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Abstract—Expectation-Maximization (EM) algorithm [10] has been extensively used in density mixture clustering problems, but it is

unable to perform model selection automatically. This paper, therefore, proposes to learn the model parameters via maximizing a

weighted likelihood. Under a specific weight design, we give out a Rival Penalized Expectation-Maximization (RPEM) algorithm, which

makes the components in a density mixture compete each other at each time step. Not only are the associated parameters of the

winner updated to adapt to an input, but also all rivals’ parameters are penalized with the strength proportional to the corresponding

posterior density probabilities. Compared to the EM algorithm [10], the RPEM is able to fade out the redundant densities from a density

mixture during the learning process. Hence, it can automatically select an appropriate number of densities in density mixture clustering.

We experimentally demonstrate its outstanding performance on Gaussian mixtures and color image segmentation problem. Moreover,

a simplified version of RPEM generalizes our recently proposed RPCCL algorithm [8] so that it is applicable to elliptical clusters as well

with any input proportion. Compared to the existing heuristic RPCL [25] and its variants, this generalized RPCCL (G-RPCCL)

circumvents the difficult preselection of the so-called delearning rate. Additionally, a special setting of the G-RPCCL not only

degenerates to RPCL and its Type A variant, but also gives a guidance to choose an appropriate delearning rate for them.

Subsequently, we propose a stochastic version of RPCL and its Type A variant, respectively, in which the difficult selection problem of

delearning rate has been novelly circumvented. The experiments show the promising results of this stochastic implementation.

Index Terms—Maximum weighted likelihood, rival penalized Expectation-Maximization algorithm, generalized rival penalization

controlled competitive learning, cluster number, stochastic implementation.

�

1 INTRODUCTION

AS a statistical tool, clustering analysis has been widely
applied to a variety of scientific areas such as vector

quantization [7], [15], data mining [18], image processing
[14], [22], statistical data analysis [6], [13], and so forth. In
the past, the clustering analysis has been extensively
studied along two directions: 1) hierarchical clustering
and 2) nonhierarchical clustering. In this paper, we
concentrate on the latter only, which aims to partition N
inputs (also called observations or data points interchangeably
hereinafter), written as x1;x2; . . . ;xN , into k� true clusters so
that the inputs within the same cluster are similar under a
measure, but those in different clusters are not.

Conventionally, the k-means [16] is a popular clustering
algorithm that updates the seed points, i.e., those learnable
points in the input space representing the cluster centers,
via minimizing a mean-square-error function. The k-means
has been widely used in a variety of applications, but it has
at least two major drawbacks:

1. It implies that the shapes of data clusters are
spherical because it performs clustering based on
the Euclidean distance only.

2. It needs to preassign the cluster number k, which is
an estimate of k�. When k is exactly equal to k�, the

k-means algorithm can correctly find out the
clustering centers as shown in Fig. 1b. Otherwise,
it will lead to an incorrect clustering result as
depicted in Figs. 1a and 1c, where some of the seed
points are not located at the centers of the
corresponding clusters. Instead, they are at some
boundary points between different clusters or at
points far away from the cluster centers.

In the literature, a broad view of the clustering problem has
been formulated within the framework of density estimates
[5], [17], [19], [21], in which the probability density of inputs
is represented by a finite mixture model. Each mixture
component represents the density distribution of a data
cluster. Consequently, clustering can be viewed as identify-
ing the dense regions of the input densities and therefore
named density mixture clustering. In particular, it is called
Gaussian mixture clustering when each mixture component is
a Gaussian density. Often, the Expectation-Maximization
(EM) algorithm [10], [12] provides a general solution for the
parameter estimate in a density mixture model. Unfortu-
nately, it also needs to preassign an appropriate number of
densities analogous to the k-means algorithm. Otherwise,
the EM will mostly give out a poor estimate result.

In the past decades, some works have been done toward
determining the correct number of clusters or densities
along two major lines. The first one is to formulate the
cluster number selection as the choice of component
number in a finite mixture model. Consequently, there
have been some criteria proposed for model selection, such
as AIC [2], [3], CAIC [4], and SIC [21]. However, these
conventional criteria may overestimate or underestimate
the cluster number due to the difficulty of choosing an
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appropriate penalty function. Recently, a new criteria from
Ying-Yang Machine theory [23] has been presented as well
for cluster number selection, which need not select an
appropriate penalty function in general. Some empirical
studies have found that it can determine a correct cluster
number, whose computation is, however, laborious. The
other approach is to introduce a mechanism into an
algorithm so that an appropriate cluster number k can be
automatically selected online. Hence, this direction gener-
ally gives a promising way to develop a robust clustering
algorithm in terms of the cluster number.

In the literature, one example is called incremental
clustering [11], [12] that gradually increases the number
clusters under the control of an appropriate threshold
value, which is, however, hard to be decided in advance as
well. Another typical example is the heuristic Rival
Penalized Competitive Learning (RPCL) algorithm and its
variants [24], [25]. The basic idea in each of them is that, for
each input, not only the winner of the seed points is
updated to adapt to the input, but also its nearest rival (i.e.,
the second winner) is delearned by a much smaller fixed
learning rate (also called delearning rate hereinafter). The
empirical studies have shown that the RPCL can indeed
automatically select the correct cluster number by gradually
driving extra seed points far away from the input data set.
However, some empirical studies have also found that its
performance is sensitive to the selection of the delearning
rate. If the rate is not well preselected, the RPCL may
completely break down. To circumvent this awkward
situation, we have recently proposed an improved version,
namely, Rival Penalization Controlled Competitive Learning
(RPCCL) [8], in which the rival is more penalized if its
distance to the winner is smaller than the distance between
the winner and the input, and vice versa. The RPCCL
always fixes the delearning rate at the same value as the
learning rate, which is, however, absolutely prohibited in
the RPCL [26]. The experiments in [8] have shown the
promising results. Nevertheless, as well as the RPCL and its
variants, such a penalization scheme is still heuristically
proposed without any theoretical guidance.

In this paper, we therefore propose to learn the model
parameters via maximizing a weighted likelihood, which is
developed from the likelihood function of inputs with a
designable weight. Under a specific weight design, we then
give out a maximum weighted likelihood (MWL) approach
named Rival Penalized Expectation-Maximization (RPEM)
algorithm, which makes the components in a density
mixture compete with each other, and the rivals intrinsi-
cally penalized with a dynamic control during the learning.
Not only are the associated parameters of the winner

updated to adapt to an input, but also all rivals’ parameters
are penalized with the strength proportional to the
corresponding posterior density probabilities. Compared
to the EM, such a rival penalization mechanism enables the
RPEM to fade out the redundant densities in the density
mixture. In other words, the RPEM has the capability of
automatically selecting an appropriate number of densities
in density mixture clustering. The numerical simulations
have demonstrated its outstanding performance on Gaus-
sian mixtures and the color image segmentation problem.
Moreover, we show that a simplified version of RPEM
actually generalizes the RPCCL algorithm [8] so that it is
applicable to ellipse-shaped clusters as well with any input
proportion. Compared to the existing RPCL and its
variants, this generalized RPCCL (G-RPCCL), as well as
the RPCCL, circumvents the difficult preselection of the
delearning rate. Additionally, a special setting of G-RPCCL
further degenerates to the RPCL and its Type A version, but
meanwhile giving out a guidance to choose an appropriate
delearning rate. Subsequently, we propose a stochastic
version of RPCL and its Type A variant, respectively, in
which the difficult selection problem of the delearning rate
is novelly circumvented. The experiments have shown the
promising results of this stochastic implementation.

The remainder of this paper is organized as follows:
Section 2 will overview the EM algorithm in the density
mixture clustering. Section 3 goes into the details of
describing the MWL learning framework, through which
the RPEM algorithm is then proposed and experimentally
demonstrated by using both of synthetic and real data. In
Section 4, we will give out the details of G-RPCCL and
show the relations between it and the existing RPCCL,
RPCL, and its Type A variant, respectively. Subsequently,
not only is a simple efficient method of choosing an
appropriate delearning rate in the RPCL and its Type A
variant suggested, but the stochastic implementations of
RPCL and its Type A variant are also presented and
demonstrated accordingly. Lastly, we draw a conclusion in
Section 5.

2 OVERVIEW OF EM ALGORITHM IN DENSITY

MIXTURE CLUSTERING

Suppose N observations: x1;x2; . . . ;xN are independently

and identically distributed (iid) from the following mixture-

of-density model:
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Fig. 1. The results from the k-means algorithm with (a) k ¼ 1, (b) k ¼ 2, and (c) k ¼ 4, respectively, where “�” denotes the locations of converged
seed points. It can be seen that the algorithm can find out the cluster centers correctly as shown in Fig. 1b when k is equal to the true cluster number
k� ¼ 2. In contrast, if k is misspecified, the performance of the k-means algorithm will deteriorate seriously as shown in Figs. 1a and 1c, where some
seed points do not locate at the centers of the corresponding clusters. Instead, they are either at some boundary points between different clusters or
at points biased from some cluster centers.



pðxj��Þ ¼
Xk�
j¼1

��
jpðxj��j Þ ð1Þ

with

Xk
j¼1

��
j ¼ 1 and 8 1 � j � k�; ��

j > 0; ð2Þ

where �� ¼ f��
j ; �

�
jg

k�

j¼1 denotes the set of true model
parameters and k� is the mixture number of densities in
the model. In (1), each mixture component pðxj��j Þ is a
multivariate probability density function (pdf) of x with the
parameter ��j , which can be interpreted as the pdf of those
data points that form a corresponding cluster, say Cluster j,
and the associated ��

j is the proportion of data points that
belong to Cluster j. Hence, if the parameter set �� is
known, the clustering task becomes straightforward, which
classifies an input xt into a certain cluster based on the
posterior probability of a density that xt comes from,
written as:

hðjjxt;�
�Þ ¼

��
jpðxtj��j ÞPk�

i¼1 �
�
i pðxtj��i Þ

; 1 � j � k�: ð3Þ

For instance, we can perform clustering by taking the
winner-take-all rule, i.e., assign an input xt to Cluster c if
c ¼ argmaxj hðjjxt;�

�Þ, or taking its soft version which
assigns xt to Cluster j with the probability hðjjxt;�

�Þ.
Hence, how to estimate �� from a set of observations
becomes a key issue in density mixture clustering. Herein-
after, we will concentrate on the parameter estimate of a
density mixture, particularly when the true mixture number
k� is unknown.

