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Abstract— Current unsupervised feature selection methods
cannot well select the effective features from the corrupted data.
To this end, we propose a robust unsupervised feature selection
method under the robust principal component analysis (PCA)
reconstruction criterion, which is named the adaptive weighted
sparse PCA (AW-SPCA). In the proposed method, both the regu-
larization term and the reconstruction error term are constrained
by the �2,1-norm: the �2,1-norm regularization term plays a role
in the feature selection, while the �2,1-norm reconstruction error
term plays a role in the robust reconstruction. The proposed
method is in a convex formulation, and the selected features
by it can be used for robust reconstruction and clustering.
Experimental results demonstrate that the proposed method
can obtain better reconstruction and clustering performance,
especially for the corrupted data.

Index Terms—�2,1-norm, clustering, feature selection, recon-
struction.

I. INTRODUCTION

IN IMAGE processing [1]–[5], machine learning [6]–[10],
and object tracking [11]–[13], data are often formed as

the high-dimensional feature vectors. Among these high-
dimensional features, they are inevitably correlated, redundant,
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or noisy, which may depress the performance [14]–[16] in
reconstruction and clustering. This shows that not all features
are valuable for the learning task. Consequently, it is neces-
sary to reduce those features hindering learning tasks by the
technique of feature selection.

According to whether labels are used or not, feature selec-
tion methods are grouped into two categories: supervised
feature selection methods that use labels in training and
unsupervised feature selection methods that do not use labels
in training. The supervised feature selection methods focus on
selecting those essential discriminative features guided by the
labels of the training data [17]–[19], while the unsupervised
feature selection methods focus on selecting those representa-
tive features without the guidance of labels [20]–[22]. Since
the labeled data are often expensive to obtain in practical
applications, the unsupervised feature selection methods are
more important.

Earlier, the unsupervised feature selection methods aim
to independently calculate the score of each feature and
select the top ranking features according to the calculated
scores [23]. The way of score computation for a single feature
neglects the feature correlations [24], [25], which may hin-
der the acquisition of the optimal feature subset. Therefore,
many spectral feature selection methods have been proposed
to exploit feature correlations [14], [21], [22], [24]–[28].
In detail, the Laplacian score method [24] is proposed to
evaluate the importance of features by considering their
local correlations. Furthermore, multi-cluster feature selec-
tion (MCFS) [25] is proposed to select those features, such
that the multi-cluster structure of data can be best pre-
served. After the exploitation of feature correlations, some
unsupervised feature selection methods with discrimina-
tive ability [14], [22], [26]–[28] are proposed by introducing
pseudo-labels. For example, unsupervised discriminative fea-
ture selection (UDFS) [26] designs a discriminative criterion
that preserves local discrimination information of the original
high-dimensional data in the low-dimensional subspace to
select the discriminative features. Similar to the formula-
tion of UDFS, nonnegative discriminative feature selection
(NDFS) [27] uses nonnegative spectral analysis to learn the
more ideal clustering pseudo-labels, thereby selecting the
discriminative features. It can be generalized that the reg-
ularization terms of the spectral feature selection methods
are often constrained by the �1-norm or �2,1-norm. In fact,
�2,1-norm has often been used in the reconstruction term
for enhancing the robustness to outliers [29]–[32], in the
regularization term for selecting the effective features, and in
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both the reconstruction term and the regularization term for
multi-class classification problem [28].

Generally, the above-mentioned spectral feature selection
methods can effectively select the most useful features by
discovering the manifold structure of data. However, the learn-
ing of manifold structure depends on a graph Laplacian
based on original data construction. When the original data
contain a large amount of noise, noisy features may hin-
der the correct construction of graph Laplacian, and then,
the spectral feature selection methods may become unsta-
ble or invalid [22], [33]. To this end, robust spectral feature
selection methods [14], [22], [33] are proposed to improve the
robustness to outliers in feature selection. More specifically,
robust unsupervised feature selection (RUFS) method [14]
and robust spectral learning for unsupervised feature selec-
tion (RSFS) [22] are proposed to consider the data noise in
the learning of pseudo-cluster labels. The structured optimal
graph feature selection method (SOGFS) [33] is proposed to
adaptively learn a robust graph Laplacian. However, these
robust spectral feature selection methods are robust to outliers
only when the data are corrupted slightly. This is because
they do not have the reconstruction term and can only select
the effective features from the original data. In fact, when
the original data are heavily corrupted, these spectral feature
selection methods will select many noisy features inevitably.
In addition, all spectral feature selection methods are basically
in the same mode, that is, they combine graph embedding
and sparse spectral regression to evaluate the effectiveness of
features. Hence, these models are usually complex and include
more than one parameter.

