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Abstract— Single sample per person face recognition
(SSPP FR) is one of the most challenging problems in FR
due to the extreme lack of enrolment data. To date, the most
popular SSPP FR methods are the generic learning methods,
which recognize query face images based on the so-called
prototype plus variation (i.e., P+V) model. However, the classic
P+V model suffers from two major limitations: 1) it linearly
combines the prototype and variation images in the observational
pixel-spatial space and cannot generalize to multiple nonlinear
variations, e.g., poses, which are common in face images and
2) it would be severely impaired once the enrolment face
images are contaminated by nuisance variations. To address
the two limitations, it is desirable to disentangle the prototype
and variation in a latent feature space and to manipulate
the images in a semantic manner. To this end, we propose
a novel disentangled prototype plus variation model, dubbed
DisP+V, which consists of an encoder–decoder generator and
two discriminators. The generator and discriminators play
two adversarial games such that the generator nonlinearly
encodes the images into a latent semantic space, where the more
discriminative prototype feature and the less discriminative
variation feature are disentangled. Meanwhile, the prototype
and variation features can guide the generator to generate an
identity-preserved prototype and the corresponding variation,
respectively. Experiments on various real-world face datasets
demonstrate the superiority of our DisP+V model over the
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classic P+V model for SSPP FR. Furthermore, DisP+V
demonstrates its unique characteristics in both prototype
recovery and face editing/interpolation.

Index Terms— Adversarial learning, disentangled representa-
tion, face editing, prototype recovery, single sample per person.

I. INTRODUCTION

S INGLE sample per person face recognition (SSPP FR),
i.e., recognizing an identity based on his/her single image

sample from the biometric enrolment database,1 has several
important real-world applications, such as criminal identifi-
cation, surveillance security, access control, and person re-
identification [1]–[15]. SSPP FR is still one of the most
challenging problems in FR due to the extreme lack of
enrolment data and the unavailability of intraclass infor-
mation [16]. In such a case, a flurry of popular Fisher-
based methods [17]–[21] are typically inapplicable. Moreover,
many existing sparse representation and dictionary learning
methods [22]–[25] will also suffer serious performance drop
because they require sufficient samples to represent query
samples.

To date, the most studied SSPP FR methods are the generic
learning methods [26]–[31], which are based on a so-called
prototype plus variation (i.e., P+V) model for recognition.
In the P+V model, a query sample is assumed to be rep-
resented by the superposition of the prototype2 and the corre-
sponding facial variations [32]. The prototype is approximated
by the original enrolment sample, while the variation dictio-
nary is generated from an auxiliary generic set that encodes
the difference between the query and enrolment samples. The
major differences between these generic learning methods lie
in the strategies of learning the variation dictionary.

However, the classic P+V model has two major limitations.
First, it is a linear model that combines the prototype and
variation images in the pixel-spatial space, which is unable to
handle many nonlinear variations, such as poses. Despite that,
the classic P+V model ignores the importance of different
components (e.g., eyes, nose, and cheeks) in the face image
and assigns them the same weights when performing combi-
nation. In Fig. 1(a), we show a failed reconstruction example
of a state-of-the-art generic learning method, i.e., superposed

1More standardized biometric vocabularies can refer to the website of
https://www.christoph-busch.de/standards.html

2A prototype indicates a frontal face image with a neutral expression, under
normal lighting, and without occlusion/disguise.
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Fig. 1. (a) Failed reconstruction example of the classic P+V model-based
SLRC [26] when dealing with poses. In the classic P+V model, the prototype
of identity A and the generated pose variation from the generic set is
superposed in the spatial space to reconstruct the query sample. (b) Illustration
of our DisP+V model, where the prototype and variation features of the
enrolment sample are disentangled in the latent space. We replace the variation
feature with the one disentangled from the sample of identity B with the
target pose and perform the superposition of the prototype and variation in a
semantic manner.

linear representation classifier (SLRC) [26], when dealing with
the pose variation. It is observed that the reconstructed image
contains obvious artifacts and individual characteristics of the
other identity if the generated pose variation is simply inte-
grated into the prototype. Second, the P+V model estimates
the prototype by directly using the standard enrolment sample.
When facing the emerging problem in SSPP FR, namely, SSPP
FR with a contaminated enrolment database3 (i.e., SSPP-ce
FR) [33], the P+V model will be severely impaired because
the contaminated enrolment sample yields bad prototype to
represent the identity. For clarity, the previous problem of
SSPP FR with a standard enrolment database is called SSPP-se
FR hereinafter.

To address these limitations, it is desired to seek a latent
semantic space where the more discriminative prototype fea-
ture and the less discriminative variation feature can be suc-
cessfully disentangled. Subsequently, the prototype feature for
the enrolment sample and the variation feature for the generic
sample are obtained, and the feature of the query sample
is approximated by the superposition of the prototype and
variation features in this latent space. To this end, we propose
a novel disentangled prototype plus variation (DisP+V) model
for SSPP FR, as shown in Fig. 1(b). Compared with the classic
P+V model that linearly combines the prototype and variation
images in the pixel-spatial space, our proposed DisP+V model
is featured in two aspects.

1) It is a top-down P+V model that performs the combi-
nation of prototype and variation in a latent semantic

3A contaminated enrolment database means that some face samples in the
enrolment database are contaminated by different facial variations.

space, which could implicitly lead to an adaptive weight-
ing of different image components in the pixel-spatial
space.

2) It results in better discrimination between the prototype
and variation by mining the underlying properties.

The advantages make DisP+V capable of handling both linear
and nonlinear variations. Moreover, DisP+V is robust against
the enrolment contaminations in SSPP-ce FR, because it first
extracts the discriminative prototype feature from the contam-
inated enrolment sample and then performs the superposition
of prototype feature and variation feature in the latent space.

To be specific, DisP+V consists of three main components,
i.e., an encoder–decoder structural generator (G) and two
discriminators D = [Did, Dgan] and D̃, where Did and D̃ are
used for predicting face identity and Dgan for distinguishing
real versus fake prototype. Fig. 2 shows the architecture of
the proposed DisP+V model. Given an input face, the three
components G, D, and D̃ play two adversarial games: 1) G
strives for generating an identity-preserved prototype to fool
D, while D guides G to encode a discriminative prototype
feature relevant to identity and 2) G and D̃ compete with
each other such that G encodes a less discriminative variation
feature, and meanwhile, generating the corresponding variation
image that fools D̃, i.e., G enables D̃ to output a constant vec-
tor with a uniform identity distribution. Furthermore, DisP+V
introduces a reconstruction penalty in G to force the decoded
image from the superposition of the prototype and variation
features to well reconstruct the input face, which guarantees
the complementarity between the two disentangled features.