To obtain an estimate of ��, written as � ¼ f�j; �jgkj¼1,

Dempster et al. [10] assumed that each observation xt is

accompanied by its hidden label

xt;h ¼ ½xð1Þ
t;h ; x

ð2Þ
t;h ; . . . ; x

ðkÞ
t;h �

T ; 1 � t � N ð4Þ

with

x
ðjÞ
t;h ¼ 1; if xt is drawn from pðxj�jÞ

0; otherwise;

�
and

Xk
j¼1

x
ðjÞ
t;h ¼ 1

ð5Þ
that shows which density xt comes from, where T denotes
the transpose operation of a matrix. Since each xt is
randomly drawn from one of k densities, it is therefore
that x1;h;x2;h; . . . ;xN;h are also iid. The paper [10] further
assumes that each xt;h is from a multinomial distribution
consisting of one draw on k densities with probabilities
�1; �2; . . . ; �k, respectively. That is, the marginal density
distribution of xt;h is

pðxt;hj�Þ ¼
Yk
j¼1

ð�jÞx
ðjÞ
t;h : ð6Þ

Hence, the joint pdf of x1;h;x2;h; . . . ;xN;h is:

pðx1;h;x2;h; . . . ;xN;hj�Þ ¼
YN
t¼1

pðxt;hj�Þ ¼
YN
t¼1

Yk
j¼1

ð�jÞx
ðjÞ
t;h : ð7Þ

Furthermore, supposing x1;x2; . . . ;xN are conditionally
independent as given x1;h;x2;h; . . . ;xN;h, respectively, we
then have

pðx1;x2; . . . ;xN jx1;h;x2;h; . . . ;xN;h;�Þ ¼
YN
t¼1

pðxtjxt;h;�Þ

ð8Þ

with

pðxtjxt;h;�Þ ¼
Yk
j¼1

pðxtj�jÞx
ðjÞ
t;h ð9Þ

upon the fact that xt exclusively depends on xt;h. Conse-
quently, the joint pdf of the complete data:

XN ¼ ðxT
1 ;x

T
2 ; . . . ;x

T
NÞ

T and

XN;h ¼ ðxT
1;h;x

T
2;h; . . . ;x

T
N;hÞ

T ;
ð10Þ

is given by

pðXN;XN;hj�Þ ¼
YN
t¼1

Yk
j¼1

½�jpðxtj�jÞ�x
ðjÞ
t;h : ð11Þ

Hence, the empirical log likelihood function of � is:

~LLð�;XNÞ ¼
1

N

XN
t¼1

Xk
j¼1

x
ðjÞ
t;h½ln�j þ ln pðxtj�jÞ�: ð12Þ

Since those hidden labels xt;hs in (12) are unknown, the
incomplete data theory [10] therefore treats them as missing
data and replaces each xt;h by its expected value condi-
tioned on xt, i.e., Eðxt;hjxt;�Þ, which is actually the
posterior density probability hðjjxt;�Þ. Accordingly, given
a specific k, an optimal solution of � can be obtained
through maximizing the following log likelihood function:

Lð�;XNÞ ¼
1

N

XN
t¼1

�tð�;xtÞ

¼ 1

N

XN
t¼1

Xk
j¼1

hðjjxt;�Þ ln½�jpðxtj�jÞ�
ð13Þ

with

�tð�;xtÞ ¼
Xk
j¼1

hðjjxt;�Þ ln½�jpðxtj�jÞ�; ð14Þ

where �j > 0 for 8 1 � j � k and
Pk

j¼1 �j ¼ 1.

In implementation, maximizing (13) can be achieved by
the Expectation-Maximization (EM) algorithm [10]. Alter-
natively, we can also learn� via an adaptive version of EM.
That is, after assigning some initial value to �, we perform
the following two steps at each time step t:

1. E-Step. We fix �ðoldÞ and calculate

hðjjxt;�
ðoldÞÞ ¼

�
ðoldÞ
j pðxtj�ðoldÞj Þ
pðxtj�ðoldÞÞ

¼
�
ðoldÞ
j pðxtj�ðoldÞj ÞPk

i¼1 �
ðoldÞ
i pðxtj�ðoldÞi Þ

;

ð15Þ

where j ¼ 1; 2; . . . ; k.
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2. M-Step. Fixing hðjjxt;�
ðoldÞÞs calculated in (15), we

use a stochastic gradient ascent method to update�,

i.e., update � with a small step toward the direction

of maximizing (14). Subsequently, we have

�ðnewÞ ¼ �ðoldÞ þ �
@�tð�;xtÞ

@�
j�ðoldÞ ; ð16Þ

where � is a small positive learning step.

The above two steps are performed for each input until

� converges. In general, this adaptive EM algorithm, as

well as the original one in [10], does not contain a

mechanism for automatic model section, i.e., a mechanism

to select an appropriate value of k. As a result, �� can be

well-estimated only when k happens to be equal to the

unknown true value k�. Otherwise, the EM will mostly give

out a poor estimation.

3 MAXIMUM WEIGHTED LIKELIHOOD AND RIVAL

PENALIZED EM ALGORITHM

3.1 A General MWL Learning Framework

Recall that an input x comes from the mixture-of-density

model of (1), themaximum likelihood (ML) estimate� of��

can be obtained via maximizing the following cost function

‘ð�Þ ¼
Z

ln pðxj�ÞdF ðxÞ; ð17Þ

with

pðxj�Þ ¼
Xk
j¼1

�jpðxj�jÞ;

Xk
j¼1

�j ¼ 1; and

8 1 � j � k; �j > 0;

ð18Þ

where F ðuÞ ¼
R u
�1 pðxÞdx is the cumulative probability

function of x. Hereinafter, we suppose that k is not smaller

than k� and pðxj�Þ is an identifiable model, i.e., for any two

possible values of �, denoted as �1 and �2, pðxj�1Þ ¼
pðxj�2Þ if and only if �1 ¼ �2. It can be seen that (17) can

be further represented as

‘ð�Þ ¼
Z

ln pðxj�ÞdF ðxÞ

¼
Z Xk

j¼1

gðjjx;�Þ ln pðxj�ÞdF ðxÞ

¼
Z

½gð1jx;�Þ ln pðxj�Þ þ gð2jx;�Þ ln pðxj�Þ

þ . . . ;þgðkjx;�Þ ln pðxj�Þ�dF ðxÞ;

ð19Þ

where gðjjx;�Þs are the designable weights satisfying

Xk
j¼1

gðjjx;�Þ ¼ 1; ð20Þ

in which each gðjjx;�Þ is generally a function of x and �.
By Baye’s formula, we know that the probability of x
coming from the jth density as given x is

hðjjx;�Þ ¼ �jpðxj�jÞ
pðxj�Þ : ð21Þ

Subsequently, we have

pðxj�Þ ¼ �jpðxj�jÞ
hðjjx;�Þ ; for 8j; 1 � j � k ð22Þ

as long as hðjjx;�Þ is not equal to zero. Putting (22) into
(19), we obtain

‘ð�Þ ¼
Z �

gð1jx;�Þ ln pðxj�Þ þ gð2jx;�Þ ln pðxj�Þ

þ . . . ;þgðkjx;�Þ ln pðxj�Þ�dF ðxÞ

¼
Z

½gð1jx;�Þ ln�1pðxj�1Þ
hð1jx;�Þ þ gð2jx;�Þ ln�2pðxj�2Þ

hð2jx;�Þ

þ . . . ;þgðkjx;�Þ ln�kpðxj�kÞ
hðkjx;�Þ

�
dF ðxÞ

¼
Z Xk

j¼1

gðjjx;�Þ ln�jpðxj�jÞ
hðjjx;�Þ dF ðxÞ

¼
Z Xk

j¼1

gðjjx;�Þ ln½�jpðxj�jÞ�dF ðxÞ

�
Z Xk

j¼1

gðjjx;�Þ ln hðjjx;�ÞdF ðxÞ:

ð23Þ

We name (23) Weighted Likelihood (WL) function. We then

have the following result:

Theorem 1. If pðxj�Þ is an identifiable model, (23) reaches the
global maximum if and only if � ¼ ��.