In order to construct a simple yet effective feature selection
method, we propose to select the useful features from a
perspective of robust principal component analysis (PCA)
reconstruction. More specifically, we first establish the rela-
tionship between optimal mean robust PCA (OMRPCA) [30]
and feature selection by imitating the self-contained regression
type of PCA [34] and obtain the self-contained regression type
of OMRPCA. By relaxing for the self-contained regression
type of OMRPCA, we obtain its non-convex formulation.
In this way, robust PCA methods (e.g., OMRPCA) and the
technique of feature selection can be successfully connected.
Furthermore, we make a change of variable for the non-convex
formulation so that the formulation after variable substitution
is convex. For simplicity, the convex formulation is named
the adaptive weighted sparse PCA (AW-SPCA). The main
contributions of this paper include the followings.

1) We propose an RUFS method based on a robust PCA
reconstruction criterion. The proposed method is in a
convex formulation and can obtain the global optimal
solution.

2) We propose that when the data are corrupted heavily,
the effective features should be chosen from the recon-
structed data.

The rest of this paper is organized as follows. The prelimi-
naries are introduced in Section II. The proposed method and
its theoretical analyses are introduced in Section III and IV,
respectively. The experiments are performed in Section V to

demonstrate the effectiveness of the proposed method. Finally,
a conclusion is given in Section VI.

II. PRELIMINARIES

In this section, the concept of principal component is first
expressed, and then, the essential relationship between PCA,
the regression type of PCA, and the self-contained regression
type of PCA is explained.

A. Principal Component Analysis

For a matrix A ∈ R
l×k , we denote the (i, j)th element

of A by ai j and the j th column of A by a j . The �2,1-norm
and Frobenius-norm of A in this paper are defined as �A�2,1 =�k

j=1 �a j �2 and �A�2
F = �l

i=1
�k

j=1a2
i j . Given the data

matrix X = [x1, . . . , xn] ∈ R
m×n , where each data point xi ∈

R
m represents a vectorized image and n is the number of data

points. Assume that matrix X has been centralized, PCA aims
to seek a transformation matrix U = [u1, . . . , ud ] ∈ R

m×d

with d � m, such that its reconstruction error is minimized
as follows:

min
U

�X − UUT X�2
F , s.t. UT U = I . (1)

After the optimal transformation matrix U∗ is learned,
the transformed data are denoted by Z = XT U∗ ∈ R

n×d ,
and each column of Z (i.e., z j ∈ R

n , j ∈ {1, 2, . . . , d}) is a
principal component. From z j = XT u∗

j , it can be seen that
each principal component is a linear combination of all the
m original features, whose combination coefficient u∗

j ∈ R
m

corresponds to the j th column of U∗.

B. Self-Contained Regression Type of Principal
Component Analysis

Suppose given the principal components of PCA, i.e.,
Z = [z1, . . . , zd ]. Here, z j ∈ R

n , j ∈ {1, 2, . . . , d}. The
regression type [34] of each principal component z j can be
expressed as

min
c j

�z j − XT c j�2
2 (2)

where the column vector c j ∈ R
m is the vector of regression

coefficients of the principal component z j .
The regression type of all d principal components are

calculated as follows:
min

C

�d
j=1 �z j − XT c j�2

2. (3)

Write C = [c1, . . . , cd ] ∈ R
m×d . Problem (3) is, therefore,

equivalent to the following formulation:
min

C
�Z − XT C�2

F . (4)

In SPCA [34], each column of C is referred as a loading
corresponding to a principal component. Let the singular
value decomposition (SVD) of X be X = U∗� BT . Then,
B�T are the principal components [34]. Since U∗ is column-
orthogonal, we have XT U∗ = B�T . Therefore, Z = B�T =
XT U∗. Substituting Z = XT U∗ into problem (4), we have

min
C

�XT U∗ − XT C�2
F . (5)
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Since U∗ is fixed and column-orthogonal, there must exist a
column-orthogonal matrix U∗⊥, such that [U∗, U∗⊥] is an m×m
orthogonal matrix. At this moment, U∗T U∗⊥ = O, and so we
have

