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Relation-Aggregated Cross-Graph Correlation
Learning for Fine-Grained Image–Text Retrieval
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Xing Xu , Member, IEEE, and Zhen Cui , Member, IEEE

Abstract— Fine-grained image–text retrieval has been a hot
research topic to bridge the vision and languages, and its
main challenge is how to learn the semantic correspondence
across different modalities. The existing methods mainly focus on
learning the global semantic correspondence or intramodal rela-
tion correspondence in separate data representations, but which
rarely consider the intermodal relation that interactively provide
complementary hints for fine-grained semantic correlation learn-
ing. To address this issue, we propose a relation-aggregated cross-
graph (RACG) model to explicitly learn the fine-grained semantic
correspondence by aggregating both intramodal and intermodal
relations, which can be well utilized to guide the feature cor-
respondence learning process. More specifically, we first build
semantic-embedded graph to explore both fine-grained objects
and their relations of different media types, which aim not
only to characterize the object appearance in each modality, but
also to capture the intrinsic relation information to differentiate
intramodal discrepancies. Then, a cross-graph relation encoder is
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newly designed to explore the intermodal relation across different
modalities, which can mutually boost the cross-modal correlations
to learn more precise intermodal dependencies. Besides, the
feature reconstruction module and multihead similarity align-
ment are efficiently leveraged to optimize the node-level semantic
correspondence, whereby the relation-aggregated cross-modal
embeddings between image and text are discriminatively obtained
to benefit various image–text retrieval tasks with high retrieval
performance. Extensive experiments evaluated on benchmark
datasets quantitatively and qualitatively verify the advantages
of the proposed framework for fine-grained image–text retrieval
and show its competitive performance with the state of the arts.

Index Terms— Cross-graph relation encoder, fine-grained cor-
respondence, image–text retrieval, intermodal relation.

I. INTRODUCTION

V ISION and language are two most prevalent information
for human to intuitively understand the real world. With

the fast development of multimedia technology, multimedia
data, such as image and text, have been accumulated explo-
sively from the social media and web applications. To maxi-
mally benefit from the richness of multimedia data, image–text
retrieval has become an essential technique for searching
engine as well as multimedia data management system, which
enables to index semantically relevant instance from one
modality with instance from another different modalities.
Nevertheless, the modality gap, large intramodal discrepancy,
and weak intermodal dependency pose a great challenge to
learn the semantic correspondence between the heterogeneous
image–text data. For instance, the searching system has to
distinguish the phrase “river bank” from “financial bank”
(intramodal discrepancies) and connect them to the corre-
sponding visual examples (intermodal dependencies).

In recent years, a great deal of research has been devoted
to bridge the heterogeneity gap between image and text,
by transforming the heterogeneous data samples into a joint
embedding space. Along this line, the pioneer works [1],
[2] mainly rely on the handcrafted features extracted from
both visual and textual data, which often limit the image–text
retrieval performance. Recently, significant progress has been
made in representation learning using deep neural networks,
and most deep image–text matching methods generally yield
the improved retrieval performance on many benchmarks [3],
[4]. Early approaches often utilize the global representations
to capture the image–text correspondence [5], [6]. Alterna-

2162-237X © 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Hong Kong Baptist University. Downloaded on April 09,2024 at 07:05:51 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0002-0011-6260
https://orcid.org/0000-0001-7629-4648
https://orcid.org/0000-0001-5685-3123
https://orcid.org/0000-0002-0543-4196


PENG et al.: RACG CORRELATION LEARNING FOR FINE-GRAINED IMAGE–TEXT RETRIEVAL 2195

Fig. 1. Illustration of coarse and fine-grained graph correspondence. The
existing graph models only aggregate the intramodal relation in each graph
representation. Differently, the proposed graph model integrates both of
the intramodal relation and intermodal relation to explore the fine-grained
relationships across different modalities.

tively, some works map the real-valued feature representations
into the Hamming space to improve the retrieval efficiency
[7]–[9]. Note that, these approaches generally work well on
simple image–text retrieval scenarios that only contain a single
object, but which often lead to performance degradation for
more realistic cases that involve complex natural scenes.