Proof. By (17), we know that

max
�

‘ð�Þ ¼ max
�

Z
pðxÞ ln pðxj�Þdx

, min
�

½�
Z

pðxÞ ln pðxj�Þdx�

, min
�

� Z
pðxÞ ln pðxj��Þdx

�
Z

pðxÞ ln pðxj�Þdx
�

¼ min
�

Z
pðxÞ ln pðxj�

�Þ
pðxj�Þ dx;

ð24Þ

where A , B means that A is equivalent to B.
Since pðxÞ ¼ pðxj��Þ, we then have

max
�

‘ð�Þ , min
�

� Z
pðxj��Þ ln pðxj�

�Þ
pðxj�Þ dx

�
� 0; ð25Þ

in which “=” is held if and only if pðxj��Þ ¼ pðxj�Þ is
based on the property of Kullback-Leibler divergence as
shown in the later Lemma 2. That is, “=” is held if and
only if � ¼ �� because pðxj�Þ is an identifiable model.tu
As N is large enough, the empirical WL function of (23),

written as Qð�;XNÞ, can be further given as
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Qð�;XNÞ ¼
1

N

XN
t¼1

Xk
j¼1

gðjjxt;�Þ ln½�jpðxtj�jÞ�

� 1

N

XN
t¼1

Xk
j¼1

gðjjxt;�Þ lnhðjjxt;�Þ;
ð26Þ

which is the sum of two terms. The first term is actually a

generalized version of the EM cost function in (13). It uses

the general gðjjxt;�Þ to approximate the hidden label x
ðjÞ
t;h,

but not hðjjxt;�Þ. Evidently, this term degenerates to the

EM cost function when gðjjxt;�Þ is equal to hðjjxt;�Þ for

any j. The second term is a kind of measure to evaluate the

uncertainty of which density that the input xt comes from.

For instance, as gðjjxt;�Þ � hðjjxt;�Þ for 8j; t, the second

term is exactly the conditional entropy of the densities. In

general, the learning of � toward maximizing the first term

of (26) is to reduce such an uncertainty, but the learning of

maximizing (26) is to increase the value of second term. In

other words, the second term is serving as a regularization

term in the learning of �. In (23) and (26), we have not

considered the case that hðjjxt;�Þ ¼ 0 for some j as given

an input xt. Clearly, if hðjjxt;�Þ ¼ 0 holds for some j, the

maximum value ofQð�;XNÞ in (26) may not exist. To avoid

this awkward situation, we therefore further request

8 j; gðjjxt;�Þ ¼ 0 if hðjjxt;�Þ ¼ 0 ð27Þ

in designing gðjjxt;�Þ, which has a variety of choices as long

as the loose conditions stated in (20) and (27) are satisfied. For

instance, given an input xt, we can let gðjjxt;�Þ be some

probability function, i.e.,
Pk

j¼1 gðjjxt;�Þ ¼ 1 and gðjjxt;�Þ �
0 for any 1 � j � k. A typical example is to let gðjjxt;�Þ ¼
hðjjxt;�Þ or

Iðjjxt;�Þ ¼ 1; if j ¼ c ¼ argmax1�i�k hðijxt;�Þ
0; otherwise:

�
ð28Þ

In the first design, (26) degenerates to the Kullback-Leibler
divergence function derived from Ying-Yang Machine with
the backward architecture, e.g., see [23]. In contrast, the
second design leads (26) to be the cost function of hard-cut
EM [23]. In the subsequent sections, we will prefer to
investigate one specific gðjjxt;�Þ only with

gðjjxt;�Þ ¼ ð1þ �tÞ’ðjjxt;�Þ � �thðjjxt;�Þ; ð29Þ

where ’ðjjxt;�Þ is a special probability function, named

indicator function, i.e., given any input xt, we have

�ðjjxt;�Þ ¼ 0 or 1 for 1 � j � k and
Pk

j¼1 ’ðjjxt;�Þ ¼ 1.

Furthermore, �t is generally a coefficient varying with the

time step t. Hereinafter, we set �t at 1with t ¼ 1; 2; . . . ; N for

simplicity. That is, (29) becomes

gðjjxt;�Þ ¼ 2’ðjjxt;�Þ � hðjjxt;�Þ: ð30Þ
After designing the weights, the learning of � can then be
accomplished toward maximizing (26). We therefore name
such a learning as Maximum Weighted Likelihood (MWL)
learning approach.

3.2 Rival Penalized EM Algorithm

By considering the specific weights in (30) and putting them
into (26), we then have

Qð�;XNÞ ¼
1

N

XN
t¼1

qtð�;xtÞ ð31Þ

with

qtð�;xtÞ ¼ Rtð�;xtÞ þHtð�;xtÞ ð32Þ

and

Rtð�;xtÞ ¼
Xk
j¼1

½2’ðjjxt;�Þ � hðjjxt;�Þ� ln½�jpðxtj�jÞ� ð33Þ

Htð�;xtÞ ¼ �
Xk
j¼1

½2’ðjjxt;�Þ � hðjjxt;�Þ� lnhðjjxt;�Þ;

ð34Þ
where qtð�;xtÞ is called an instantaneous cost function at
time step t because its value depends on � and the
current input xt only. Before estimating � via maximiz-
ing Qð�;XNÞ in (31) , we need to specify ’ðjjxt;�Þ. One
choice is to simply let

’ðjjxt;�Þ ¼ Iðjjxt;�Þ ð35Þ

as that of (28). It should be noted that, if the number of
maximum values of hðjjx;�Þs is more than one, we can
randomly select one index among them as c and let
’ðcjxt;�Þ ¼ 1; meanwhile, the others are equal to zero.
Subsequently, we can always guarantee ’ðjjxt;�Þ to be an
indicator function. As a result, as well as the adaptive EM
algorithm in Section 2, we can learn � via maximizing (31)
adaptively. That is, after assigning some initial value to �,
we perform the following two steps as given an input xt:

1. Step A.1. Fixing�ðoldÞ, we compute hðjjxt;�
ðoldÞÞ and

’ðjjxt;�
ðoldÞÞ via (21) and (35), respectively.

2. Step A.2. Fixing hðjjxt;�Þs calculated in Step A.1,
we update � with a small step towards the direction
of maximizing (32). To avoid the constraint on �js
during the optimization, we therefore let �js be the
soft-max function of k new free variables �js with

�j ¼
expð�jÞPk
i¼1 expð�iÞ

; for 1 � j � k; ð36Þ

and update �js directly instead of �js. As a result,
we update � by

�ðnewÞ
c ¼ �ðoldÞ

c þ ��
@qtð�;xtÞ

@�c
j�ðoldÞ

¼ �ðoldÞ
c þ ��½2� hðcjxt;�

ðoldÞÞ � �ðoldÞ
c �;

ð37Þ

�ðnewÞc ¼ �ðoldÞc þ �
@qtð�;xtÞ

@�c
j�ðoldÞ

¼ �ðoldÞc þ �½2� hðcjxt;�
ðoldÞÞ� @ ln pðxtj�cÞ

@�c
j
�
ðoldÞ
c

;

ð38Þ
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meanwhile

�ðnewÞ
r ¼ �ðoldÞ

r þ ��
@qtð�;xtÞ

@�r
j�ðoldÞ

¼ �ðoldÞ
r � ��½hðrjxt;�

ðoldÞÞ þ �ðoldÞ
r �;

ð39Þ

�ðnewÞr ¼ �ðoldÞr þ �
@qtð�;xtÞ

@�r
j�ðoldÞ

¼ �ðoldÞr � �hðrjxt;�
ðoldÞÞ @ ln pðxtj�rÞ

@�r
j
�
ðoldÞ
r

;

ð40Þ
where �

ðoldÞ
j is computed via (36) in terms of �

ðoldÞ
j , c

is given by (28), and r ¼ 1; 2; . . . ; k but r 6¼ c.
Furthermore, the positive �� is the learning rate of
�js. We should let �� � � upon the sensitivity of �js
to the small changes of �js in (36).

The above two steps are implemented for each input until

� converges. It can be seen that, at each time step t, Step A.2

not only updates the associated parameters of the winning

mixture component, i.e., the cth one, to adapt to the input,

but all of those rival components are also penalized toward

minimizing qtð�;xtÞ with the force strength proportional to

hðrjxt;�Þs, respectively. The larger the hðrjxt;�Þ is, the

stronger the penalized force is. We therefore name this

algorithm Rival Penalized EM (RPEM), whose intrinsic rival-

penalized mechanism enables the RPEM to fade out the

redundant components from a density mixture as shown in

the later Section 3.3.
To show that the learning of � via the RPEM does

converge, we regard hðjjxt;�Þ in (32) as a free probability
function (i.e., it can be specified as any probability function),
denoted as ~hhðjjxtÞ. Under the circumstances, we let

~’’ðjjxt;�Þ ¼

1; if j ¼ c ¼ argmax1�i�k

�
hðijxt;�Þj ~hhðijxtÞ

hðijxt ;�Þ � 1

�
0; otherwise;

8<
:

ð41Þ

where hðjjxt;�Þ is still given by (21). Subsequently, (32)

becomes

qtð�;xtÞ ¼
Xk
j¼1

~ggðjjxt;�Þ ln½�jpðxtj�jÞ�

�
Xk
j¼1

~ggðjjxt;�Þ ln ~hhðjjxtÞ
ð42Þ

with

~ggðjjxt;�Þ ¼ 2~’’ðjjxt;�Þ � hðjjxt;�Þ; ð43Þ

in which there are two independent parameters: � and
~hhðjjxtÞs. Hence, their updates toward the direction of

maximizing qtð�;xtÞ can be performed in a zig-zag way

at each time step. That is, we first fix � and update ~hhðjjxtÞ
as given an input xt, followed by fixing ~hhðjjxtÞ and

updating �. The details are as follows:

1. Step B.1. Given an input xt, we fix �ðoldÞ and
compute ~hhðjjxtÞ via maximizing (42), whereby
~’’ðjjxt;�

ðoldÞÞ is calculated via (41).
2. Step B.2. Fixing those ~hhðjjxtÞs calculated in Step B.1,

we update � with a small step toward the direction
of maximizing (42) similar to the previous Step A.2,
i.e., update

�ðnewÞ
c ¼ �ðoldÞ

c þ �� 2� ~hhðcjxtÞ � �ðoldÞ
c

h i
; ð44Þ

�ðnewÞc ¼ �ðoldÞc þ � 2� ~hhðcjxtÞ
� � @ ln pðxtj�cÞ

@�c
j
�
ðoldÞ
c

; ð45Þ

and

�ðnewÞ
r ¼ �ðoldÞ

r � �� ~hhðrjxtÞ þ �ðoldÞ
r

h i
ð46Þ

�ðnewÞr ¼ �ðoldÞr � � ~hhðrjxtÞ
@ ln pðxtj�rÞ

@�r
j
�
ðoldÞ
r

; ð47Þ

where r ¼ 1; 2; . . . ; k, and but r 6¼ c.