�XT U∗ − XT C�2
F = �X − U∗CT X�2

F . (6)

Therefore, the following self-contained regression type is
produced when U∗ is not fixed:

min
C,U

�X − UCT X�2
F , s.t. UT U = I (7)

where C is the regression coefficient matrix, and the subspace
spanned by the columns of C∗ is the same as that spanned
subspace by the columns of U∗ (see [34, Th. 3]). That is,
XT C∗ approximates to principal components XT U∗. In prob-
lem (7), U is often called the auxiliary transformation matrix,
and the regression coefficient matrix C is often called the
transformation matrix. Generally, C in problem (7) has the
better explanatory significance than U in problem (1) because
any sparse norm can be added to C .

C. Optimal Mean Robust Principal Component Analysis

In the above-mentioned PCA, we assume that the data
matrix X has been centralized, that is, the data mean is zero.
In fact, the mean of data is usually not zero. By denoting
the mean vector by a variable b, OMRPCA is proposed to
optimize the following �2,1 minimization problem:

min
U,b

�(X − b1T ) − UUT (X − b1T )�2,1

s.t. UT U = I (8)

where U ∈ R
m×d is a transformation matrix, b ∈ R

m is a mean
vector, and 1 ∈ R

n is a column vector with all its elements
being one.

Using some mathematical techniques [18], problem (8) can
be converted to the following formulation:

min
U,b

�(X − b1T )
√

D − UUT (X − b1T )
√

D�2
F

s.t. UT U = I (9)

where D ∈ R
n×n is a diagonal matrix, whose j th diagonal ele-

ment is (1/2�[(X − b1T ) − UUT (X − b1T )] j�2). Note that
[(X − b1T ) − UUT (X − b1T )] j means the j th column of
(X − b1T ) − UUT (X − b1T ). In essence, D ∈ R

n×n induced
by �(X − b1T ) − UUT (X − b1T )�2,1 can be viewed as the
weight matrix of the data samples, and thus, we say that
OMRPCA is an adaptive weighted PCA with an automatic
scheme of optimal mean removal.

Note that the optimal transformation matrix U∗ and optimal
mean b∗ are learned on the original data points that are not
centralized. For any one original data point x, the recon-
structed data by OMRPCA are U∗U∗T (x − b) + b.

III. ADAPTIVE WEIGHTED SPARSE PRINCIPAL

COMPONENT ANALYSIS

In this section, the non-convex and convex formulas of the
proposed method are first deduced, and then, the optimization
algorithm and discussion are given.

A. Non-Convex Formulation

Inspired by the self-contained regression type of PCA,
we argue that min

Q,U,b
�(X − b1T )

√
D − U Q(X − b1T )

√
D�2

F

is the self-contained regression type of OMRPCA (i.e.,
min
U,b

�(X − b1T )
√

D − UUT (X − b1T )
√

D�2
F ) when D is

fixed and U is a column-orthogonal matrix. Once a regression
type is produced, an arbitrary sparse regularization term can
be added. Therefore, we can add the sparse regularization term
� Q�2,1 to penalize each column of Q, i.e., all d regression
coefficients as a whole, and obtain m penalty values. These
obtained penalty values can govern the use or removal of
features. Based on the self-contained regression type of OMR-
PCA, we propose the relaxed sparse self-contained regression
type of OMRPCA as follows:

min
Q,U,b

�(X − b1T ) − U Q(X − b1T )�2,1 + λ� Q�2,1

s.t. UT U = I (10)

where each column of matrix X ∈ R
m×n represents a

vectorized image, Q ∈ R
d×m is the transformation matrix,

U ∈ R
m×d is the auxiliary transformation matrix, b ∈ R

m and
1 ∈ R

n have been defined in problem (8), and the parameter
λ ≥ 0 plays an important role in balancing the loss term and
the regularization term.

From problem (10), it can be seen that Q ∈ R
d×m is

first used to transform the centralized data (X − b1T ) to the
low-dimensional data Q(X − b1T ), and then, U ∈ R

m×d is
used to transform the low-dimensional data to the original data.