We conduct experiments on six real-world face datasets
containing a single variation of expression, pose, disguise,
and lighting, multiple variations, and mixed variations in
the wild, respectively. Our experimental results demonstrate
the superiority of the proposed DisP+V model over the
classic P+V model for both SSPP-se FR and SSPP-ce FR.
For instance, on Face Recognition Technology (FERET)
dataset [34], DisP+V achieves a 30.1%–39.9% higher accu-
racies than the state-of-the-art P+V-based generic learning
method for SSPP-ce FR. Moreover, note that recent deep
learning-based methods [5], [11], [35]–[37] have achieved
promising performance for practical SSPP FR benefiting from
the pretrained models on large-scale Web face datasets. Moti-
vated by this, we, thus, enhance DisP+V by employing a
pretrained deep feature extractor as the encoder and verify the
feasibility and effectiveness of this combination in the exper-
iments. Furthermore, DisP+V has demonstrated its unique
characteristics for handling challenging tasks of prototype
recovery and face editing/interpolation.

To the best of our knowledge, the proposed DisP+V is
the first attempt that jointly: 1) disentangles the prototype
and variation features in the latent space and 2) generates
the corresponding prototype and variation image, in a unified
deep framework. Moreover, DisP+V only constrains the low
discriminative property of the disentangled variation but has
no prior assumption about its type, which makes DisP+V
applicable to universal variations. The contributions of this
article are summarized as follows.

1) We propose DisP+V, a top-down P+V model for
solving SSPP FR. Compared with the classic P+V
model that can only deal with linear variations and
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standard enrolment, DisP+V is effective in handling
both linear and nonlinear variations and the enrolment
contaminations.

2) We design an encoder–decoder structural generator in
DisP+V that can simultaneously: 1) learn the prototype
and variation features and 2) generate the corresponding
prototype and variation images, from a contaminated
enrolment sample.

3) We design two adversarial discriminators to assist the
generator in: 1) removing the variations and meanwhile
preserving the identity information of the input contam-
inated enrolment sample in the generated prototype and
its feature and 2) eliminating the identity information in
the generated variation and its feature.

4) We conduct extensive experiments on various real-world
face datasets with single/multiple and mixed variations
to demonstrate the powerful capability of DisP+V for
prototype recovery and face editing (or interpolation)
and the superiority for SSPP FR over the classic P+V
model-based counterparts.

The rest of this article is organized as follows. Section II
makes an overview of the related works, and Section III
gives a review of the classic P+V model and the generative
adversarial network (GAN). Section IV details the proposed
DisP+V. In Section V, we perform extensive experiments on
six real-world face datasets to evaluate the performance of
DisP+V. Finally, Section VI gives the conclusion and future
works.

II. RELATED WORK

A. SSPP FR

In the past decade, many attempts have been made for
solving the SSPP-se FR problem, where all enrolment sam-
ples are standard, which can be roughly classified into two
categories [38], i.e., patch-based methods and generic learning
methods.

The patch-based methods [39]–[42] partition each enrol-
ment sample into multiple local patches and then lever-
age them for discriminative learning or feature extraction.
However, the local patches from a single sample contain
limited and highly correlated information which are hardly
treated as independent samples. By introducing new and
useful information from the auxiliary generic set, the generic
learning methods [26], [28]–[30] usually perform better than
the patch-based methods and receive more attention. These
methods generate the variation dictionaries from the generic
set and utilize the classic P+V model [32] for recognition. For
example, Deng et al. [26] generate the variation dictionary by
subtracting the average face from the samples of each identity
in the generic set, while Yang et al. [28] propose to project
the generic set into the space of enrolment set and learn
an adaptive sparse variation dictionary. However, the P+V
model used in these methods is a simple linear superposition
model and can hardly handle nonlinear variations. Despite
that, the prototype in the P+V model is directly estimated
by the original enrolment samples, which makes the existing
generic learning methods not amenable to tackle enrolment
contaminations.

More recently, a few prototype learning methods
[8], [43]–[47] have been proposed to address the new

SSPP-ce FR problem, where some enrolment samples can be
contaminated. Gao et al. [43] and Pang et al. [8] proposed
a semisupervised sparse representation-based classification
(S3RC) and an iterative dynamic generic learning (IDGL),
respectively. The two methods estimate the prototypes
by the clustering centroid of the union of enrolment and
query sets via the Gaussian mixture model (GMM) or
semisupervised low-rank representation. Despite promising
prototypes obtained by S3RC and IDGL, they need to obtain
the unknown query set in advance, which is difficult to satisfy
in practice. Furthermore, a series of GAN variants [44]–[47]
emerge to recover prototypes by virtue of adversarial learning.
For example, Ma et al. [44] proposed a style translation GAN
to learn the mappings between arbitrary lighting domains and
standard lighting domain for normalization; Huang et al. [47]
presented a two-pathway GAN to correct the ill-posed
samples through both global and local transformations.
Although these GAN variants perform well for the specified
single variation such as lighting or pose, they need to know
the input type of the variation in advance and cannot handle
unspecified multiple variations.

B. Face Disentangled Representation

Face disentangled representation is a kind of distributed
feature representation where different latent codes reflect dif-
ferent high-level generative factors of the face image, such
as ID-related feature map, facial attributes or variations, and
artistic style. Kingma and Welling [48] developed a variational
auto-encoder (VAE) to disentangle the factors of variation and
learn the latent code by encouraging the latent distribution to
be close to the standard normal distribution. Larsen et al. [49]
extended VAE by employing a learned similarity measure
in GAN discriminator as the reconstruction objective instead
of the original elementwise residual. Liu et al. [50] pre-
sented an identity distilling and dispelling AE to learn
the identity-distilled feature for identity verification and the
identity-dispelled features to fool the verification system.
Although these AE-based methods can be applied for solving
the SSPP-ce FR problem, they are unable to perform prototype
recovery tasks at the same time. Lately, Kulkarni et al. [51]
proposed a deep convolution inverse graphics network to
generate representations disentangled w.r.t. pose or lighting.
Tran et al. [52], [53] proposed a disentangled representation
learning GAN, which learns a pose-invariant representation
and meanwhile rotating input face to a specified pose. These
two methods can perform pose frontalization while learning
disentanglement representations. However, both of them are
limited to representing a specified single variation and cannot
generalize to multiple variations. In contrast to the above-
mentioned approaches, our DisP+V jointly: 1) disentangles
the prototype and variation features in the latent space and
2) generates the corresponding prototype and variation images
and is able to handle universal variations.