In the above, Step B.1 and Step B.2 both always increase

the value of qtðXN ;�Þ, the convergence of � learning via

this algorithm is therefore guaranteed. It can be seen that

~’’ðjjxt;�Þ defined in (41) will be equal to ’ðjjxt;�Þ in

(35) as long as ~hhðjjxtÞ ¼ hðjjxt;�Þ. Under the circum-

stances, this alternative algorithm will be the same as the

previous RPEM. In the following, we will show that
~hhðjjxtÞ ¼ hðjjxt;�Þ is exactly the maximum point of (42)

when � is fixed in Step B.1. Before giving out the

theorem, we first present two useful lemmas as follows.

Lemma 2. Given any two probability density functions of a

continuous-valued variable u, denoted as p1ðuÞ and p2ðuÞ,
respectively, based on the Kullback-Leibler divergence prop-

erty, we have Z
p1ðuÞ ln

p1ðuÞ
p2ðuÞ

du � 0; ð48Þ

and “=” is held if and only if p1ðuÞ ¼ p2ðuÞ.

If x takes one of k discrete values only, the conclusion of

Lemma 2 is also true, in which (48) becomes

Xk
j¼1

p1ðujÞ ln
p1ðujÞ
p2ðujÞ

� 0; ð49Þ

where uj denotes the jth possible value of u, and p1ðuÞ and
p2ðuÞ are twoprobability functions, but not thepdfs anymore.

Lemma 3. Suppose the discrete variable � takes one of k possible

values: 1; 2; . . . ; k. Given any two probability functions,

denoted as p1ð�Þ and p2ð�Þ, we define a function

�ð� ¼ jÞ ¼

1; if j ¼ c ¼ argmax1�i�k p2ð� ¼ iÞj p1ð�¼iÞ
p2ð�¼iÞ � 1

n o
0; otherwise;

(
ð50Þ

where we can randomly choose one in case such a c is not

unique. Then, we have
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Xk
j¼1

�ð� ¼ jÞ ¼ 1; and

�ð� ¼ jÞ ¼ 0 for 8 1 � j � k; j 6¼ c:

ð51Þ

Proof. Given any two probability functions p1ð�Þ and p2ð�Þ
with � taking one of k possible values: 1; 2; . . . ; k, there

must exist at least one j so that p1ð�¼jÞ
p2ð�¼jÞ � 1. Otherwise, we

have

Xk
i¼1

p1ð� ¼ iÞ <
Xk
i¼1

p2ð� ¼ iÞ ¼ 1 ð52Þ

which contradicts the p1ð�Þ’s property that

Xk
i¼1

p1ð� ¼ iÞ ¼ 1:

Suppose there are m possible values of �, denoted as

i1; i2; . . . ; im with m � 1, such that p1ð�¼i�Þ
p2ð�¼i�Þ � 1, where

1 � � � m. Without loss of generality, we suppose there

is one unique maximum value, denoted as p2ð� ¼ icÞ,
among these m p2ð� ¼ i�Þs. Otherwise, we can randomly

take one from the several maximum values. By definition

of function � in (50), we therefore know that �ð� ¼ cÞ ¼ 1

and �ð� ¼ jÞ ¼ 0, where j ¼ 1; 2; . . . ; k, but j 6¼ c. tu
Subsequently, we present the theorem as follows.

Theorem 4. When � is fixed, qtð�;xtÞ in (42) reaches the

maximum value if and only if ~hhðjjxtÞ is equal to hðjjxt;�Þ
of (21).

Proof. We consider a specific function, denoted as �qqtð�;xtÞ,
with

�qqtð�;xtÞ ¼
Xk
j¼1

½2~’’ðjjxt;�Þ � hðjjxt;�Þ� ln
~hhðjjxtÞ

�jpðxtj�jÞ

¼
Xk
j¼1

½2~’’ðjjxt;�Þ � hðjjxt;�Þ� ln
~hhðjjxtÞ

hðjjxt;�Þ þ C

¼ 2
Xk
j¼1

~’’ðjjxt;�Þ ln
~hhðjjxtÞ

hðjjxt;�Þ þ
Xk
j¼1

hðjjxt;�Þ ln

hðjjxt;�Þ
~hhðjjxtÞ

þ C;

ð53Þ

whereC is a constant term independent from the choice of
~hhðjjxtÞs and �. From Lemma 3, we know that ~’’ðjjxt;�Þs
are an indicator function. By putting ~’’ðjjxt;�Þ of (41) into
(53), we therefore have

�qqtð�;xtÞ ¼ 2~’’ðcjxt;�Þ ln
~hhðcjxtÞ

hðcjxt;�Þ

þ
Xk
j¼1

hðjjxt;�Þ lnhðjjxt;�Þ
~hhðjjxtÞ

þ C:

ð54Þ

Based on the definition of ~’’ðjjxt;�Þ, we know that the

first term

2~’’ðcjxt;�Þ ln
~hhðcjxtÞ

hðcjxt;�Þ � 0; ð55Þ

and “=” is held if and only if ~hhðcjxtÞ ¼ hðcjxt;�Þ.
Furthermore, from Lemma 2, we also know that the
second term of (54) reaches the minimum as ~hhðjjxtÞ ¼
hðjjxt;�Þ for all 1 � j � k. That is, (54) reaches the
minimum value if and only if ~hhðjjxtÞ ¼ hðjjxt;�Þ for all
j. Because of �qqtð�;xtÞ ¼ �qtð�;xtÞ, we know that (32)
then reaches the maximum value, accordingly. tu
Please note that update of ~hhðjjxtÞ via maximizing (42) as

given � does not often lead to ~hhðjjxtÞ ¼ hðjjxt;�Þ unless
~’’ðjjxt;�Þ is well-designed. Under the circumstances, the
parameter estimate via Step B.1 and Step B.2 may not be
the same as the one via Step A.1 and Step A.2. To save
space, we leave their discussion elsewhere. In the following,
we will further study the RPEM in detail under the
Gaussian density mixtures.

Suppose N inputs fxtgNt¼1 are all iid distributed and
come from a Gaussian density mixture, i.e., the pðxj�Þ in
(18) is

pðxj�Þ ¼
Xk
j¼1

�jpðxtj�jÞ ¼
Xk
j¼1

�jGðxtjmj;�jÞ; ð56Þ

with

pðxtj�jÞ ¼ Gðxtjmj;�jÞ; ð57Þ

where � ¼ f�j;m;�jgkj¼1 and Gðxjm;�Þ denotes a multi-
variate Gaussian density function of x with the mean m,
and covariance matrix �. By putting (57) into (32), we then
have

qtð�;xtÞ ¼
Xk
j¼1

gðjjxt;�Þ ln½�jGðxtjmj;�jÞ�

�
Xk
j¼1

gðjjxt;�Þ lnhðjjxt;�Þ

¼
Xk
j¼1

½2Iðjjxt;�Þ � hðjjxt;�Þ� ln½�jGðxtjmj;�jÞ�

�
Xk
j¼1

½2Iðjjxt;�Þ � hðjjxt;�Þ� lnhðjjxt;�Þ:

ð58Þ

As a result, the detailed algorithm of RPEM can be given as
follows:

Initialization. Given a specific k (k � k�), we initialize
the parameter �. Then, at each time step t, we implement
the following two steps:

1. Step C.1. Given an input xt, we fix �ðoldÞ and
calculate

hðjjxt;�
ðoldÞÞ ¼

�
ðoldÞ
j GðxtjmðoldÞ

j ;�
ðoldÞ
j Þ

pðxtj�ðoldÞÞ
; ð59Þ

gðjjxt;�
ðoldÞÞ ¼ 2Iðjjxt;�

ðoldÞÞ � hðjjxt;�
ðoldÞÞ;

1 � j � k;

ð60Þ
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where �js are calculated by (36), pðxtj�ðoldÞÞ is given
by (56), and Iðjjxt;�

ðoldÞÞ is given by (28).