In fact, when Q = UT , problem (10) becomes the
sparse self-contained regression type of OMRPCA. However,
in problem (10), Q does not necessarily equal UT , and
therefore, we say that problem (10) is a relaxation of the sparse
self-contained regression type of OMRPCA.

B. Convex Formulation

The problem (10) is non-convex and cannot get the global
optimal solution. Since U is column-orthogonal, by the defi-
nition of �2,1-norm, we have � Q�2,1 = �U Q�2,1. Replacing
U Q in problem (10) with A yields

min
b,A

�(X − b1T ) − A(X − b1T )�2,1 + λ�A�2,1. (11)

However, it is still not convex. Furthermore, we have the
following equivalent formulation:

min
b,A

�X − AX − (I − A)b1T �2,1 + λ�A�2,1. (12)

For any one original data point x, its reconstruction is Ax +
(I − A)b. Replacing (I − A)b with v, the following convex
surrogate is produced:

min
v,A

�X − AX − v1T �2,1 + λ�A�2,1. (13)

Problem (13) is convex and can get its global optimal solution.
For any original vectorized image x, the vectorized image is
reconstructed as Ax + v.
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According to the properties of �2,1-norm [18], problem (13)
can be rewritten as

min
v,A

�(X − AX − v1T )
√

W1�2
F + λ�A

√
W2�2

F (14)

where W1 ∈ R
n×n and W2 ∈ R

m×m are the two diag-
onal matrices, whose j th diagonal elements are expressed
as (1/2�[X − AX − v1T ] j�2) and (1/2�a j �2), respectively.
Note that [X − AX − v1T ] j , j ∈ {1, 2, . . . , n}, means
the j th column of matrix X − AX − v1T , and a j ,
j ∈ {1, 2, . . . , m}, means the j th column of matrix A.
When �[X − AX − v1T ] j�2 = 0, we let W j j

1 =
(1/2�[X − AX − v1T ] j�2 + ζ ), where ζ is a very small
constant. Similarly, when �a j�2 = 0, we let W j j

2 =
(1/2�a j �2 + ζ ). In this way, the smaller W j j

1 is, the higher
possibility to be outliers the j th sample has. Here,

√
W1

gives the weights of the data samples. The clean samples are
weighted more heavily, while the samples that are outliers
are weighted less heavily. This leads to the robustness of our
method to outliers. Moreover, the regularization term A

√
W2

can guide the selection of features. When a suitable parameter
λ is adjusted, our method can select the representative features.

It is worth noting that when λ = 0, the convex objective
function in problem (13) has the trivial solution A = I and
v = 0, which can be avoided by setting λ 	= 0. Therefore,
in problem (13), the parameter λ is set as λ > 0.

C. Optimal Solution

The problem (14) is solved by using the iterative
re-weighting method, which includes the following two steps.

Step 1: Given A, the optimization problem (14) becomes
the computation of v

min
v

��(X − AX − v1T )
√

W1
��2

F . (15)

Taking the derivative of (15) with respect to v to be zero,
we get v = ((XW 1 − AX W1)1/1T W11).

Step 2: Given v, the optimization problem (14) becomes the
computation of A

min
A

�(X − AX − v1T )
√

W1�2
F + λ�A

√
W2�2

F . (16)

Taking the derivative of (16) with respect to A to be zero,
we get A = (XW1 − v1T W1)XT (X W1 XT + λW 2)

−1.
Iterating the above-mentioned two steps will obtain the

global optimal solution. See Algorithm 1 for more details.

D. Discussion

Here, we discuss the relationship between problems (10)
and (13). First, we propose problem (10), but its objective
function is not convex. In order to construct a convex objective
function, we produce problem (13) by replacing U Q of
problem (10) with A and (I − A)b of problem (12) with v.

Before giving the relationship between problems (10)
and (13), we first make the following definitions. Suppose
( Q0, U0, b0) and (A∗, v∗) are the optimal solutions
to problems (10) and (13), respectively, we have

Algorithm 1 Optimization of Problem
Input: Data matrix X and parameter λ;

1: Initialize W1 = I , W2 = I and v = 0;
2: while not converge do

2.1: Compute A = (XW 1 − v1T W 1)XT

(X W1 XT + λW2)
−1;

2.2: Compute v = (XW1−AXW1)1
1T W11

;

2.3: Compute W1 =

⎡⎢⎢⎣
1

2
��[X−AX−v1T ]1

��
2

. . .