III. BACKGROUND

A. Prototype Plus Variation Model

The classic prototype plus variation (i.e., P+V) model [32]
is developed to handle the SSPP-se FR problem, which is
based on the assumption that a query sample of one identity
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is represented as a superposition of two different subsignals,
i.e., the prototype of the identity plus the intra-identity vari-
ations. In the P+V model, the prototype is approximated by
the original enrolment sample, while the variation dictionary
is generated from an auxiliary generic set, which contains
identities not of interest, and encodes the difference between
the query and enrolment samples. Formally, for a query sample
y, it can be represented as

y = Pα + Vβ + e (1)

where P, V, and e are the enrolment sample dictionary,
the variation dictionary, and small noise, respectively, α is
the sparse coefficient vector, whose a few nonzero entries
correspond to choosing a few numbers of enrolment samples
(i.e., identities) from P, and β is another sparse coeffi-
cient vector whose nonzero entries correspond to selecting
a small subset of dictionary V. The coefficient vectors α

and β are calculated via solving the following optimization
problem:[

α∗
β∗

]
= arg min

α,β

∥∥∥∥y − [P V]

[
α

β

]∥∥∥∥2

2

+ λ

∥∥∥∥
[
α

β

]∥∥∥∥
1

(2)

where λ is a regularization parameter, ||.||2 and ||.||1 denote
the l2-norm and l1-norm, respectively. Finally, similar to sparse
representation-based classification (SRC) [22], y will be classi-
fied into the enrolment sample with the smallest reconstruction
residual. Note that, the classic P+V model is a linear superpo-
sition model that manipulates images in the pixel-spatial space,
which is difficult to process the nonlinear variations. Moreover,
when confronting the more challenging SSPP-ce FR problem
where enrolment samples are contaminated, this model will
be severely impaired because the contaminated samples yield
bad prototypes to represent the identities.

B. Generative Adversarial Network

Goodfellow et al. [54] proposed the GAN to train a gen-
erative model. It is composed of two components, i.e., a
generator G and a discriminator D, which play a minimax
two-player game. The discriminator D is trained to distinguish
between the real image x and the fake generated image
x̂, while the generator G is trained to generate realistic-
looking images, i.e., G(z), based on a random noise vector
z to fool D. Formally, the objective function of GAN is as
follows:
min

G
max

D
V (D, G) = Ex∼Pdata

[
log D(x)

]
+ Ez∼Pz

[
log(1 − D(G(z)))

]
(3)

where pdata and pz denote the distributions of the training data
and the noise z, respectively. Alternatively, it has been shown
that the minimization of log(1− D(G(z))) can be replaced by
the maximization of log(D(G(z))) to provide much stronger
gradients early in learning [54]. Hence, the objective in (3)
can be reformulated as follows:

max
D

VD(G, D) = Ex∼Pdata

[
log D(x)

]
+ Ez∼Pz

[
log(1 − D(G(z)))

]
, (4)

max
G

VG(G, D) = Ez∼Pz

[
log(D(G(z)))

]
. (5)

Fig. 2. Architecture of the proposed DisP+V. x, xp , xv , x̂, and xrp are the
input face, the generated prototype, the generated variation, the reconstructed
face, and the real prototype, respectively. P(x) and V (x) are the disentangled
prototype and variation features in the encoded latent space, respectively, and
f (x) = P(x) + V (x). When training D, Did predicts the identity label of x,
and Dgan assigns a high score to the real prototype xrp but a low score to
the generated prototype xp . When training D̃, D̃ predicts the identity of xv .
When training G , the generated prototype xp aims to fool Did and Dgan to
classify it into the identity label of x and to assign it a high score of being
real prototype, respectively; the reconstructed face x̂ aims to well reconstruct
the input face x; and the generated variation xv aims to fool D̃ to output a
constant vector with a uniform distribution.

IV. PROPOSED METHOD

In this section, we first define the problem we are address-
ing. Then, we detail the proposed disentangled prototype plus
variation (DisP+V) with the network architecture and training
scheme. Finally, we introduce the potential applications.

A. Problem Definition

We propose a top-down P+V model which performs the
superposition of the prototype and variation in a latent space,
thus manipulating the images in a semantic manner without the
complex combination designs in the pixel-spatial space. This
so-called DisP+V model aims to learn disentangled prototype
and variation features and to generate an identity-preserved
prototype and the corresponding variation image.

To be specific, given an input face image x, the proposed
DisP+V aims to achieve the following objectives.

1) Disentangled Feature Learning: Learning a discrimi-
native prototype feature P(x) for x, such that P(x):
1) represents the identity of x and 2) is invariant to any
facial variations in x; and learning a less discriminative
variation feature V (x) for x such that V (x) is irrelevant
to the input identity information.

2) Prototype and Variation Generation: Recovering a high-
quality (i.e., realistic looking) prototype xp for the input
face image x, such that xp: 1) is variation-free and
2) preserves the identity of x; and extracting the variation
image xv such that it: 1) captures the facial variation in
x and 2) contains little identity information of x.

B. DisP+V

In this section, we introduce the proposed disentangled
prototype plus variation (DisP+V) model, whose architecture
is shown in Fig. 2. The proposed DisP+V consists of three

Authorized licensed use limited to: Hong Kong Baptist University. Downloaded on February 05,2023 at 08:06:42 UTC from IEEE Xplore.  Restrictions apply. 



PANG et al.: DisP+V: UNIFIED FRAMEWORK FOR DISENTANGLING PROTOTYPE AND VARIATION 871

TABLE I

MEANING OF THE SYMBOLS IN DISP+V

main parts: an encoder–decoder structural network serving
as the generator G, and two discriminators D and D̃ for
adversarial learning. In the following, we will detail the
generator G and the two discriminators D and D̃, followed by
the training and evaluation schemes. Table I summarizes the
symbols and the corresponding definitions used in DisP+V.

1) Generator and Discriminators: The proposed generator
G is composed of an encoder Genc and a decoder Gdec.
Given an input face image x, Genc has two separate branches,
which aim to encode a more discriminative prototype feature
P(x) and a less discriminative variation feature V (x) in a
latent space. Subsequently, Gdec takes P(x), V (x) and their
superposition, i.e., f (x) = P(x) + V (x), as the inputs, and
generates an appropriate prototype, i.e., xp = Gdec(P(x)),
a variation image, i.e., xv = Gdec(V (x)), and a reconstructed
image of x, i.e., x̂ = Gdec( f (x)), respectively.

The proposed D is a multitask discriminator consisting of
two subdiscriminators, namely, Did and Dgan. To be specific,
the following holds.

1) Did outputs a Nd -dimensional vector for face identity
classification, with Nd the total number of identities.

2) Dgan is a standard GAN discriminator to distinguish the
real prototype versus fake prototype generated by the
generator G. More specifically, Dgan assigns a score to
each image and a higher score indicates that the image
is closer to the real prototype.

The proposed D̃ is also an identity discriminator that outputs
a Nd -dimensional vector and is used to predict the face
identity label. Unlike Did of D, D̃ only relates to the variation
image xv .

2) DisP+V Training: Suppose we are given a training set
of Nd identities with each face image x annotated by the label
l = {l id, lvar}, where l id and lvar (lvar = 1 or 0) denote the
face identity and whether the face contains variation or not,
respectively. Subsequently, we collect standard images (i.e.,
images not corrupted by variations) in the training set accord-
ing to the lvar to form the real prototype corpus. We denote
each standard/real prototype as xrp, and its distribution as Preal,
i.e., xrp ∼ Preal. As a comparison, we denote that all face

images x in the training set are sampled from the distribution
Pdata, i.e., x ∼ Pdata.

For the generator G, we have the following four objectives.
1) Enable Did to classify the generated prototype xp as the

same identity label as the input image x, i.e., l id.
2) Fool Dgan to classify the generated fake prototype xp as

a real prototype, i.e., G enables Dgan to assign a high
score to xp of being real prototype.

