
−
(
〈−M>(J),L〉 − 1

2
||L||2tsp,k

)
+ min
||E||s≤τ

−
(
〈−J,E〉

)
−
(
〈J,M(X)〉

)]
⇔max

J

[
−max

L

(
〈−M>(J),L〉 − 1

2
||L||2tsp,k

)
︸ ︷︷ ︸

(i)

− max
||E||s≤τ

(
〈−J,E〉

)
︸ ︷︷ ︸

(ii)

−
(
〈J,M(X)〉

)]

(19)

⇔max
J
−
[1
2
(|| −M>(J)||∗tsp,k)2 + 〈J,M(X)〉+ τ || − J||∗s

]
⇔−min

J

[ 1
2
(|| −M>(J)||∗tsp,k)2 + 〈J,M(X)〉︸ ︷︷ ︸

f(J)

+ τ || − J||∗s︸ ︷︷ ︸
h(J)

]
.

(20)

In above, (i) is by the definition of Fenchel conjugate of
1
2 || · ||

2
tsp,k, i.e.

max
L

(
〈−M>(J),L〉− 1

2
||L||2tsp,k

)
=

1

2
(||−M>(J)||∗tsp,k)2; (21)

and (ii) is by the definition the dual norm of || · ||s, i.e.
(ii) = τ || − J||∗s . As a result, we can equivalently solve the
dual objective: minJ D(J) := minJ f(J) + h(J).

C2. Proof of Proposition 25

Proof. By taking the (sub)gradient of f(Γ) in eq.(12), we have

g(J) = ∂
(1

2
(|| −M>(J)||∗tsp,k)2

)
+ M(X). (22)

By the relation of eq.(21), it gives

∂
(1

2
(|| −M>(J)||∗tsp,k)2

)
=∂
(

max
L

(
〈−M>(J),L〉 − 1

2
||L||2tsp,k

))
=∂
(
〈−M>(J),L#〉 − 1

2
||L#||2tsp,k

)
=−M(L#),

(23)

where the last equality is because the (sub)gradient is taken
with respect to J. The optimum L# in the second equality
should satisfy,

L# = argmax
L

(
〈−M>(J),L〉 − 1

2
||L||2tsp,k

)
, (24)

which has closed-form solution for every norm function. We
provide the details for our TSP-k norm in the following for
completeness. In order to compute L#, we have(
〈−M>(J),L〉 − 1

2
||L||2tsp,k

)
≤
(
‖L‖tsp,k · ‖ −M>(J)‖∗tsp,k −

1

2
||L||2tsp,k

)
= −1

2

(
‖L‖tsp,k − ‖ −M>(J)‖∗tsp,k

)2
2
+

1

2
(‖ −M>(J)‖∗tsp,k)2

≤ 1

2
(‖ −M>(J)‖∗tsp,k)2,

(25)

where both inequalities are obtained at L satisfying
‖L‖tsp,k = ‖−M>(J)‖∗tsp,k. Hence, the “scale” of L# under
the TSP-k norm is ‖−M>(J)‖∗tsp,k. Fixing this scale, we need
to decide the “direction” of L#, i.e., a tensor A# with unit
TSP-k norm and the maximization becomes,

argmax
‖A‖tsp,k≤1

〈−M>(J),A‖−M>(J)‖∗tsp,k〉+
1

2
(‖−M>(J)‖∗tsp,k)2,

(26)
which is the polar operator of TSP-k norm at T = −M>(J):

A# = argmax
‖A‖tsp,k≤1

〈−M>(J),A〉. (27)

As a result, we have proved that

L# = ‖ −M>(J)‖∗tsp,k ·A
#. (28)

C3. Proof of Corollary 26

Proof. To prove the Corollary, it suffices to show the singular
values of L#. With TF = −M>(J), note that ‖TF‖∗tsp,k =

‖σTF
‖∗vp,k = ‖(σ↓TF

)[1:k]‖2. By eq.(28) and (18) and the
linearity of FFT, the singular values σ

L
#
F

are

(σ
L

#
F

(idx))j =

{
n3(σ↓TF

)j , j ∈ [1 : k],

0, j ∈ [k : D].
(29)

The remaining is followed by Proposition 21.