⎤⎥⎥⎦;

2.4: Compute W2 =

⎡⎢⎢⎣
1

2�a1�2
1

2�a2�2
. . .

⎤⎥⎥⎦;

end while
Output: Optimal transformation matrix A∗ and mean vector
v∗.

f 0 = �(X − b01T ) − U0 Q0(X − b01T )�2,1 + λ� Q0�2,1
and f ∗ = �X − A∗X − v∗1T �2,1 + λ�A∗�2,1, respectively.

If A = U0 Q0 and v = (I − U0 Q0)b0, then (A, v) is a
feasible solution to problem (13). Because of the convexity of
the objective function in problem (13), the objective function
value f 0 obtained by a feasible solution (A, v) is obviously
no less than the objective function value f ∗ obtained by
the optimal solution (A∗, v∗), i.e., f ∗ ≤ f 0. Therefore,
problem (13) can always obtain the better optimal solution
than problem (10) in theory.

In fact, we also compared the off-line results of prob-
lems (10) and (13) and found that f ∗ ≤ f 0 was always correct
on the used data sets. As a consequence, the convex formu-
lation [see problem (13)] performs slightly better than the
non-convex formulation [see problem (10)], and in most cases,
the gap is about 1%. Considering the importance of convex
formulation, we only explore problem (13) in the following.

IV. THEORETICAL ANALYSES OF PROBLEM (13)

In this section, the theoretical analyses of Algorithm 1,
including a convergence analysis and a computational com-
plexity analysis, are introduced.

A. Convergence Analysis

Before proving the convergence Algorithm 1, Lemma 1 [35]
is first introduced as follows.

Lemma 1: For any nonzero vectors U, q ∈ R
c

�U�2 − �U�2
2

2�q�2
≤ �q�2 − �q�2

2

2�q�2
. (17)

Based on Lemma 1, we propose the following Theorem 1.
Theorem1: Algorithm 1 will monotonically decrease

the value of the objective function of the optimization
problem (13) in each iteration and converges to the global
optimal solution.

Proof: In each iteration, the updated v and A values are
denoted by 
v and 
A. Since the updated values 
v and 
A are the
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optimal solution of problem (13), according to the definition
of W1 and W2, we have

tr

⎛⎝ n

j=1

�[X − 
AX −
v1T ] j�2
2

2�[X − AX − v1T ] j�2

⎞⎠ + λtr

⎛⎝ m

j=1

�
a j�2
2

2�a j�2

⎞⎠
≤ tr

⎛⎝ n

j=1

�[X − AX − v1T ] j�2
2

2�[X − AX − v1T ] j�2

⎞⎠ + λtr

⎛⎝ m

j=1

�a j �2
2

2�a j �2

⎞⎠ .

(18)

On the one hand, according to Lemma 1, we have

�[X − 
AX −
v1T ] j�2 − �[X − 
AX −
v1T ] j�2
2

2�[X − AX − v1T ] j�2

≤ �[X − AX − v1T ] j�2 − �[X − AX − v1T ] j�2
2

2�[X − AX − v1T ] j�2

.

(19)

Using matrix calculus for (19), we have the following
formulation:

n

j=1

�[X − 
AX −
v1T ] j�2 −
n


j=1

�[X − 
AX −
v1T ] j�2
2

2�[X − AX − v1T ] j�2

≤
n


j=1

�[X − AX − v1T ] j�2 −
n


j=1

�[X − AX − v1T ] j�2
2

2�[X − AX − v1T ] j�2

.

(20)

On the other hand, according to Lemma 1, we have

�
a j�2 − �
a j �2
2

2�a j �2
≤ �a j�2 − �a j�2

2

2�a j�2
. (21)

Using matrix calculus for (21), we have the following
formulation:

λ

⎛⎝ m

j=1

�
�
a j�2− �
a j�2

2

2�a j�2

�⎞⎠≤λ

⎛⎝ m

j=1

�
�a j�2− �a j �2

2

2�a j �2

�⎞⎠ .