3) Fool D̃ and make it fail to classify the generated
variation xv , i.e., G enables D̃ to output a constant vector
with each element value equaling to (1/Nd).

4) Enable x̂ to well reconstruct the original input image x.
By considering all the above-mentioned objectives, our final

objective function VG for training G is presented as follows:
max

G
VG = V gan

G + μ1V id1
G + μ2V id2

G − μ3V rec
G (6)

where μ1, μ2, and μ3 are three positive tradeoff parameters
for the hybrid objective VG . The four subobjectives V id1

G , V gan
G ,

V id2
G , and V rec

G are defined as follows:
V id1

G

(
G, Did, x

) = Ex
[
log Did

lid(Gdec(P(x)))
]

(7)

V gan
G (G, Dgan, x) = Ex

[
log Dgan(Gdec(P(x)))

]
(8)

V id2
G

(
G, D̃, x

) = Hx
[
D̃(Gdec(V (x)))

]
(9)

V rec
G (G, x) = Ex

[
1

2
||x − Gdec( f (x))||2F

]
(10)

where Did
i denotes the i th element in Did, H (.) and

||.||F denote the empirical entropy and the Frobenius
norm, respectively. It is worth noting that maximizing
entropy of the predicted identity distribution for Gdec(V (x)),
i.e., Hx[D̃(Gdec(V (x)))], in (9) is equivalent to the third
objective that forces D̃ to output a constant vector with equal
value (i.e., probability) in each element.

For the discriminator D = [Did, Dgan], it has the following
two objectives.

1) Given the input image x, Did aims to correctly predict
its identity label y id.

2) Given the real prototype xrp and the generated fake
prototype by G, i.e., xp = Gdec(P(x)), Dgan aims to
classify xrp as the real prototype and classify xp as the
fake prototype.

Formally, our final objective function VD for training D =
[Did, Dgan] is as follows:

max
D

VD = V gan
D + γ V id

D (11)

where γ is a positive tradeoff parameter, and V id
D and V gan

D are
defined as follows:

V id
D

(
Did, x

) = Ex
[
log Did

lid(x)
]

(12)

V gan
D (G, Dgan, xrp, x) = Exrp

[
log Dgan(xrp)

]
+ Ex

[
log(1 − Dgan(Gdec(P(x))))

]
.

(13)

For the discriminator D̃, the only purpose is to correctly
predict the identity label for the generated variation, i.e., xv =
Gdec(V (x)). Formally, the objective function VD̃ for training
D̃ is as follows:

max
D̃

VD̃ = Ex
[
log D̃lid(Gdec(V (x)))

]
(14)

where D̃i denotes the i th element in D̃.
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Algorithm 1 DisP+V Training
Input: A training set of Nd identities with each image x

annotated by the label l = {l id, lvar}; A real prototype
corpus with each image xrp sampled from the distribution
Preal.

1: repeat
2: Fix D and D̃, update G by solving the objective in

Eq. (6)
3: Fix G and D̃, update D by solving the objective in

Eq. (11)
4: Fix G and D, update D̃ by solving the objective in

Eq. (14)
5: until convergence is achieved or a predefined maximum

number of iterations is reached
Output: Trained G, D, and D̃

For clarity, the training procedure of DisP+V is presented
in Algorithm 1. It can be seen that we alternatively update the
generator G, the discriminator D, and the discriminator D̃ by
solving the objective functions VG in (6), VD in (11), and VD̃ in
(14) iteratively. During the alternative training process, G, D,
and D̃ will be updated and improved. Specifically, with Dgan in
D being more powerful in distinguishing real versus fake pro-
totypes, G strives for generating a realistic-looking prototype
in order to fool Dgan. Besides, Did in D enables the generated
prototype to preserve the identity characteristics and guides
Genc to learn a discriminative prototype feature that encodes
as much identity information as possible. Furthermore, with D̃
being more powerful in classifying identity labels, G makes
efforts to capture the less discriminative characteristics (i.e.,
facial variations) in xv to fool D̃ to output a constant vector
with a uniform distribution and guides Genc to encode as
little identity information as possible in the learned variation
feature.

Generally speaking, there exist two adversarial learning
processes between G, D, and D̃ in DisP+V. On the one hand,
G and D compete with each other such that G disentangles
a discriminative prototype feature relevant to identity in the
latent space, and meanwhile, generating an identity-preserved
prototype; on the other hand, G and D̃ also play an adversarial
game which forces G to disentangle a less discriminative
variation feature in the latent space and generating a variation
image containing the corresponding facial variations. It is
worth noting that, DisP+V introduces an extra discriminator
D̃, while not directly using Did, to predict the identity label for
the generated variation xv . This strategy reduces the training
complexity for Did and enables Did and D̃ to be responsible
for their respective adversarial learning.

C. Application Scenarios

1) SSPP FR: Let y be a new query sample from the
testing set, S = [s1, . . . , sn] be the SSPP enrolment set with
n identities, and A = [a1, . . . , aq] be the generic set with
q samples from other identities not of interest. With the
trained DisP+V model, we can obtain the prototype feature
of y, i.e., P(y), and the prototype features of S, i.e., P(S).
Subsequently, we classify the identity of y by matching P(y)

with P(S) = [P(s1), . . . , P(sn)] as follows:
Scheme 1: ID(y) = arg min

k
dist(P(y), P(sk)) (15)

where dist(a, b) represents the distance between the feature
vectors of a and b, and the arccosine-distance, l1-distance,
or l2-distance can be used as the distance metric.

Alternatively, we can also perform SSPP FR based on the
P+V model in the latent space. With the trained DisP+V
model, we further obtain the original feature of y, i.e., f (y) =
P(y)+V (y), and the variation features of A, i.e., V (A). Then,
we solve the following l1-based optimization problem:[

α∗
β∗

]
= arg min

α,β

∥∥∥∥ f (y) − [P(S) V (A)]

[
α

β

]∥∥∥∥2

2
+ λ

∥∥∥∥
[
α

β

]∥∥∥∥
1

(16)

where λ is a regularization parameter, α ∈ �n and β ∈ �q

are the coefficients of P(S) and V (A), respectively. In this
article, (16) is solved via the basis pursuit denosing (BPDN)-
homotopy algorithm [55]. Subsequently, y can be classified as
the identity (i.e., class) according to the smallest reconstruction
residual rk(y) among all classes

Scheme 2 : ID(y) = arg min
k

rk(y) (17)

where rk(y) is computed by

rk(y) =
∥∥∥∥ f (y) − [P(S) V (A)]

[
δk(α

∗)
β∗

]∥∥∥∥2

2

(18)

with δk(α
∗) being a vector whose nonzero entries are the

entries in α∗ associated with class k.
To differentiate DisP+V using the two evaluation schemes,

we denote DisP+V based on the latent-space P+V model in
(16)–(18) as DisP+Vpv hereinafter. Furthermore, we analyze
the time complexities of DisP+V and DisP+Vpv for recog-
nizing the query sample y, respectively. Specifically, both of
the recognition stages for DisP+V and DisP+Vpv include two
steps: feature extraction and classification. Suppose the image
size of y is w × h and the number of the convolutional layers
in Genc is L. The time complexities of DisP+V and DisP+Vpv

in feature extraction step are both O(whL). In classification
step, the time complexity of DisP+V is O(dn), where d is the
dimension of P(y) and n is the size of the enrolment set S, and
the time complexity of DisP+Vpv is O(τd2 + τd(n + q)) [8]
where τ is the number of iterations for BPDN-homotopy in.
(16) and q is the size of the generic set A. Overall, the time
complexities of DisP+V and DisP+Vpv in recognition stage
are O(whL+dn) and O(whL+τd2+τd(n+q)), respectively.
It is obvious that DisP+V costs less time than DisP+Vpv in
recognition stage.