2. Step C.2. Fixing hðjjxt;�
ðoldÞÞs, we update � by

using a stochastic gradient ascent method in the

same way as Step A.2 and Step B.2. We notice that

all subsequent computations involve ��1
j s only

rather than �js. To save computing costs and ensure

the learning of �j more stable, we therefore directly
update ��1

j s rather than �js. It turns out that the

update of � is given as follows:

�
ðnewÞ
j ¼ �

ðoldÞ
j þ ��

@qtð�;xtÞ
@�j

j�ðoldÞ

¼ �
ðoldÞ
j þ ��½gðjjxt;�

ðoldÞÞ � �
ðoldÞ
j �;

ð61Þ

m
ðnewÞ
j ¼ m

ðoldÞ
j þ �

@qtð�;xtÞ
@mj

j�ðoldÞ

¼ m
ðoldÞ
j þ �gðjjxt;�

ðoldÞÞ��1
j

ðoldÞðxt �m
ðoldÞ
j Þ;
ð62Þ

��1
j

ðnewÞ ¼ �
�1ðoldÞ
j þ ��

�1ðoldÞ
j

@qtð�;xtÞ
@��1

j

��1
j

ðoldÞj�ðoldÞ

¼ ½1þ �gðjjxt;�
ðoldÞÞ���1ðoldÞ

j

� �gðjjxt;�
ðoldÞÞUt;j

ð63Þ

with

Ut;j ¼ ½��1
j

ðoldÞðxt �m
ðoldÞ
j Þðxt �m

ðoldÞ
j ÞT��1

j

ðoldÞ�;
1 � j � k:

ð64Þ

Please note that, to simplify the computation of ��1
j s’

update, (63) has updated ��1
j along the direction of

��1
j

@qtð�;xtÞ
@��1

j

��1
j , i.e., along the direction with an acute

angle of @qtð�;xtÞ
@��1

j

. In the next section, we will experi-

mentally demonstrate the performance of RPEM.

3.3 Experimental Simulation

We have conducted six experiments to demonstrate the
performance of RPEM. Because of the space limitation, we
leave the details of each experiment in Section 1 of the
online Appendix, which can be found on the IEEE
Computer Society Digital Library at: http://computer.
org/tkde/archives.htm. In the following, we just summar-
ize the results.

3.3.1 Experiment 1

With the data from a mixture of three bivariate Gaussian
densities, we first investigated the performance of RPEM
provided that the number k of seed points is equal to the
true mixture number k� ¼ 3. The experiment verifies the
convergence of Q value in (26), and shows that the RPEM
has given the well estimate of the true parameters as well as
the EM. Then, we further investigated the performance
robustness of RPEM when k ¼ 7 > k�. It was found that the

RPEM led three redundant densities to fade out in the
mixture model through the learning. That is, the RPEM can
automatically make the model selection during the para-
meter learning process. In comparison, the EM is unable to
estimate the parameters correctly and select a model
automatically in this case.

3.3.2 Experiment 2

Similar to Experiment 1, we investigated the RPEM with the
data from a mixture of three bivariate Gaussian densities, in
which, however, the data clusters were considerably over-
lapped. Once again, we first set k ¼ 3, and performed the
RPEM and EM. We found that the parameter estimate of
RPEM is slightly better than the EM, and the RPEM learning
is much faster than the EM. This scenario is also consistent
with the qualitative analysis in [25]. That is, the rival
penalization mechanism can indeed speed up the conver-
gence of the seed points. We are going to theoretically
analyze the convergence properties of RPEM elsewhere
because of the space limitation in this paper.

Furthermore, we also investigated the RPEM perfor-
mance when k was much larger than k�. We arbitrarily set
k ¼ 25. The experimental results show that the RPEM can
successfully recognize the input data set from the mixture
of the three densities, but the EM cannot.

3.3.3 Experiment 3

This experiment further investigated the RPEM when k and
k� were both large. We generated the data from a mixture of
10 bivariate Gaussian densities and set k at 30. The
numerical results show that the RPEM can work very well.

3.3.4 Experiment 4

In this experiment, we investigated the robustness of RPEM
in 10 data clusters that are seriously overlapped. The results
show that the RPEM has led the model parameters into a
local maximum solution and identified seven clusters only,
but not the true 10 ones. Nevertheless, we found that some
of the data clusters have been seriously overlapped, which
may be more reasonable to regard as a single cluster, rather
than count on an individual basis. In this viewpoint, the
results given by the RPEM are acceptable and correct even if
the clusters are seriously overlapped.

3.3.5 Experiment 5

In the previous experiments, we considered the bivariate
data points only for easy visual demonstration. This
experiment showed the RPEM performance on high-
dimensional data. We generated the data points from a
mixture of four 30-dimension Gaussians and set k at 7. The
numerical results show that the RPEM has pushed the extra
�js very close to zero and the associated seed points far
away from the input data set. Consequently, it has led three
redundant densities to fade out from the mixture, while the
other four densities are well-recognized. That is, the RPEM
has successfully identified the true data distribution.

3.3.6 Experiment 6

This experiment demonstrated the performance of RPEM in
color image segmentation in comparison with the common
k-means algorithm. We initially assigned 10 seed points and
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learned them by RPEM and k-means algorithm, respec-

tively. In this trial, we used the benchmark Beach image

with 64� 64 pixels, in which the sky color is close to the sea

color. This implies that the region of sky seriously overlaps

the region of sea in HSV color space. Subsequently, it leads

the RPEM to be trapped into a local optimal solution similar

to the case in Experiment 4. Nevertheless, the results given

by the RPEM in this experiment are still acceptable. In

contrast, the k-means cannot make correct image segmenta-

tion at all.
The above six experiments have shown the outstanding

performance of RPEM. In the following, we will further

develop a simplified variant of RPEM as a general rival

penalized competitive learning approach. Also, its relations

with the existing RPCCL, RPCL, and its Type A variants are

discussed, respectively. In particular, a new way to choose

an appropriate delearning rate in the RPCL and its Type A

variant is suggested and implemented in a stochastic way.

4 A SIMPLIFIED VARIANT OF RPEM ALGORITHM

4.1 Generalized RPCCL Algorithm and Its
Stochastic Implementations

Suppose we ignore the difference between hðcjxt;�Þ and

Iðcjxt;�Þ in comparison with hðcjxt;�Þ. gðjjxt;�Þ in (30)

then becomes

gðjjxt;�Þ ¼ 2’ðjjxt;�Þ � hðjjxt;�Þ
¼ 2Iðjjxt;�Þ � hðjjxt;�Þ

	
1; if j ¼ c ¼ argmaxi½Iðijxt;�Þ�;
�hðjjxt;�Þ; otherwise;

�
ð65Þ

where ’ðjjxt;�Þ is given by (35). Hence, the Rtð�;xtÞ
function in (33) can then be simplified as

Rtðxt;�Þ ¼
Xk
j¼1

½2Iðjjxt;�Þ � hðjjxt;�Þ� ln½�jpðxtj�jÞ�

	 ln½�cpðxtj�cÞ� �
Xk

j¼1;j 6¼c

hðjjxt;�Þ ln½�jpðxtj�jÞ�:

ð66Þ
Subsequently, we can obtain a variant of the RPEM

algorithm as follows:

1. Step D.1. Fixing �ðoldÞ, we compute hðjjxt;�
ðoldÞÞ

and gðjjxt;�
ðoldÞÞ via (59) and (65), respectively.

2. Step D.2. Fixing hðjjxt;�
ðoldÞÞs and gðjjxt;�

ðoldÞÞs
calculated in Step D.1, we update � with a small
step toward the direction of maximizing (66), which
can be realized by two separate updates:

. Awarded Update. We update the parameters of

the winner among the mixture components, i.e.,

�c and �c with c ¼ argmaxj½Iðjjxt;�
ðoldÞÞ�, by

�ðnewÞ
c ¼ �ðoldÞ

c þ ��
@Rtð�;xtÞ

@�c
j�ðoldÞ

¼ �ðoldÞ
c þ ��

Xk
j¼1

½gðjjxt;�
ðoldÞÞð	jc � �ðoldÞ

c Þ�;

¼ �ðoldÞ
c þ �½1� hðcjxt;�

ðoldÞÞ�ðoldÞ
c �;

ð67Þ

�ðnewÞc ¼ �ðoldÞc þ �
@Rtð�;xtÞ

@�c
j�ðoldÞ

¼ �ðoldÞc þ �
@ ln pðxtj�cÞ

@�c
j
�
ðoldÞ
c

;

ð68Þ

where 	jc is the Kronecker delta function.
. Penalized Update. We update those �js and �js

with 1 � j � k, but j 6¼ c:

�
ðnewÞ
j ¼ �

ðoldÞ
j þ ��

@Rtð�;xtÞ
@�j

j�ðoldÞ

¼ �
ðoldÞ
j þ ��

Xk
u¼1

½gðujxt;�
ðoldÞÞð	uj � �

ðoldÞ
j Þ�

¼ �
ðoldÞ
j � ��½hðjjxt;�

ðoldÞÞ

þ hðcjxt;�
ðoldÞÞ�ðoldÞ

j Þ�;
ð69Þ

�
ðnewÞ
j ¼ �

ðoldÞ
j þ �

@Rtð�;xtÞ
@�j

j�ðoldÞ

¼ �
ðoldÞ
j � �hðjjxt;�

ðoldÞÞ @ ln pðxtj�jÞ
@�j

j
�
ðoldÞ
j

:

ð70Þ

In this algorithm, all mixture components are competing

with each other at each time step to update to adapt the

input. Not only are the winner’s parameters �c and �c
updated toward maximizing the value of Rtð�;xtÞ in (66),

but those rival’s parameters f�j; �jgkj¼1;j6¼c are penalized to

update toward the reverse direction of maximizing

Rtð�;xtÞ. This is the exact procedure of a rival penalized

competitive learning. Furthermore, (69) and (70) show that

the rival penalization strength, denoted as �hðjjxt;�Þ, is

dynamically controlled. The larger hðjjxt;�Þ is, the larger

the penalization strength is. That is, the rival is more

penalized if its winning chance is closer to the winner. Such

a penalization mechanism is the same as the one in Rival

Penalization Controlled Competitive Learning (RPCCL) algo-

rithm [8]. We therefore call the algorithm described by

Step D.1 and Step D.2 Generalized RPCCL (G-RPCCL),

which extends the RPCCL at least three-fold:

1. The rival penalization mechanism in the G-RPCCL is
systematically developed from the MWL frame-
work, while the one in the RPCCL of [8] is
heuristically proposed.