(22)

By summing for (18), (20), and (22), we have

�X − 
AX −
v1T �2,1 + λ�
A�2,1

≤ �X − AX − v1T �2,1 + λ�A�2,1. (23)

Since the objective function of problem (13) has an obvious
lower bound 0, Algorithm 1 converges to the global optimal
solution.

B. Computational Complexity Analysis

In each iteration, the computational complexity of Algo-
rithm 1 mainly focuses on two steps: the first one is the
computational complexity of v with O(mn2), and the other
one is the computational complexity of A with O(m3) at most.
Therefore, the computational complexity of one iteration will
be up to O(m3). If Algorithm 1 needs t iterations, the total
computational complexity is O(tm3).

TABLE I

DATA SET DESCRIPTION

V. EXPERIMENTS

The proposed method can select the effective feature for
robust reconstruction and clustering, and thus, the experiments
are implemented in the following two groups.

1) Experiments of Robust Reconstruction: In this group,
the following three data sets are used for reconstruction.

a) Corrupted PIE Data Set: The PIE face data
set [36] contains 68 classes, each class contains
24 face images, and each image is with 32 ×
32 pixels. Based on the PIE data set, the corrupted
PIE data set is made in the following way. First,
ten samples per class from the PIE data set are
randomly selected. Of these 680 images selected
from the PIE face data set, 20% of them are cor-
rupted by pepper and salt noise, and the corruption
proportion is 20% of an image.

b) Yale10 Data Set: This data set [37] contains
10 classes, each class contains 64 images, and each
image is with 42×48 pixels. More than half of the
data images are corrupted by “shadows” and noise,
and so the corruptions in the Yale10 data set are
heavy.

c) Background–Foreground Separation Data Set: This
data set [38] is a collection of 502 images captured
by a static camera over one day, where the size of
each image is 120 × 160 pixels. Therefore, this
data set has a static background with changes in
the illumination. Moreover, 40% of this data set
contain people in various locations, and the people
can be regarded as noise.

2) Experiments of Robust Clustering: In this group, ten
data sets, i.e., ORL, COIL20, COIL100, USPS, UMIST,
Isolet1, LUNG, Binary Alphadigits, Leukemia1, and
Tumors9, are used, and the details are given in Table I.

A. Experiments of Robust Reconstruction

In order to demonstrate that AW-SPCA can perform robust
reconstruction, we take the first 20 images of the corrupted PIE
data set as an example to elaborate the ability of robust recon-
struction of AW-SPCA (see Fig. 1). More specifically, Fig. 1(a)
shows the used 20 images, in which the 2nd, 8th, 18th, and
20th images are corrupted by pepper and salt noise, Fig. 1(b)
shows the corresponding weights of these 20 images, and
Fig. 1(c) shows the reconstruction results of these 20 images.
Fig. 1 demonstrates the robustness of the proposed method
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Fig. 1. Illustration of robust reconstruction of AW-SPCA. (a) First 20 images from the corrupted PIE data set. (b) Diagonal elements of W1 which means
the weights of the 20 samples. (c) Reconstruction results of original images.

Fig. 2. Some images reconstructed by AW-SPCA with λ = 0.5 on the
Yale10 data set.

to outliers, whose robust principal is the adaptive weighting
ability. That is, if one data sample is corrupted, its weight
(reflected by a corresponding diagonal element of

√
W1) is,

adaptively, assigned for a small value; otherwise, its weight
is, adaptively, assigned for a large value. This can soften the
impact of outliers on reconstruction. Moreover, the proposed
method is also performed on the Yale10 data set, and the
experimental results (see Fig. 2) demonstrate the robustness
of the proposed method to the varying illumination, shadows,
and noise.

In addition, the proposed method is performed on
the background–foreground separation data set [38]. The
background–foreground separation data set can be seen as a
data set with noise. That is, the background is fixed, while
the foregrounds are dynamic that can be regarded as noise.
Some experimental results of the proposed method are shown
in Fig. 3, where the top row shows some original images (i.e.,
the background is corrupted by foregrounds), the middle row
shows the recovered background images, and the bottom row
shows the noise images. Fig. 3 shows that the proposed method
can well separate the noise (i.e., people) from the corrupted
background.