2) Other Applications: Besides the above-mentioned SSPP
FR task, we can further leverage the trained generator G to
do the following two tasks.

1) Prototype Recovery: Generating realistic-looking proto-
types (e.g., an ID photograph) for contaminated samples
in the enrolment database.

2) Face Editing/Interpolation: Performing semantic face
editing/interpolation by modifying the disentangled vari-
ation feature in the latent space.
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We will demonstrate the effectiveness of the proposed
DisP+V regarding the above-mentioned potential applications,
with extensive experiments and results in Section V.

V. EXPERIMENTAL RESULTS

In this section, we start by detailing the experimental set-
tings in Section V-A and then evaluate the proposed DisP+V
by conducting the following experiments.

1) In Section V-B, we evaluate the recognition per-
formance of DisP+V and DisP+Vpv for SSPP FR
on the Multi-PIE, FERET, CAS-PEAL, E-Yale-B&AR
Light, and Face Recognition Grand Challenge (FRGC)
v2.0 datasets with four major single variations,
i.e., expression, pose, disguise and lighting, and multiple
variations.

2) In Section V-C, we evaluate the generated prototypes
and the corresponding variation images by DisP+V on
the above-mentioned five benchmark face datasets.

3) In Section V-D, we perform ablation study to investigate
the roles of the Did, Dgan, and D̃ on the performance of
DisP+V.

4) In Section V-E, we evaluate the performance of our
DisP+V for semantic face editing/interpolation.

5) In Section V-F, we further evaluate the performance of
DisP+V when handling mixed facial variations on the
unconstrained labeled faces in the wild (LFW)-a dataset.
Moreover, we explore the feasibility of combining our
DisP+V with the pretrained feature extractor for solving
practical SSPP FR.

A. Experimental Settings

1) Dataset Description: Multi-PIE [56] is an extension
of the Carnegie Mellon University Pose, Illumination, and
Expression dataset [57] across multirecording sessions. It con-
tains images of 337 identities under six different expressions
across four sessions, 15 poses, and 20 illuminations. We use a
subset of 141 identities only containing expression variations,
where 100 identities are randomly chosen for training and the
rest 41 ones for testing.

FERET [34] is used for facial recognition system eval-
uation as part of the FERET program. It contains images
of 1199 identities across ethnicity, gender, and age. We use
a subset of 200 identities from five categories (“ba,” “be,”
“bd,” “bf,” and “bg”) only containing pose variations, where
150 identities are randomly chosen for training and the rest
50 ones for testing.

CAS-PEAL [58] is constructed by the Joint R&D Labora-
tory for Advanced Computer and Communication Technolo-
gies, Chinese Academy of Sciences (CAS) Beijing, China.
It contains 99 594 face images of 1040 identities with varying
Pose, Expression, Accessory, and Lighting (PEAL). We use
a subset of 300 identities from the Normal and Accessory
categories, and thus, each identity has one neutral image and
six images wearing different glasses and hats. We randomly
choose 200 identities for training and the rest 100 ones for
testing.

E-Yale-B is an extended version of the Yale Face Database
B (Yale-B) [59]. It contains images of 38 identities under
various lighting variations and is divided into five subsets.

TABLE II

NETWORK STRUCTURE OF G

Subset 1, Subsets 2 and 3, and Subsets 4 and 5 character-
ize normal, slight-to-moderate, and severe lighting variations,
respectively. AR [60] is created by Aleix Martinez and Robert
Benavente, which contains images of 126 identities under vari-
ations of lighting, expression, and disguise. In the experiment,
we merge E-Yale-B and AR lighting subset (100 identities)
together to construct a new dataset, i.e., E-Yale-B&AR Light,
to enrich the lighting variations. On this dataset, we randomly
choose 100 identities for training and the rest 38 ones for
testing.

FRGC v2.0 is the second version of the FRGC dataset [61],
which contains 50 000 images of 4003 identities with two
different facial expressions and under different illumination
conditions. We use a subset of 150 identities with no less
than 20 images per identity for evaluation. We randomly
choose 100 identities for training and the rest 50 ones for
testing.

LFW-a [62] is an aligned version of the LFW dataset [63]
using a commercial face alignment software. It contains over
13 000 images of 5749 identities collected under uncontrolled
environments with large variations in expressions, poses, illu-
minations, and so on. We use a subset of 158 identities with
no less than ten images per identity for evaluation. We choose
50 identities containing neutral images for testing and use the
rest 108 ones for training.
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Fig. 3. Illustration of some gray face examples from six constrained and unconstrained datasets: (a) Multi-PIE. (b) E-Yale-B. (c) CAS-PEAL. (d) FERET.
(e) FRGC v2.0. (f) LFW-a.

TABLE III

NETWORK STRUCTURES OF D AND D̃

For each dataset, all face samples are first aligned to a
canonical view of size 100 × 100 and then center cropped
to 96 × 96. We show some gray face samples on Multi-PIE,
E-Yale-B, CAS-PEAL, FERET, FRGC v2.0, and LFW-a face
datasets in Fig. 3.

2) Implementation Details: In the first, we introduce the
network structures of the generator G and the two discrimi-
nators D and D̃.

For the generator G, we adopt the CASIA-Net in [52] as
the backbone of Genc and Gdec, where batch normalization
and exponential linear unit are used after each conv and
deconv layer. In Genc, the final AvgPool layer is replaced
by two subnets with each having three conv layers and one
global AvgPool. The two disentanglement branches extract
two 256-D features for x, i.e., P(x) and V (x). Subsequently,
P(x), V (x), and their superposition, i.e., f (x) = P(x)+V (x),
are used as the inputs for Gdec to generate the prototype
xp, the variation image xv , and the reconstructed image x̂
for x, respectively. The network structure of G is presented
in Table II.

For the discriminators D and D̃, they both have an extra
fully connection (FC) layer based on CASIA-Net. The output
of D is a (Nd + 1)-dimensional vector, where the first Nd

elements are the outputs of Did for predicting the face identity
and the rest one is reserved for Dgan to distinguish real versus
fake prototype. The output of D̃ is a Nd -dimensional vector

TABLE IV

DATASET PARTITION AND PARAMETER SETTING

only for face identity prediction. The network structures of D
and D̃ are presented in Table III.