APPENDIX D
DETAILED DEFINITIONS IN TABLE II

Definition D.1. (Tensor Conjugate Transpose [2]) The
conjugate transpose of a tensor A of size n1×n2×n3 is the
n2×n1×n3 tensor A> obtained by conjugate transposing each
of the frontal slice and then reversing the order of transposed
frontal slices 2 through n3.

Definition D.2. (Identity Tensor [2]) A tensor J ∈ Rn×n×n3

is called identity tensor if its first frontal slice J(1) is the
n × n identity matrix and all its other frontal slices, i.e. J(i)

for i = 2, ..., n3, are zero matrices.

Definition D.3. (Orthogonal Tensor [2]) A tensor Q ∈
Rn×n×n3 is called orthogonal if the following condition holds,

Q> ∗Q = Q ∗Q> = J, (30)

where J ∈ Rn×n×n3 is an identity tensor as in Definition D.2
and ∗ is the t-Product.
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Definition D.4. (f-Diagonal Tensor [2]) For a tensor A, if
all its frontal slices A(i), i = 1, ..., n3 are diagonal matrices,
then it is defined to be an f-diagonal tensor.

Definition D.5. (Tensor Spectral Norm [3]) For a tensor
A ∈ Rn1×n2×n3 , the tensor spectral norm ‖A‖2 is defined to
be the spectral norm of AF, i.e. ‖A‖2 := ‖AF‖2.

Definition D.6. (Tensor Frobenius Norm [3]) For a ten-
sor A ∈ Rn1×n2×n3 , the tensor Frobenius norm is denot-
ed by ‖A‖F , i.e. ‖A‖F := 〈A,A〉 12 = 1√

n3
‖AF‖F =

1√
n3
‖AF‖F =

√∑
i

∑
j

∑
kA

2
ijk.

APPENDIX E
ADDITIONAL MATERIALS FOR SECTION V

E1. Detailed derivation of preconditioned ADMM
To solve eq.(29) in the paper via ADMM-type algorithm,

the augmented Lagrangian is given by

Dρ(L,E,J) =
1

2
‖L‖2tsp,k + λ‖E‖1

+ 〈J,M(X−L)− E〉+
ρ

2
‖M(X−L)− E‖2F .

(31)

We then carry out alternative update to the variables L and E

at every iteration.
1) Update of Lt:

Lt = argmin
L

1

2
‖L‖2tsp,k

+ 〈Jt−1,M(X−L)− Et−1〉+
ρ

2
‖M(X−L)− Et−1‖2F .

(32)

To separate the linear map M apart from L, the preconditioned
ADMM approximates 1

2‖M(X − L) − Et−1‖2F with second
order Taylor expansion around Lt−1, as
1

2
‖M(X−Lt−1)− Et−1‖2F−

〈M>(M(X−Lt−1)− Et−1),L−Lt−1〉+
η

2
‖L−Lt−1‖2F .

(33)

Incorporating eq.(33) into eq.(32) gives

Lt = argmin
L

1

2ρη
‖L‖2tsp,k+

1

2
‖L− (Lt−1 +

1

η
M>(M(X−Lt−1)− Et−1) +

Jt−1
ρη

)‖2F

= Prox 1
2ρη ‖·‖

2
tsp,k

(
Lt−1 +

1

η
M>(M(X−Lt−1)− Et−1)

+
Jt−1
ρη

)
.

(34)

2) Update of Et:

Et = argmin
E

λ‖E‖1

+ 〈Jt−1,M(X−Lt)− E〉+
ρ

2
‖M(X−Lt)− E‖2F

= argmin
E

λ

ρ
‖E‖1 +

1

2
‖E− (M(X−Lt) +

1

ρ
Jt−1)‖F

= Proxλ
ρ ‖·‖1

(
M(X−Lt) +

1

ρ
Jt−1

)
.