Recent studies pay attention to local correspondence learn-
ing by detecting the fine-grained objects in both images and
texts, whereby the image–text similarity scores are aggregated
by all salient object pairs for better correlation [10]–[12].
Although these local matching approaches have gained sig-
nificant improvements over previous global matching works,
it remains challenging mainly due to the insufficient rep-
resentation of object relations and their explicit semantic
connections in one modality as it is matched in another
modality. For instance, as illustrated in Fig. 1, the main
objects “man” and “surfboard” both appear in the scene, but
the action meanings between “holding a surfboard” and “on his
surfboard” are inherently different. Under such circumstances,
the aforementioned methods often fail to explicitly model such
semantic relationships, and their performances need further
improvements.

In a sense, the exploration of cross-media correlation should
not only learn the feature correspondence between the image
patches and key words, but also need to characterize the
relation correspondence lying in the visual and textual context.
In recent years, graph models are popularized to model the
objects and their relationships interpretably and have quickly
become a powerful tool in high-level image–text matching
tasks [13], [14]. Although these graph models have veri-
fied the benefits of the graph representations on high-level
semantic understanding tasks, the fine-grained cross-modal
correspondence may not be fully captured, since the graph
representations and correlation regularization are performed in
tandem rather than learning simultaneously. Besides, as shown
in Fig. 1, these models only consider the intramodal relation
in each graph structure, which often ignore the important
intermodal relation that can provide complementary informa-
tion for fine-grained semantic correspondence learning.

To the best of our knowledge, no study has attempted
to aggregate both of the intramodal relation and intermodal
relation for fine-grained image–text retrieval. Toward this end,

this article presents an efficient relation-aggregated cross-
graph (RACG) model to explicitly learn the fine-grained
semantic correspondence, by aggregating both intramodal and
intermodal relations. On the one hand, the relation-aggregated
object correspondence forces the network to explicitly learn
the fine-grained semantic correspondence across different
modalities. On the other hand, the fine-grained semantic cor-
respondence also promotes to guide the object feature learning
process. The main contributions are summarized as follows.

1) A cross-graph relation encoder is efficiently addressed
to explore the intermodal relationships across different
graph representations. This is the first work to perform
cross-graph interactions on visual and textual modalities,
which can maximally benefit the node-level semantic
correlation to infer the fine-grained correspondence.

2) A relation-aggregated graph model is newly designed
to seamlessly aggregate the intramodal and intermodal
relations, which can be explicitly utilized to achieve the
fine-grained image–text retrieval.

3) Extensive experiments verify the advantages of the
proposed framework under various image–text retrieval
tasks.

The remaining part of this article is structured as follows.
Section II surveys the existing image–text retrieval works, and
Section III elaborates the proposed RACG model in detail. The
experimental results and quantitative comparisons are provided
in Section IV. Finally, we draw a conclusion in Section V.

II. RELATED WORK

Existing image–text retrieval works can be roughly catego-
rized into global correspondence learning and local correspon-
dence learning branches.

Global correspondence learning aims to map the hetero-
geneous image and text examples into a common embedding
space [5], [15]. Along this line, the pioneer canonical corre-
lation analysis (CCA) [1] utilizes the linear transformations
to learn a common space that can maximize the correlations
between different modalities. Meanwhile, some reasonable
extensions, e.g., sparse subspace learning (SSL) [16], [17] and
correlated subspace learning (CSL) [2], have also been devel-
oped. Note that, these methods highly rely on the handcrafted
features extracted from the visual and textual data, which often
limit their cross-modal matching performance.

Inspiring from the recent success of deep neural net-
work, some researchers exploit two-branch deep networks
to learn the high-level image–text correlations. For instance,
Frome et al. [18] first proposed a deep visual-semantic match-
ing framework to extract cross-modal representations and
then associated them with a structured objective function.
Feng et al. [19] first employed two uni-modal autoencoders
to characterize each modality and then correlated the hidden
representations of image–text pairs by minimizing the recon-
struction loss. Shu et al. [20] and Tang et al. [21], respec-
tively, built a deep network structure to translate cross-domain
information from text to image, featuring on mitigating the
insufficient training data problem. Liu et al. [22] utilized a
recurrent residual fusion block to correlate the modality-
specific representations and created a co-embedding space for
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image–text matching. Gu et al. [6] selected two generative
models to perform similarity matching between textual-visual
data samples, while Wang et al. [23] utilized a multimodal
tensor fusion network to learn the image–text similarity.
In addition, Yu et al. [24] exploited the potential information
of the unlabeled data to contribute the correlation learning
among the heterogeneous data. Wang et al. [15] investigated
two-branch neural networks to learn the similarity between
image and text. Alternatively, some works map the deep
feature representations into the hash codes to accelerate the
retrieval speed [25]–[27]. Note that, these approaches often
involve two limitations: 1) these global matching methods
often work well on simple image–text retrieval scenario that
contains only a single object, but which often degrade their
performance on complex natural scenes and 2) the multiple
objects and their semantic relations within the data samples
are not discriminatively exploited, whereby the semantic cor-
respondence and relationship are not well revealed for high
retrieval performance.