B. Experiments of Robust Clustering

In order to demonstrate that the features selected by
AW-SPCA can obtain robust clustering performance, this
paper adopts two common clustering evaluation metrics,

Fig. 3. Recovery results of AW-SPCA on the background–foreground
separation data set.

namely accuracy (ACC) and normalized mutual informa-
tion (NMI). The proposed AW-SPCA method is compared
with a baseline method and four spectral feature selec-
tion methods, i.e., UDFS [26], RUFS [14], RSFS [22], and
SOGFS [33]. Unlike the spectral feature selection methods,
the baseline method uses all the features of a data set to
perform clustering. In this paper, all the methods search
for the best optimal parameters within the search range of
{10−3, 10−2, 10−1, 100, 101, 102, 103}. After the effective fea-
tures are selected by different methods, k-means is adopted
to perform clustering according to these selected features.
To reduce the dependence of k-means on initialization val-
ues, we count the clustering results of 20 times, and the
average clustering result along with the standard deviation is
reported.

1) Clustering Experiments on Ten Data Sets Without Noise:
For the first eight data sets in Table I, the number of selected
features (that is, #features) is initially set to 50 with an
incremental interval of 50. Fig. 4 intuitively shows the vari-
ation of the clustering results (ACC) of different methods
with the variation of #features. As shown in Fig. 4, with
the limited features, the proposed method and RSFS are
superior to baseline, UDFS, RUFS, and SOGFS in most cases.
Furthermore, Tables II and III report the clustering results of
different methods on ten data sets without noise, where the
average rank of each method is in the last row. Note that the
average rank is the average of ranking scores, where ranking
scores are obtained by ranking the ACC of a method on all data
sets. From Tables II and III, it can be seen that the performance
of most feature selection methods is better than that of the
baseline method, and the performance of the proposed method
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Fig. 4. Illustration of the variation of clustering results (ACC) with the number variation of selected features on eight data sets. (a) ORL. (b) Isolate 1.
(c) COIL 100. (d) COIL 20. (e) LUNGML. (f) UMIST. (g) USPS. (h) Binary Alphadigs.

is close to that of the spectral feature selection methods.
Although the proposed method obtains the best clustering
result from the statistical significant perspective, it does not
always show a superior result on the data sets without noise.
To this end, we further implement all the methods on the data
sets with noise.

2) Robust Clustering Experiments on ORL Data Set With
Noise: Here, the robust clustering ability of the proposed
method is verified on the corrupted ORL data set with different
corruption ratios. More specifically, we randomly choose 20%

images from the total 400 images and make the selected
images to be randomly corrupted by pepper and salt noise,
with corruptions of 10% and 20%, respectively. For each
method, 20 tests are conducted on the corrupted ORL data
set, and the average clustering result is shown in Fig. 5.

Since the feature selection method is proposed from the
perspective of robust reconstruction, it can not only select
effective features from the original data but also select effec-
tive features from the reconstructed data. Here, we label
Ours1 and Ours2 as the way to select the effective features
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TABLE II

CLUSTERING RESULTS (ACC%±STD) OF SIX FEATURE SELECTION METHODS ON TEN DATA SETS, WHERE THE BOLD FONTS MARK
THE BEST RESULTS, THE UNDERLINED FONTS MARK THE SECOND BEST RESULTS, AND THE PARENTHESES

CORRESPOND TO THE NUMBER OF SELECTED FEATURES

Fig. 5. Clustering results (ACC and NMI) on the ORL data set with different corruption ratios. (a) ACC on the corrupted data set with a corruption ratio
of 10%. (b) NMI on the corrupted data set with a corruption ratio of 10%. (c) ACC on the corrupted data set with a corruption ratio of 20%. (d) NMI on the
corrupted data set with a corruption ratio of 20%.