2. The G-RPCCL is applicable to the elliptical clusters
with any input proportion, but the RPCCL in [8]
may not.
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3. At each time step, the G-RPCCL penalizes all
rivals rather than the nearest rival (i.e., the rival
with the subscript r ¼ argmaxj;j 6¼c Iðjjxt;�Þ) only,
like RPCCL.

It is certain that the learning of G-RPCCL can be further

simplified if we penalize the nearest rival only like the

RPCL [25] and RPCCL [8] rather than all rivals. Further-

more, we notice that �j can be estimated by E½hðjjxt;�Þ�.
Thus, instead of using the soft-max function, we can simply

estimate �c by

�ðnewÞ
c ¼ nðnewÞ

cPk
j¼1;j6¼c n

ðoldÞ
j þ n

ðnewÞ
c

ð71Þ

with

n
ðnewÞ
j ¼ n

ðoldÞ
j þ 1; if j ¼ c ¼ argmaxi½Iðijxt;�

ðoldÞÞ�
n
ðoldÞ
j ; otherwise;

(

ð72Þ

where each njs should be initialized at a positive integer

value, e.g., let nj ¼ 1. As pointed out in [9], the updating of

�c only in (71) is, in effect, to update those �js (j 6¼ c)
automatically with a small step toward the direction of
minimizing Rtð�;xtÞ. Hence, we can save computing costs
without updating other �js. Table 1 summarizes the general
steps of this simplified G-RPCCL.

Particularly, if each mixture component pðxtj�jÞ is a
Gaussian density as given by (57), Rtð�;xtÞ in (66) then
becomes

Rtð�;xtÞ ¼ ln½�cGðxtjmc;�cÞ�

�
Xk

j¼1;j6¼c

hðjjxt;�Þ ln½�jGðxtjmj;�jÞ�:
ð73Þ

Subsequently, the detailed implementation of Simplified G-
RPCCL algorithm in a Gaussian mixture is given out in
Table 2.

If we always fix the rival penalization strength at its
mean further, i.e., ���r ¼ �Ex½hðrjx;�Þ�, this Simplified G-
RPCCL then degenerates to the RPCL (Type A) [24], but
gives out a guidance to choose the fixed delearning rate ���r.
In implementation, an estimate of ���r can be given by
calculating the sample mean �hhr of those hðrjxt;�Þs based on
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TABLE 1
The General Procedures of Simplified G-RPCCL Algorithm

TABLE 2
Simplified G-RPCCL Algorithm in a Gaussian Mixture



the available data points, or adaptively learned via the
following updating equation:

�hhðnewÞ
r ¼ ð1� �Þ�hhðoldÞ

r þ �hðrjxt;�Þ; for 8t; t ¼ 1; 2; . . . ; N:

ð74Þ

In contrast, a more simple and efficient way is to penalize
the nearest rival stochastically, i.e., at each time step, we
generate a random uniformly-distributed number 
 2 ½0; 1�,
if 
 � hðrjxt;�Þ, we then penalize the rival with the
strength �, otherwise, the rival is not penalized. We call
this Stochastic RPCL (Type A). If we further always fix

8 1 � j � k; �j ¼
1

k
; and �j ¼ I ð75Þ

during the learning, where I is the identity matrix, the
indicator function Iðjjxt;�Þ of (28) is then equivalent to:

Iðjjxt;�Þ ¼ 1; if j ¼ c ¼ argmin1�r�k kxt �mrk
0; otherwise;

�
ð76Þ

from which it can be seen that the winning of seed points is
exclusively determined by the Euclidean distance between
the input and the seed points. As a result, if some seed
points are initialized far away from the input data set in
comparison with other seed points, they will immediately
become dead without learning chance any more in the
subsequent learning. This scenario is called the dead unit
problem as pointed out in [1]. To circumvent this awkward
situation, Ahalt et al. [1] suggests gradually reducing the
winning chance of a frequent winning seed point. That is,
we add the relative winning frequency of a seed point into
the indicator function. Subsequently, we have:

Iðjjxt;�Þ ¼ 1; if j ¼ c ¼ argmin1�r�k 
rkxt �mrk
0; otherwise;

�
ð77Þ

with


r ¼
nrPk
i¼1 ni

;

where ni is the past winning frequency of the seed pointmi.
It can be seen that the learning rule of the seed pointsmjs in
this algorithm is exactly the one in the RPCL [25]. We
therefore name this algorithm Stochastic RPCL (S-RPCL).
Table 3 gives out its details. Compared to the existing

RPCL, this new one has novelly circumvented the selection
problem of the delearning rate by fixing it at the learning
rate, which is, however, strictly prohibited in the RPCL as
pointed out in [25]. In the next section, we will demonstrate
the performance of S-RPCL in comparison with the RPCL to
show the effectiveness of this stochastic method.

4.2 Experimental Demonstrations

We conducted two experiments to compare the S-RPCL and
theRPCL. In each experiment,weused six seedpoints,whose
initial positions were randomly assigned in the input space.
Moreover, we randomly set the learning rate at 0.001, while
letting the delearning rate r ¼ 0:0001 by default when using
the RPCL. Because of the space limitation, we summarize the
experimental results only as follows. For more details,
interested readers can refer to Section 2 of the online
Appendix on the IEEE Computer Society Digital Library at:
http://computer. org/tkde/archives.htm.

4.2.1 Experiment 1

We used the 1,000 data points from a mixture of three
Gaussian distribution, in which the data clusters were well-
separated. The experimental results show that the S-RPCL
has put three seed points into the three cluster centers,
meanwhile driving the other three extra seed points far
away from the input data set. Based on the rival penaliza-
tion equation in Step 2 of Table 3, we know that the rival
penalization strength will nonlinearly decrease as the extra
seed points leave the input data set, and they will finally
become stable outside the input data set. In contrast,
although the RPCL could work as well in this case, the
RPCL always penalizes the extra seed points even if they
are much farther away from the input data set. Conse-
quently, the seed points as a whole will not tend to
convergence, but those learned by the S-RPCL will.

4.2.2 Experiment 2

We further investigated the performances of S-RPCL and
RPCL in the three moderate overlapping clusters. We found
that the S-RPCL had given the correct results, but the RPCL
had not. We then further investigated the performance of
RPCL by adjusting the delearning rate r ¼ 0:0001 along two
directions: from 0.0001 to 0.00001 and from 0.0001 to 0.0009,
respectively, with a constant step: 0.00001. Unfortunately,
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TABLE 3
Stochastic RPCL Algorithm



we could not find an appropriate r in all cases we had tried

so far to make RPCL successfully work.

5 CONCLUSION

This paper has developed an MWL learning framework

from the ML, through which a new RPEM algorithm has

been proposed for density mixture clustering. The RPEM

learns the density parameters by making mixture compo-

nents compete each other at each time step. Not only are the

associated parameters of the winning density component

updated to adapt to an input, but also all rivals’ parameters

are penalized with the strength proportional to the

corresponding posterior density probabilities. Compared

to the EM algorithm, this intrinsic rival penalization

mechanism enables the RPEM to automatically select an

appropriate number of densities by fading out the redun-

dant densities from a density mixture. The numerical

experiments have shown its outstanding performance in

both of synthetic and real-life data. Moreover, the G-RPCCL

developed from the RPEM has further generalized our

recently proposed RPCCL algorithm so that it is applicable

to elliptical clusters as well with any input proportion.

Compared to the existing RPCL and its variants, the G-

RPCCL need not select the delearning rate. Additionally,

we have shown that a special setting of the G-RPCCL not

only includes them as its special cases, but also gives a

guidance to choose an appropriate delearning rate for them.

Subsequently, we have proposed a stochastic version of

RPCL and its Type A variant, respectively, in which the

selection problem of delearning rate has been novelly

circumvented. The experiments have shown the promising

results of this stochastic implementation.
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�

1 EXPERIMENTAL SIMULATION

1.1 Experiment 1

TO demonstrate the performance of the RPEM, we
generated 1,000 synthetic data points from a mixture

of three bivariate Gaussian densities:

pðxj��Þ ¼ 0:3G xj 1

1

� �
;

0:10; 0:05

0:05; 0:20

� �� �

þ 0:4G xj 1:0

5:0

� �
;

0:10; 0:0

0:0; 0:10

� �� �

þ 0:3G xj 5:0

5:0

� �
;

0:1; �0:05

�0:05; 0:1

� �� �
:

ð1Þ

Supposing k is equal to the true mixture number k� ¼ 3, we
randomly located three seed points m1, m2, and m3 in the
input space as shown in Fig. 2a, where the data constitute
three well-separated clusters. Moreover, we initialized each
of the�js to be an identity matrix, and all �js to be zero, i.e.,
we initialized �1 ¼ �2 ¼ �3 ¼ 1

3 . Also, we set the learning
rates � ¼ 0:001 and �� ¼ 0:0001.