We train the proposed DisP+V4 by the mini-batch stochas-
tic gradient descent with a mini-batch size of 16. The maxi-
mum number of training epochs is set as 2000. All weights
are initialized from a zero-centered normal distribution with
the standard deviation of 0.02. Following the work in [52],
we adopt the Adam optimizer [64] with tuned hyperparameters
for optimizing, where the learning rate and momentum are
empirically set as 0.0002 and 0.5, respectively.

3) Parameter Setting: For each evaluated dataset, Nd is set
as the total number of identities in the training set. We tune
all tradeoff hyperparameters via grid search. Specifically,
we observe that DisP+V achieve promising performance when
the tradeoff parameters μ1, μ2, and μ3 in (6) and γ in (11)
are set at 5.0, 0.5, 0.1, and 5.0, respectively, and fix the
values across all datasets. Moreover, the number of training
and testing identities in each dataset are also specified. All the
above-mentioned parameter settings and training/testing sets
partition are detailed in Table IV.

B. Evaluation on SSPP FR

This section evaluates the recognition performance of
DisP+V and DisP+Vpv for SSPP FR (including SSPP-ce
FR and SSPP-se FR) on the Multi-PIE, FERET, CAS-PEAL,
E-Yale-B&AR Light, and FRGC v2.0 datasets. For DisP+V
and DisP+Vpv, we adopt the evaluation schemes in (15) and
(17), respectively, to perform SSPP FR.

On each dataset, we randomly choose one sample (could
be a standard sample or a contaminated sample) for each
identity to construct the contaminated enrolment database
in SSPP-ce FR and use the rest as the query samples for
recognition. We set the contaminated ratio (i.e., #contaminated
samples/#total identities) ranging from 10% to 90% with an

4The code is released at https://github.com/PangMeng92/DisPV_Code.git.

Authorized licensed use limited to: Hong Kong Baptist University. Downloaded on February 05,2023 at 08:06:42 UTC from IEEE Xplore.  Restrictions apply. 



PANG et al.: DisP+V: UNIFIED FRAMEWORK FOR DISENTANGLING PROTOTYPE AND VARIATION 875

TABLE V

RANK-1 RECOGNITION RATES (%) ± STANDARD ERRORS (%) AND THE RECOGNITION TIME (s) OF DIFFERENT METHODS ON THE MULTI-PIE, FERET,
CAS-PEAL, E-YALE-B&AR LIGHT, AND FRGC V2.0 DATASETS FOR SSPP FR. IN THE BRACKETS, WE SHOW THE IMPROVEMENT OF OUR

DISP+VPV AND DISP+V OVER THE SECOND BEST METHOD IN THE CASE. � INDICATES STATISTICAL

SIGNIFICANCE WITH p-VALUE < 0.05

interval of 20%. We repeat each experiment five times and
report the average results. Furthermore, we also present the
recognition results when the contaminated ratio is zero, which
is exactly the setting of SSPP-se FR.

We choose five representative methods for comparison,
including the baseline SRC [22], the representation learning-
based VAE [48], two recent generic learning methods,
i.e., SLRC [26] and SVDL [28], and the latest prototype
learning S3RC [43] method. For SVDL, SLRC, and S3RC,
the training set is used as the auxiliary generic set for
generating variation dictionaries. We tune the regularization
parameter λ of SRC, SLRC, and S3RC and find that they
achieve the best performance when λ = 0.01. For SVDL,
as suggested in [28], the parameters λ1, λ2, and λ3 are
set at 0.001, 0.01, and 0.0001, respectively. For DisP+Vpv,
the regularization parameter λ in (16) is set at 0.1. For
VAE and DisP+V, the arccosine-distance metric is used for
measuring the distance between two representations.

Table V lists the rank-1 recognition rates (±standard errors)
and the recognition time of all the methods on the five datasets
for SSPP FR. Furthermore, we report the statistical signifi-
cance between the recognition results of our proposed methods
(including DisP+Vpv and DisP+V) and that of the second-best

method in each case by comparing their p-values [65] with
the significance level of 0.05. From Table V, we have the
following key observations.

1) Our proposed DisP+Vpv and DisP+V consistently
obtain higher rank-1 recognition rates than the other
compared methods for both SSPP-se FR (ratio = 0%)
and SSPP-ce FR (ratio > 0%) in all cases across the five
datasets. Moreover, the improvements of our proposed
methods over the second-best method in each case are
statistically significant as the corresponding p-values <
0.05.

2) As the enrolment contamination ratio rises from 0%
to 90%, more enrolment samples are contaminated
and incorrectly represent the personal identities. Under
the circumstances, the recognition accuracies of all
the methods tend to decrease. However, DisP+Vpv

and DisP+V have shown greater robustness against
the enrolment contamination increase than the other
compared methods, and the advantages become more
obvious when the ratio reaches higher. The superiority
of our DisP+V and DisP+Vpv attributes to the suc-
cessful disentanglement of the prototype and variation
features in the latent space, which enables the learned
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Fig. 4. Generated prototypes and variations of some selected examples by
DisP+V on the Multi-PIE, FERET, CAS-PEAL, E-Yale-B&AR Light, and
FRGC v2.0 datasets. Figures from left to right are: original enrolment samples,
generated prototypes, generated variations, and true prototypes.

prototype feature to encode as much identity information
as possible.

3) It is interesting to find that each of DisP+V (based on
direct prototype feature matching) and DisP+Vpv (based
on latent-space P+V model recognition) has its own
advantage when handling different facial variations. For
example, DisP+V performs better on FERET with pose
variations, while DisP+Vpv is better at handling additive
variations, such as disguise on CAS-PEAL.

4) S3RC usually performs better than the generic learn-
ing SVDL and SLRC methods with the contamination
because it involves a prototype learning step for restor-
ing contaminated enrolment samples. However, S3RC
obtains poor performance and is inferior to SVDL and
SLRC on E-Yale-B&AR Light. The reason is that the
quality of the learned prototypes by S3RC depends
heavily on the clustering performance of GMM, which
is sensitive to severe lightings and shadows.

5) SVDL and SLRC obtain close results as they both use
the classic P+V model for recognition. They perform
poorly on FERET because the used P+V model is a
linear superposition model in the pixel-spatial space,
which is less effective in handling the nonlinear pose
variation. In contrast, our proposed methods achieve
much better recognition results. For example, DisP+V
delivers 25.5%, 30.1%, 33.7%, 35.2%, 36.7%, and
39.9% improvements over SLRC when the enrolment
contaminated ratio is set at 0%, 10%, 30%, 50%, 70%,
and 90%, respectively.

6) Although the representation learning-based VAE also
performs variation disentanglement during encoding,
it is much less competitive with our DisP+V and

TABLE VI

VERIFICATION PERFORMANCE OF DISP+V ON THE MULTI-PIE, FERET,
CAS-PEAL, E-YALE-B&AR LIGHT, AND FRGC V2.0 DATASETS

DisP+Vpv. This is because it is an unsupervised method
and does not exploit the labeled identity information.