Fig. 6. Feature selection of the proposed method with different λ values on the PIE data set. (a) A on λ = 0 : 1. (b) A on λ = 0 : 3. (c) A on λ = 0 : 5.

from the original data and the reconstructed data, respec-
tively. Fig. 5 shows the clustering results (ACC and NMI)
of different methods on the corrupted ORL data sets, where
Fig. 5(a) and (b) shows the clustering results (ACC and NMI)

on the ORL data set with a corruption ratio of 10%, while
Fig. 5(c) and (d) shows the clustering results (ACC and NMI)
on the ORL data set with a corruption ratio of 20%. From
Fig. 5, we observe the following three phenomena. First,
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TABLE III

CLUSTERING RESULTS (NMI%±STD) OF SIX FEATURE SELECTION METHODS ON TEN DATA SETS, WHERE THE BOLD FONTS MARK THE BEST RESULTS,
THE UNDERLINED FONTS MARK THE SECOND BEST RESULTS, AND THE PARENTHESES CORRESPOND TO THE NUMBER OF SELECTED FEATURES

Fig. 7. Some reconstruction images by AW-SPCA with different λ values.

both two robust spectral feature selection methods, i.e., RUFS
and RSFS, outperform UDFS and SOGFS. This is because
the design of UDFS does not consider the effect of noise
in the learning of pseudo-cluster labels. Although SOGFS
considers the effect of noise, it does not obtain robust per-
formance. This may be because the adaptive similarity matrix
learned by SOGFS is still affected when the data corruption
degree is large. Second, our method, including Ours1 and
Ours2, especially Ours2, obtains the best clustering result
than the spectral feature selection methods. This is because
the spectral feature selection methods need to construct a
graph Laplacian that is easily affected by outliers and thus
interferes with the result of feature selection, while our method
selects those important features guided by the robust recon-
struction and thus it can soften the impact of noise. Third,
with an increase of corruption ratio, i.e., the corruption ratio
increases from 10% to 20%, Ours2 performs far better than
Ours1. This is because Ours1 will inevitably select many
noisy features from the original data as the corruption ratio
increases. At this point, it will be seriously affected by
outliers, and the clustering performance will become worse.
This indicates that when the corruption ratio of data becomes
large, it is very important to design a feature selection
method that can select effective features from the reconstructed
data.

In fact, a few of the existing spectral feature selection
methods have the direct reconstruction term to select the effec-
tive features from its reconstructed data. Besides, the spectral
feature selection methods often include many model para-
meters, while our method only includes a model parameter.
Therefore, our method is simple but effective.

C. Parameter Settings

For a fair experimental comparison, the grid search
method is used in each group of experimental methods, and
the optimal parameter values are obtained from the same
parameter search range.

In the first group of reconstruction experiment, there is
a model parameter, i.e., λ. The best optimal parameter
is searched from {10−3, 10−2, 10−1, 100, 101, 102, 103}, and
then, this search range is narrowed. The best optimal parameter
with the minimal reconstruction error can be got. For the
proposed method, different values of λ correspond to different
degrees of feature selection. As shown in Fig. 6, the proposed
method selects fewer features for reconstruction with the
increasing value of λ, while when the λ value increases,
the quality of the reconstructed images may decrease because
of the loss of lots of information (see Fig. 7). Therefore,
a balance between feature selection and reconstruction can be
achieved by adjusting λ.

In the second group of clustering experiment, there is a
model parameter (i.e., λ) and a feature parameter (#features).
In order to evaluate the influence of these two parameters on
the experiment, different combinations of the model parameter
set and the feature number set are carried out for each data set.
The best optimal parameters (i.e., λ and #features) with the
best clustering results can be got. Fig. 8 shows the average
clustering results of the proposed method with different λ
and #features values. As can be seen, the proposed method
is less sensitive to the choice of λ within wide ranges and
more sensitive to #features.

D. Convergence Curves

The proposed method can obtain the global optimal solution,
whose theoretical analyses have been given in Section IV-A.
Here, the convergence curves on three data sets are taken as
examples to verify the convergence of the proposed method,
which can be seen from Fig. 9.
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Fig. 8. Clustering results (ACC and NMI) of AW-SPCA with different λ and #features values on different data sets.

Fig. 9. Convergence curves of AW-SPCA on three data sets. (a) COIL20. (b) Yale10. (c) USPS.

VI. CONCLUSION

The proposed method is in a convex formulation and can
obtain the global optimal solution. It is simple but effective.
More specifically, only by using the robust PCA criteria to
select effective features, this proposed method can obtain
clustering results similar to that of the spectral feature selection
methods on the noiseless data sets and is far better than that
of the spectral feature selection methods on the noisy data
sets. Therefore, the proposed method is a significant feature
selection method, especially when the data set is heavily
corrupted by noise.
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