We performed the learning of RPEM and showed the Q
value of (26) over the epochs in Fig. 2b. It can be seen that
the Q value has converged after 40 epochs. Fig. 2a shows
the positions of three converged seed points, which are all
stably located at the corresponding cluster centers. A
snapshot of the converged parameter values is:

�1 ¼ 0:3147; m1 ¼ 1:0089
0:9739

� �
; �1 ¼ 0:0986 0:0468

0:0468 0:2001

� �
;

�2 ¼ 0:3178; m2 ¼ 5:0159
5:0060

� �
; �2¼ 0:1127 �0:0581

�0:0581 0:1128

� �
;

�3 ¼ 0:3675; m3 ¼ 0:9759
4:9761

� �
; �3 ¼ 0:0938 0:0019

0:0019 0:0928

� �
:

ð2Þ
It can be seen that the RPEM has given out the well estimate
of the true parameters with a permutation of subscript
indices between 2 and 3. For comparison, we also
performed the EM algorithm under the same experimental
environment. We found the EM also worked well in this
case with the similar convergent rate as the RPEM. Fig. 3b
shows that the EM has successfully located the three seed
points in the corresponding clusters.

In the above experiment, we have assumed that the
number k of seed points is equal to the true number of input
densities. In the following, we further investigated the
performance robustness of RPEM when such an assump-
tion is violated. With the same experimental data set, we
randomly assigned seven seed points rather than three ones

in the input space as shown in Fig. 4a and ran the RPEM.
After 200 epochs, Fig. 4b shows the positions of seven seed
points, among which the three ones

m1 ¼ 1:0089
0:9739

� �
; m3 ¼ 0:9787

4:9784

� �
; m4 ¼ 5:0171

5:0065

� �
;

ð3Þ
have successfully stabilized at the corresponding cluster
centers; meanwhile, the extra four seed points have been
gradually pushed far away from the input data region and
finally stayed at the outside. We further investigated the
corresponding values of �js. As shown in Fig. 5a, all of
those corresponding to the extra densities have been
approached to zero. According to the mixture model of
(18), we know that the effects of a density component, say
the jth one, in the model is determined by the value of �j

and the Mahalanobis distance between an input xt and the
density mean mj. The RPEM learning has led these two
values of an extra density to zero. In other words, the effects
of those extra densities have been fade out in the mixture
model through the learning. Hence, the RPEM can auto-
matically make the model selection. To further demonstrate
this property, Fig. 6b shows the distribution of the three
principal Gaussian density components learned via RPEM,
i.e., the three density components whose corresponding �js
are the first three largest ones. Compared to the true input
distribution in Fig. 6a, it can be seen that these three
principal density components have well-estimated the true
one. In contrast, under the same experimental setting, the
EM let all seed points stay at some places biased from the
cluster centers as shown in Fig. 4c. That is, EM cannot
approach the Mahalanobis distance of an extra density to
zero. Furthermore, Fig. 5b shows the learning curve of �js.
A snapshot of seven �js’ values is:

�1 ¼ 0:3121; �2 ¼ 0:1281; �3 ¼ 0:1362; �4 ¼ 0:1139;
�5 ¼ 0:1021; �6 ¼ 0:1036; �7 ¼ 0:1040:

ð4Þ
It can be seen that none of �js tends to zero. Hence, EM is
unable to select a model automatically. Fig. 6c shows the
distribution of the three principal Gaussian density compo-
nents learned via the EM, in which one Gaussian density is
disappeared because the EM has made two principal
density components mix together to approximate one true
Gaussian density. Evidently, the EM cannot work at all in
this case.
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1.2 Experiment 2

Upon the data clusters well-separated in Experiment 1, we
further investigated the performance of RPEM on the data
clusters that were considerably overlapped. Similar to
Experiment 1, we generated 1,000 synthetic data points
from a mixture of three bivariate Gaussian densities:

pðxj��Þ ¼ 0:3G xj 1

1

� �
;

0:20; 0:05

0:05; 0:30

� �� �

þ 0:4G xj 1:0

2:5

� �
;

0:20; 0:00

0:00; 0:20

� �� �

þ 0:3G xj 2:5

2:5

� �
;

0:20; �0:10

�0:10; 0:20

� �� �
:

ð5Þ

We set k ¼ 3, and randomly assigned three seed points in
the input space, as shown in Fig. 7a. Under the same
experimental environment setting as Experiment 1, we
performed the RPEM and EM. Figs. 7b and 7c show the
stable positions of seed points learned by the RPEM and
EM, respectively. A snapshot of �js learned by them is:

RPEM : �1 ¼ 0:3195; �2 ¼ 0:3626; �3 ¼ 0:3179; ð6Þ

EM : �1 ¼ 0:3199; �2 ¼ 0:3315; �3 ¼ 0:3486: ð7Þ
It can be seen that the �js’ estimate of RPEM is slightly

better than the EM, although both of them work in this trial.
Moreover, Fig. 8 shows the learning curve of seed points, in
which we found that the RPEM learning is much faster than
the EM. This scenario is consistent with the qualitative
analysis in [25]. That is, the rival penalization mechanism
can speed up the convergence of the seed points. We are
going to theoretically analyze the convergence property of
RPEM elsewhere because of the space limitation in this
paper.

Furthermore, we investigated the RPEM performance
when the number k of seed points was much larger than the
true one. We arbitrarily set k ¼ 25. As shown in Fig. 9a, we
randomly located the 25 seed points in the input space and
then learned about them as well as the other parameters by
the RPEM. After 500 epochs, Fig. 9b shows the stable
positions of 25 seed points, where three out of 25 seed
points are located at the corresponding cluster centers,
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Fig. 2. In this figure, (a) shows the distribution of the inputs in Experiment 1, in which three seed points marked by “�” are randomly located in the

input space and (b) gives out the Q value of (26) over the epochs when the model parameters are learned via the RPEM.

Fig. 3. The positions of three converged seed points learned by: (a) the RPEM and (b) the EM, respectively.

Fig. 4. The positions of three seed points marked by “�” in the input space: (a) the initial random positions, (b) the converged positions obtained via

the RPEM, and (c) the converged positions obtained via the EM.



while the others stay at the boundaries or the outside of the
clusters. A snapshot of converged �js is:

�2 ¼ 0:3203; �4 ¼ 0:2993; �23 ¼ 0:3012; ð8Þ
while the others tend to zero, as shown in Fig. 10a. In other
words, the input data set has been successfully recognized
from the mixture of the three densities: 2, 4, and 23.

For comparison, we also showed the EM performance
under the same experimental environment. Fig. 9c depicts
the final positions of 25 seed points in the input space,
where they are all biased from the cluster centers.
Furthermore, Fig. 10b illustrates the learning curves of
�js, in which no one is approached to zero. Instead, the EM
led 25 densities to compete each other without making extra
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Fig. 6. In this figure, (a) shows the true input distribution, whereas (b) and (c) show the distribution of the first three principal Gaussian density

Fig. 7. The positions of three seed points marked by “�” in the input space in Experiment 2: (a) the initial random positions, (b) the converged

positions obtained via the RPEM, and (c) the converged positions obtained via the EM.

Fig. 5. The learning curves of �js obtained via: (a) the RPEM and (b) the EM, respectively.

Fig. 8. In this figure, (a) shows the learning curves of three seed points learned by RPEM in Experiment 2, whereas (b) shows the curves learned by

EM.



densities die. It turns out that the EM cannot work at all in

this case. That is, similar to Experiment 1, this experiment

has shown that the RPEM outperforms the EM upon the

robust performance in terms of the mixture number k again.

1.3 Experiment 3

The previous experiment showed the performance of RPEM
under the three clusters. In this experiment, we will

investigate its performance when the true number of
clusters is large. For the sake of visibility, we generated
the data points from a mixture of 10 bivariate Gaussian
density distributions with the proportions being:

��
1 ¼ 0:10; ��

2 ¼ 0:10; ��
3 ¼ 0:15; ��

4 ¼ 0:05;
��
5 ¼ 0:10 ��

6 ¼ 0:15; ��
7 ¼ 0:05; ��

8 ¼ 0:10;
��
9 ¼ 0:10; ��

10 ¼ 0:10:
ð9Þ

Also, we set k at 30. The other experimental setting
was the same as Experiments 1 and 2. Fig. 11a shows the
initial positions of 30 seed points in the input space. After

300 epochs, Fig. 11b shows the stable positions of those
seed points. It can be seen that 10 out of 30 seed points
have been successfully converged to the corresponding
cluster centers; meanwhile, the other extra 20 seed points

have been driven away from the input set and stayed at
the boundary or the outside of the clusters. Actually,
these corresponding extra densities have been faded out
from the mixture. Fig. 11c shows the learning curves of

�js, in which 20 curves have converged toward zero and
the other 10 curves converged to the correct values. That
is, the RPEM has successfully identified that the data
points are from the mixture of 10 Gaussian densities. A

snapshot of the 10 largest convergent �js’ values is:

�6 ¼ 0:09; �10 ¼ 0:10; �12 ¼ 0:04; �13 ¼ 0:10;
�21 ¼ 0:09 �23 ¼ 0:10; �25 ¼ 0:04; �27 ¼ 0:14;
�29 ¼ 0:15; �30 ¼ 0:09;

ð10Þ

whose values are very close to the true ones in (9). It can be
seen that the RPEM has the robust performance even if both
of k� and k become large.

1.4 Experiment 4

In this experiment, we further investigated the robustness
of RPEM in 10 clusters that were seriously overlapped.
Fig. 12a shows the input distribution in the input space,
where we randomly allocated 15 seed points. After
100 epochs, we found that seven seed points had stabilized
at the cluster centers or the middle of two clusters as shown
in Fig. 12b, while the other seed points had been driven far
from the input sets. That is, the RPEM has led the model
parameters into a local maximum solution and identified
seven clusters only, but not the true 10 ones. Nevertheless, it
can be seen from Fig. 12b that some of clusters have been
seriously overlapped, which may be more reasonable to
regard as a single cluster, rather than count on an
individual basis. In this viewpoint, the results given by
the RPEM are acceptable and correct even if the clusters are
seriously overlapped.