(35)

which then follows by the element-wise soft-thresholding
operation.

E2. Computational Complexity Analysis for Algorithms 2&3

Suppose the input tensor size is n1 × n2 × n3.
Algorithm 2:
• Step 1: Computing fft takes O(n1n2n3 log(n3));
• Step 2-4: Compute n3 full SVD of n1×n2 matrices takes
O(n1n2n3 min{n1, n2});

• Step 5: Sorting a vector of length min{n1, n2}n3 takes
O(min{n1, n2}n3 log(min{n1, n2}n3));

• Step 6-7: Repeating binary search at most k and
min{n1, n2}n3 − k times for ranges of [1, k]
and [k,min{n1, n2}n3] each takes O(k log(k))
and (min{n1, n2}n3 − k)O(min{n1, n2}n3 − k),
correspondingly;

• Step 8: Element-wise vector arithmetic takes
O(min{n1, n2}n3);

• Step 9: Rearranging vector elements back
according to idx kept during sort operation takes
O(min{n1, n2}n3);

• Step 10-12: n3 matrix multiplications take
O(n1n2n3 min{n1, n2});

• Step 13: ifft takes O(n1n2n3 log(n3));
Algorithm 3:
• Step 1: Computing fft takes O(n1n2n3 log(n3));
• Step 2-4: Compute n3 partial SVD of n1 × n2 matrices

takes O(kn1n2n3);
• Step 5: Sorting a vector of length kn3 takes
Okn3 log(kn3));

• Step 6: Element-wise vector arithmetic takes O(k);
• Step 7: Rearranging vector elements back according to
idx kept during sort operation takes O(k);

• Step 8-10: n3 matrix multiplications with O(kn1n2n3);
• Step 13: ifft takes O(n1n2n3 log(n3));

E3. Line-search Subroutine for Algorithm 5

Ideally, the algorithm performs better when adapting to the
local smoothness of the dual loss function. To investigate such
possibility, we study the structure of the (sub)gradient set. As
the key ingredient of the (sub)gradient is the differentiation
of the dual tensor spectral k-support norm, we describe its
structure in the following proposition.

In particular, let Y = −M>(J). We describe the
(sub)gradient set of ‖Y‖∗tsp,k in the following.

Proposition E.1. Denote a particular tensor SVD of Y by Y =
U ∗ S ∗V> and the associated Fourier transformed diagonal
matrix by YF = UFdiag(σ)V>F . Denote the sorted non-
increasing singular vectors by σ↓. Assume the sorted singular
values satisfy

σ↓1 ≥ ... > σ↓k−a+1 = ... = σ↓k = ... = σ↓k+b︸ ︷︷ ︸
(i)

> ... ≥ σ↓n2·n3
.

(36)
Let K1 denote the corresponding index set in σ of entries in
σ↓[1:k−a], and K2 for the indices of entries in σ↓[k−a+1:k+b],
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and K denotes the indices of the leading k singular values.
The (sub)gradient set of the dual spectral k-support norm at
YF is denoted by GF, of which each i-th frontal slice in the
Fourier domain G

(i)
F =

1

‖YF‖∗msp,k

{ ∑
k1∈K1

(UF)ik1σ
(i)
k1

((V)
(i)
k1

)>

+
∑
k2∈K2

(UF)ik2T((VF)
(i)
k2

)>
}
,

(37)

where T satisfies T = T>, ‖T‖2 ≤ σ↓k and ‖T‖∗ = aσ↓k.
In particular, ‖Y‖∗tsp,k is differentiable at Y, if σ↓k > σ↓k+1 or
σ↓k = 0, during when GF denotes the unique gradient, which
satisfies,