7) The recognition time of DisP+V on each dataset is less
than that of DisP+Vpv, which is consistent with the
complexity analysis results in Section IV-C. Moreover,
the recognition time of DisP+V and DisP+Vpv are both
far less than the acceptable 0.5 s, which is applicable
from a real-time perspective. VAE costs less time than
DisP+V as its encoder (i.e., feature extractor) has fewer
convolutional layers. S3RC costs more time than SLRC
and SVDL because it has an extra GMM clustering
process for prototype learning. In addition, SRC costs
the least time among all the methods.

C. Evaluation on Generated Prototype and Variation

This section evaluates the generated prototypes and the
variations by our proposed DisP+V on the Multi-PIE, FERET,
CAS-PEAL, E-Yale-B&AR Light, and FRGC v2.0 datasets.
In the experiments, the quality of the generated prototypes is
measured from both qualitative and quantitative perspectives.

1) Qualitative Analysis Results: We first illustrate the gen-
erated prototypes and the variations for four random enrolment
samples on each dataset in Fig. 4. For reference, we also show
the true prototypes of these enrolment samples.

From Fig. 4, we can observe that the prototypes and the
corresponding variations are well disentangled from the conta-
minated enrolment samples on all five datasets. Intuitively, for
enrolment samples contaminated by a single variation, such as
expression, pose, disguise, or lighting, DisP+V successfully
removes the corresponding variation in the learned prototypes.
Even in the case where the enrolment sample on FRGC v2.0 is
contaminated by multiple variations and the input type of
variation is unknown in advance, our DisP+V can still recover
appropriate prototypes to represent the identities. Furthermore,
we also observe that the generated variations capture the facial
variations of the original enrolment samples correctly and
contain little input identity information.

2) Quantitative Analysis Results: Since most of the gener-
ated prototypes by our DisP+V are visually appealing, it is
expected that these learned prototypes are more suitable to
represent the identities than the original contaminated enrol-
ment samples. To verify this assumption, we further perform
verification experiments between the learned prototypes by
DisP+V and the true prototypes and compare them with the
verification results between the original enrolment samples and
the true prototypes (baseline). Specifically, for each dataset,
we randomly sample 600 pairs of the generated prototypes and
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Fig. 5. Comparison results of DisP+V and its variants DisP+V w/o Did

and DisP+V w/o Dvar on FERET, CAS-PEAL, and FRGC v2.0 datasets.

Fig. 6. Prototype learning examples of DisP+V and its two variants on
(a) FERET, (b) CAS-PEAL, and (c) FRGC v2.0 datasets. The figures from
left to right are the original enrolment sample, the generated prototype by
DisP+V w/o Did, the generated prototype by DisP+V w/o Dgan, the generated
prototype by DisP+V, and the true prototype for reference, respectively.

true prototypes, where 200 pairs are positive and the remaining
400 pairs are negative, for verification. The cosine similarity
between each pair of samples is used for verification.

Two common-used metrics, i.e., true positive rate (TPR) and
average precision, are employed to measure the verification
performance. For the detailed definitions of the two metrics,
please refer to [66]–[68]. For TPR, we tune the similarity
threshold to let the false acceptance rate be 0.1. Each verifica-
tion experiment is repeated five times and the average results
(± standard errors) on the five evaluated datasets are presented
in Table VI. It can be observed that our DisP+V consistently
achieves better verification performance than the baseline
method in all cases over the five evaluated datasets, which
indicates that: 1) the generated prototypes by our DisP+V
preserve the input identity characteristics well and 2) are closer
to the true prototypes than the original contaminated enrolment
samples.

D. Ablation Study

In this section, we perform an ablation study on DisP+V.
In DisP+V, there are two discriminators, i.e., D = [Did, Dgan]
and D̃. We first investigate the roles of Did and Dgan in D on
the performance of DisP+V. Accordingly, we construct two
variants of DisP+V by removing Did and Dgan and denote

5More face editing and interpolation results are available at
https://github.com/PangMeng92/DisPV_TNNLS_Supplementary.git.

Fig. 7. Examples of generated prototypes and variations by DisP+V and
DisP+V w/o D̃ on CAS-PEAL dataset when the number of training epoches
increases from 100 to 300. (a) Generated prototypes. (b) Generated variations.

them as DisP+V w/o Did and DisP+V w/o Dgan, respectively.
We compare DisP+V with DisP+V w/o Did and DisP+V
w/o Dgan in terms of the recognition accuracy on the FERET,
CAS-PEAL, and FRGC v2.0 datasets that contain pose, dis-
guise, and multiple variations of expression and lighting.

As shown in Fig. 5, DisP+V consistently outperforms the
two variants over the three datasets. For example, DisP+V
delivers 33.8% (or 11.9%), 37.9% (or 19.8%), and 45.9% (or
23.6%) improvements over DisP+V w/o Did (or DisP+V w/o
Dgan) on FERET, CAS-PEAL and FRGC v2.0, respectively,
w.r.t. recognition rate for SSPP-ce FR with the contaminated
ratio of 50%. The results show that both of Did and Dgan con-
tribute to the recognition performance of DisP+V. Moreover,
we observe that Did plays a more important role than Dgan

as DisP+V w/o Did suffers larger performance degradation.
This is because Did is used to preserve the identity label,
which captures the most important identity information. Fur-
thermore, we illustrate the generated prototypes of an example
input image by DisP+V and the two variants on FERET,
CAS-PEAL, and FRGC v2.0, respectively, in Fig. 6. We can
see that, when removing Did, the identity characteristics of
the input sample are not preserved well in the generated
prototype or even difficult to be recognized; when removing
Dgan, the variation still exists in the generated prototype.

Subsequently, we study the role of D̃. As mentioned ear-
lier, we introduce this extra D̃ for predicting the ID of the
variation xv individually. In the experiment, we remove D̃
and directly use Did to predict both IDs of xp and xv and
perform two adversarial learning based on Did. We denote the
DisP+V variant as DisP+V w/o D̃ and illustrate the generated
prototypes and variations by DisP+V and DisP+V w/o D̃
on CAS-PEAL when the number of training epoch equals
100, 200, and 300, respectively, in Fig. 7. It can be observed
that: 1) compared with DisP+V w/o D̃, DisP+V usually
generates visually better prototypes containing fewer artifacts
and more accurate facial variations and 2) DisP+V w/o
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Fig. 8. Face editing and interpolation results5 on (a) Multi-PIE (Expression), (b) FERET (Pose), (c) CAS-PEAL (Disguise), (d) E-Yale-B&AR Light
(Lighting), and (e) FRGC v2.0 (Multiple variations). The two figures in the leftmost column are the input face images (one is standard and the other contains
variation). The figures from top to bottom are face images of other identities containing different target variations, the edited images, and the interpolated
images, respectively.

TABLE VII

RANK-10 RECOGNITION RATES OF OUR DISP+V AND THE COMPARED
GENERIC LEARNING AND PROTOTYPE LEARNING METHODS FOR

BOTH SSPP-SE FR AND SSPP-CE FR (RATIO = 50%)
ON LFW-A DATASET

D̃ generates visually terrible prototypes and noninformative
variations when the number of training epochs reaches 300,
which indicates that one single discriminator Did is insufficient
to tolerate two different adversarial training in DisP+V and
verifies the rationality of introducing the extra D̃ for dealing
with xv .