1.5 Experiment 5

In the previous experiments, we consider the bivariate data
points only for easy visual demonstration. This experiment
will show the RPEM performance on high-dimensional
data. We generated 3,000 data points from a mixture of four
30-dimension Gaussians with the coefficients:

��
1 ¼ 0:2; ��

2 ¼ 0:3; ��
3 ¼ 0:2; ��

4 ¼ 0:3: ð11Þ
The projection map of the inputs on two dimensions is

shown in Fig. 13a. We randomly assigned seven seed points

in the input space and learned them by RPEM. After

300 epochs, a snapshot of �js’ values is:

�1 ¼ 0:2029; �2 ¼ 0:0067; �3 ¼ 0:2918; �4 ¼ 0:0065;
�5 ¼ 0:1942; �6 ¼ 0:2907; �7 ¼ 0:0071;

ð12Þ
in which �1, �3, �5, and �6 are very close to the true ones,

meanwhile �2, �4 and �7 tend to zero as shown in Fig. 13c.

Fig. 13b shows the two-dimension projection of the

converged seed points in the input space. We found that

m1, m3, and m5 had successfully stabilized at the

corresponding cluster centers, while m2 and m4 had been
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Fig. 9. The positions of 25 seed points marked by “�” in the input data space in Experiment 2: (a) the initial random positions, (b) the stable positions

obtained via the RPEM, and (c) the stable positions obtained via the EM.

Fig. 10. In this figure, (a) and (b) show the learning curves of �js via

RPEM and EM, respectively.



pushed away from the inputs and died. In Fig. 13b, it seems

that the positions of two seed points, m6 and m7, are very

close each other in the projection map. We further

calculated their Euclidean distance. The value is 0:9654,

which is over six times of the variance. That is, m7 is

actually far from m6 in the original 30-dimension space.

Hence, the RPEM has successfully identified the true data

distribution in this trial.

1.6 Experiment 6

This experiment demonstrated the performance of RPEM in
color image segmentation in comparison with the common
k-means algorithm. We used the benchmark Beach image
with 64� 64 pixels as shown in Fig. 14a, in which the sky is
neighbored with a small hillside and sea is connected with
the sand beach. We performed the image segmentation in
HSV color space. Before doing that, we applied Gaussian
filter to smooth the image. We initially assigned 10 seed
points as shown in Fig. 14b and learned about them by the
RPEM and k-means algorithms, respectively. Fig. 15b shows
the converged positions of these 10 seed points learned
about them by the RPEM in HSV color space. It can be seen
that the RPEM makes the four seed points remained and
puts all other seed points far way from the data set. As a
result, the image is segmented as shown in Fig. 15a, in
which the sky is well-separated with the hillside, and so is it
between the sea and the sand beach. In this trial, we noticed
that the sky color was close to the sea color. This implies
that the region of sky seriously overlaps the region of sea in
HSV color space. Subsequently, it leads the RPEM to be
trapped into a local optimal solution similar to the case in
Experiment 4. Nevertheless, the results given by the RPEM
in this experiment are still acceptable. In contrast, Figs. 16a
and 16b show the results from k-means algorithm, in which
we found that the k-means could not make a correct image
segmentation at all.

In the previous experiments, we have numerically
demonstrated the performance of RPEM in a variety of
experimental environment by using both of synthetic and
real-life data. It can be seen that the RPEM has a robust
performance in all cases we have tried so far. Nevertheless,
it should be noted that the RPEM requests the number k of
seed points to be equal to or greater than the true k�.
Otherwise, the RPEM may lead some seed points to stable
at the center of two or more clusters. To circumvent this
limitation, we can develop another algorithm from the
MWL framework by introducing a mechanism to increase
or decrease the number of seed points dynamically without

such a limitation. Since its discussion has been beyond the

scope of this paper, we prefer to leave its details elsewhere.

2 EXPERIMENTAL DEMONSTRATIONS FOR S-RPCL

To save space, we conducted two experiments to compare

the S-RPCL and the RPCL. In each experiment, we used

six seed points, whose initial positions were randomly

assigned in the input space. Moreover, we randomly set the

learning rate � ¼ 0:001, while letting the delearning rate

�r ¼ 0:0001 by default when using the RPCL.

2.1 Experiment 1

We used the 1,000 data points from a mixture of

three Gaussian distributions:

pðxj��Þ ¼ 0:3G xj 1

1

� �
;

0:1; 0

0; 0:1

� �� �

þ 0:4G xj 1

5

� �
;

0:1; 0

0; 0:1

� �� �

þ 0:3G xj 5

5

� �
;

0:1; 0

0; 0:1

� �� �
;

ð13Þ

which forms three well-separated clusters with the six seed

points m1;m2; . . . ;m6 randomly located at:

m1 ¼ 2:2580
1:9849

� �
; m2 ¼ 1:4659

5:1359

� �
; m3 ¼ 0:6893

5:0331

� �

m4 ¼ 5:2045
5:1298

� �
; m5 ¼ 1:9193

5:4489

� �
; m6 ¼ 5:5869

5:1937

� �
:

ð14Þ
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Fig. 11. The results obtained via the RPEM in Experiment 3: (a) the initial positions of 30 seed points marked by “�” in the input data space, (b) the

stable positions of the seed points learned by the RPEM, and (c) the learning curves of �js.

Fig. 12. The positions of 15 seed points marked by “�” in the input data

space in Experiment 4: (a) the initial random positions and (b) the stable

positions obtained via the RPEM.



Fig. 17a shows the positions of all seed points in the
input space after 800 epochs, and Fig. 17b shows their
learning trajectory. It can be seen that the S-RPCL has put

three seed points, m1, m2, and m4, into the three cluster
centers, meanwhile driving the other three extra seed
points, m3, m5, and m6, far away from the input data set.
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Fig. 13. The results obtained via the RPEM in Experiment 5: (a) the projection of 30-dimension data points on the plane, (b) the final positions of 7

seed points learned via the RPEM, and (c) the learning curves of �js.

Fig. 14. (a) The benchmark “Beach” image and (b) the initial positions of 10 seed points in HSV color space.

Fig. 15. In this figure, (b) shows the converged positions of seed points learned by the RPEM algorithm, while (a) shows the segmented image

accordingly.

Fig. 16. In this figure, (b) shows the converged positions of seed points learned by the k-means algorithm, while (a) shows the segmented image

accordingly.



Based on the rival penalization equation in Step 2 of Table 3,
we know that the rival penalization strength will non-
linearly decrease as an extra seed point leaves the input
data set, and they will finally become stable outside the
input data set. For comparison, we also implemented the
RPCL under the same experimental environment. Fig. 17c
shows that the RPCL has successfully driven three extra
points, m3, m5, and m6, to

m3 ¼ �3:0326
13:2891

� �
m5 ¼ 14:4600

70:6014

� �
; m6 ¼ 10:4714

5:2240

� �
;

ð15Þ
which are far away from the input data set, while the other
three seed points:

m1 ¼ 1:0167
0:9321

� �
m2 ¼ 0:9752

5:3068

� �
; m4 ¼ 5:4022

5:0054

� �
;

ð16Þ

locate at the correct positions. Hence, the RPCL can work as
well in this case. However, we have also noticed that, as
shown in Fig. 17d, the RPCL always penalizes the extra seed
points even if they are much farther away from the input
data set. Consequently, the seed points as a whole will not
tend to convergence, but those learned by the S-RPCL will.

2.2 Experiment 2

We further investigated the performance of S-RPCL by
generating 1,000 data points from a mixture of three
Gaussian distributions:

pðxj��Þ ¼ 0:3G xj 1

1

� �
;

0:15; 0

0; 0:15

� �� �

þ 0:4G xj 1

2:5

� �
;

0:15; 0

0; 0:15

� �� �

þ 0:3G xj 2:5

2:5

� �
;

0:15; 0

0; 0:15

� �� �
;

ð17Þ

which forms three moderate overlapping clusters as
shown in Fig. 18a. After 800 epochs, we found that the
S-RPCL had given out the correct results as shown in
Fig. 18b, but the RPCL could not work as shown in Fig.
18c, even if we increased the epoch number up to 1,000.
Also, we further investigated the performance of RPCL
by adjusting the delearning rate �r along two directions:
from 0:0001 to 0:00001 and from 0:0001 to 0:0009,
respectively, with a constant step: 0:00001. Unfortunately,
we could not find out an appropriate �r in all cases we
had tried so far to make RPCL successfully work.

CHEUNG: APPENDIX FOR MAXIMUM WEIGHTED LIKELIHOOD VIA RIVAL PENALIZED EM FOR DENSITY MIXTURE CLUSTERING WITH... 7

Fig. 17. In this figure, (a) shows the final positions of six seed points
(marked by “�”) obtained via the S-RPCL in Experiment 1 of Section 2.1
and (b) shows the learning trajectory of six seed points, in which “+”
marks the initial positions of seed points, and “*” marks the final
positions. It can be seen that the extra seed points have been gradually
driving far away from the regions of the input data set. (c) shows a
snapshot of the seed points learned by the RPCL in the input space and
(d) is the learning trajectory of six seed points.

Fig. 18. In this figure, (a) shows the initial positions of six seed points marked by “�” in Experiment 2 of Section 2.2. (b) and (c) show the final

positions of the converged seed points learned by the S-RPCL and RPCL, respectively.