G
(i)
F =

1

‖YF‖∗msp,k

∑
k∈K

(UF)ikσ
(i)
k ((VF)

(i)
k )>. (38)

The singular value subsequence of (i) in eq.(36) is the
longest subsequence which equals to each other containing the
k-the largest singular value. Under the condition σ↓k > σ↓k+1

or σ↓k = 0, the leading k singular values are well-separated
with the remaining smaller singular values starting from k+1-
th entry. Also, eq.(38) is always a particular choice in eq.(37),
since eq.(38) corresponds to T = σ↓kdiag(1[1:a]) (obviously
‖T‖2 ≤ σ↓k and ‖T‖∗ = aσ↓k are satisfied). In particular,
when the singular value are “well-separated”, eq.(38) becomes
the unique element of the subgradient set of eq.(37), i.e. the
dual tensor spectral k-support norm is differentiable at Y with
“well-separated” singular values under t-SVD. Finally, by the
computation of the polar operator and the dual (sub)gradient,
we actually always choose eq.(38) in the dual objective
optimization.

Despite the smoothness variation, we always choose eq.(38)
during the dual (sub)gradient computation. Hence, it would be
desirable the our optimization procedure would adaptive to the
smoothness to the dual loss function. The ν ≥ 1 is called the
Hölder smoothness order, and the associated parameter Hν is
defined as

Hν = Hν(f) := sup
x1 6=x2

{‖∇f(x1)−∇f(x2)‖2
‖x1 − x2‖ν2

}
, (39)

where ∇f(x) denotes a (sub)gradient of f at x.
In particular, we propose to rely on the concept of the

Hölder smoothness ν ∈ [0, 1] and the line-search strategy that
adapts to this smoothness variation. By Hölder smoothness, the
smooth case corresponds to ν = 1 in the Hölder smoothness,
while when the (sub)gradient set is not unique, it corresponds
to ν = 0 in the Hölder smoothness. Ht is determined a
backtracking line search, which searches the Jt+1 satisfying,

f(Jt+1) + h(Jt+1)

≤ f(J̆t) + 〈g(J̆t),Jt+1 − J̆t〉+
Ht

2
‖Jt+1 − J̆t‖2F + h(Jt+1)

(40)

Algorithm 1 presents the backtracking line search for deter-
mining Ht and updating Jt+1. The dominating per-iteration
complexity, with the remaining being simple tensor inner
product and element-wise operation, lines in Line 3 and 4:

Algorithm 1 line-search subroutine: (Jt+1, Ht) =
line search(J̆t, g(J̆t), Ht−1, ε, θt)

Input: J̆t, g(J̆t), Ht−1, ε, θt
1: Ht,0 = Ht−1/2;
2: for i = 0, 1, ..., imax do
3: Jt,i+1 = ProxH−1

t,i h(J)

(
J̆t −H−1t,i g(J̆t)

)
;

4: if f(Jt,i+1) ≤ f(J̆t)+〈g(J̆t),Jt,i+1−J̆t〉+
Ht,i
2 ‖Jt,i+1−

J̆t‖2F + ε
2θt

then
5: break;
6: else
7: Ht,i+1 = 2Ht,i;
8: end if
9: end for

10: Return: Jt,i, Ht,i

1) proximal mapping with respect to the dual regularizer and
2) the computation of Jt,i+1. The former computational cost
mainly comes from the projection onto the unit ‖ · ‖1 ball
which has O(n1n2n3) complexity algorithm. The latter mainly
needs to compute the dual tensor spectral k-support norm on
Jt,i+1, which relies on the leading k singular values of each
Ĵt,i+1 and can be obtained in O(kn1n2n3) computation by
partial SVD. Note that such line search is only possible after
our dual reformulation, because the primal norm computation
during such backtracking would require full SVD whichs cost
super-linear complexity O(n1(n2)2n3). Also, by [4], the line
search requires roughly two rounds on average. In sum, the
line search step takes the complexity O(kn1n2n3).
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