E. Face Editing/Interpolation
In this section, we explore the feasibility of DisP+V for

semantic face editing and interpolation [69]–[71]. To this end,
we take several face images on the Multi-PIE, FERET, CAS-
PEAL, E-Yale-B&AR Light, and FRGC v2.0 datasets and edit
(or interpolate) them by replacing their disentangled variation
features with the ones extracted from the target identities.

Fig. 8(a)–(e) shows some examples of face editing and
interpolation results on the Multi-PIE, FERET, CAS-PEAL,
E-Yale-B&AR Light, and FRGC v2.0 datasets, respectively.
From Fig. 8(a)–(e), we have two key observations.

1) DisP+V demonstrates powerful face editing ability on
adding target facial variations such as different expres-
sions (e.g., smile, laugh, and disgust), different poses,
different disguises (e.g., glasses and hat), different
lightings, or multiple variations of expressions and light-
ings into the standard images with little artifacts.

2) DisP+V is also capable of interpolating face images by
changing the original variations into the target ones. For
instance, in Fig. 8(c), the light-color ordinary glasses in
the input face have been well replaced by the other types

of ordinary glasses, sunglasses, and hats successively,
and the corresponding interpolated images look natural.

F. Evaluation Under Unconstrained Environment

In practice, an enrolment sample is likely to be contaminated
by complex mixed variations such as the combination of two
or more different variations. In this section, we apply our
DisP+V to the unconstrained LFW-a dataset that contains var-
ious mixed variations in the wild and evaluates its recognition
performance for SSPP FR in an unconstrained setting.

We first compare DisP+V with the baseline SRC,
the generic learning SLRC and SVDL, and the prototype
learning S3RC. The parameters of DisP+V and the other
methods are set in the same way as in Section V-B. We list
the rank-10 recognition rates of all the methods for SSPP-se
FR and SSPP-ce FR (ratio = 50%) in Table VII. Furthermore,
we enhance DisP+V by replacing the original encoder with
a pretrained LightCNN-29 feature extractor [72] on CASIA-
WebFace [73] and MS-Celeb-1M [74] datasets. We enforce the
dimension of the extracted features still to be 256 by modify-
ing the two disentanglement branches as two three-layer FC
(input: 256, output: 256) nets. The network structures of the
decoder Gdec in G and the two discriminators D and D̃ are
kept unchanged. In training, we freeze the parameters’ values
in the LightCNN-29 but just update the parameters’ values of
the FC layers, Gdec, D, and D̃. We denote our DisP+V using
the LightCNN-29 feature extractor as DisP+VLC29, and add
five recent deep learning-based methods, i.e., DeepID [75],
joint and collaborative representation with local adaptive
convolution feature (JCR-ACF) [5], VGG-face [76], regular-
face [37], Arc-face [36], and the state-of-the-art class-level
joint representation with regional adaptive convolution feature
(CJR-RACF) [11], for comparison. We follow the evaluation
protocol in JCR-ACF and present the rank-1 recognition
rates of DisP+VLC29 and the compared deep learning-based
methods in Table VII. From Tables VII and VIII, we have the
following key observations.

1) There exists a large gap between the performance of
DisP+V, SLRC, SVDL, and S3RC in Table VII and that
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TABLE VIII

RANK-1 RECOGNITION RATES (%) OF OUR DISP+VLC29 AND THE
COMPARED DEEP LEARNING-BASED METHODS ON LFW-A DATASET

Fig. 9. Prototype learning examples of nine selected enrolment samples on
LFW-a. From top to bottom: (a) original enrolment samples, (b) our generated
prototypes, and (c) true prototypes for reference.

in Table V, which indicates that it is rather challenging
to perform SSPP FR with mixed variations based on
a small-scale partitioned training set. In this case, our
DisP+V still outperforms the compared generic learning
SLRC and SVDL, and the prototype learning S3RC.

2) By introducing related large-scale Web face datasets
as the auxiliary set for pretraining, the five deep
learning-based methods obtain promising results based
on the pretrained models/features. Particularly for
CJR-RACF, it achieves a high rank-1 recognition rate
of 95.5%.

3) Benefiting from the pretrained LightCNN-29 feature
extractor, DisP+VLC29 has a significant gain over
DisP+V and achieves an inspiring recognition rate
of 96.7% for SSPP FR on LFW-a, which is better than
95.5% obtained by the state-of-the-art CJR-RACF.

Furthermore, we visualize the colored generated prototypes
by DisP+V for nine contaminated enrolment samples in Fig. 9.
It can be observed that our DisP+V shows good capabilities
to learn identity-preserved prototypes for the samples with the
mixed variations of slight-to-moderate poses and expressions.
It is worth mentioning that in a few cases where enrolment
samples are contaminated by serious facial variations, such
as mixed variations of large poses and expressions/occlusions,
DisP+V cannot generate satisfactory prototypes because some
key facial information is missing in these cases.

Generally speaking, the experimental results in Fig. 9 and
Table VII have demonstrated the effectiveness of DisP+V to
learn prototypes for the in-the-wild faces containing complex
mixed variations and the superiority for performing SSPP FR
in unconstrained setting over the existing generic learning
and prototype learning methods. Moreover, the significant
improvement of DisP+vLC29 over DisP+V verifies the feasi-
bility of combining our DisP+V with pretrained deep feature
extractors for solving practical SSPP FR.

VI. CONCLUSION

In this article, we have proposed a new disentangled proto-
type plus variation (DisP+V) model. In contrast to the classic

P+V model that combines face images in the observational
pixel-spatial space and can only handle linear variations,
our DisP+V performs the combination in a latent semantic
space and can handle both linear and nonlinear variations.
DisP+V consists of an encoder–decoder structural generator
and two discriminators. The generator and discriminators play
two adversarial games such that the generator: 1) nonlinearly
encodes the images into a latent semantic space where the
more discriminative prototype feature and the less discrim-
inative variation feature are disentangled and 2) generating
an identity-preserved prototype and the corresponding vari-
ation image. Extensive experiments on various real-world
face datasets with single/multiple and mixed variations have
verified the superiority of DisP+V over the classic P+V
model-based counterparts for SSPP FR and the effectiveness
for handling the tasks of prototype recovery and face edit-
ing/interpolation.

It is worth mentioning that, although the proposed DisP+V
has shown the promising ability for learning homogeneous
prototype from a contaminated face image in a single domain,
it is unable to learn heterogeneous prototypes across differ-
ent domains (e.g., near infrared→visible) because it ignores
considering the key factor of domain type. Such a new
issue of heterogeneous prototype learning (HPL) is quite
challenging as it involves two intertwined subproblems of
prototype learning and domain transfer. To tackle HPL, we aim
to generalize DisP+V to multiple domains based on a new
face composition hypothesis (i.e., P+V+D model) that a face
image is composed by the three factors of identity-relevant
prototype, facial variation, and domain type. We will leave
the interesting study as the future research work.
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