Local correspondence learning mainly attempts to learn
the local alignment between images and sentences, which have
achieved more interpretable retrieval performances [28], [29].
Naturally, a more reasonable way for image–text matching is
to capture the fine-grained interplay between the salient image
patches and the key words in the sentences. Attention mecha-
nism, aiming at exploiting the salient parts of visual or textual
inputs, is recently popularized to learn more discriminative
cross-modal representations. For instance, Huang et al. [30]
addressed a context-modulated attention scheme to correlate a
pair of image–text instances, while Nam et al. [31] exploited
a dual attention network by jointly leveraging visual and
textual attentions to estimate the cross-modal similarity. Later,
Lee et al. [10] presented a stacked cross attention model to
discover the full latent alignment between vision and lan-
guage. In addition, Xu et al. [12] proposed a hybrid match-
ing approach that performs cross-modal attention for local
semantic alignment. Although these attention mechanisms
have achieved impressive image–text retrieval performance,
these approaches often lose sight of the relationships between
the salient objects in each media data, and therefore, their
image–text retrieval performances need further improvements.

With more recent research topics focusing on graph
representations, scene graphs are beneficial to model the
objects and relationships formally and have quickly become
a powerful tool for many high-level semantic understanding
tasks. Accordingly, some works attempt different graph struc-
tures to represent the visual and textual data. For instance,
Li et al. [13] built an interpretable reasoning model on a graph
topology and performed graph convolutional networks to pro-
duce relationship-enhanced features. Liu et al. [14] modeled
the object, relation, and attribute as a structured phrase and
presented a graph structured matching network (GSMN) to
learn the semantic correspondence between the structured
phrases. Wang et al. [32] utilized the graph model to represent
the image and text and formulated the image–text retrieval
task as a cross-modal scene graph matching (SGM) problem.
He et al. [33] addressed a cross-graph attention model to
guide the feature learning process of each modality and pro-

moted the learning of the shared semantic concepts. Note that,
these methods have verified the benefits of the graph repre-
sentations on high-level semantic understanding tasks. Never-
theless, the current graph models only consider the intramodal
relation within each media data representation, which ignore
the important intermodal relation that can interactively provide
complementary information for semantic correlation learning.
From a practical viewpoint, it is still desirable to develop
a more robust graph structure for fine-grained image–text
retrieval.

III. PROPOSED RACG MODEL

The proposed framework aims to learn the fine-grained
correspondence between the image and the text. As illustrated
in Fig. 2, we first build semantic-embedded graph to explore
the salient patches and their intramodal relations of different
media types. Then, a cross-graph relation encoder is efficiently
designed to aggregate the intermodal relation across different
modalities. Besides, the node-level correspondence module
and multihead similarity alignment are leveraged to optimize
the graph node representations.

A. Modality-Specific Representation

1) Visual Feature Embedding: For an input image I, the
bottom-up attention mechanism [34] is utilized to discriminate
a set of objects (i.e., salient image region), with each object
represented by a pooled convolutional feature vector, simply
denoted as O = {o1, o2, . . . , ono }, where no is the number of
detected objects. In general, the position information is able
to model the spatial relation of each object [35], [36], and
the integration of position information could enhance the dis-
crimination power of the visual representations. Similarly, the
absolute normalized position is appended to the corresponding
object features, simply written as P = { p1, p2, . . . , pno

}.
To fully model the relations between image objects, two fully
connected layers are, respectively, applied to encode these
object features with high-level representation

hI
i = FCo(oi)||FCp

�
pi

�
(1)

where “||” indicates concatenation, and FCo(·) and FCp(·),
respectively, denote the fully connected layer to encode the
object vector and position vector. Consequently, the visual
representation HI = {hI

1 , hI
2 , . . . , hI

no
} can capture both

semantic and spatial information to characterize the image
sample.

2) Textual Feature Embedding: For an input text T, we first
construct the words vocabulary and characterize the i th word
with its corresponding index Ti

word. Then, an embedding
matrix Ww is utilized to map the index information into word
features. Meanwhile, the off-the-shelf Stanford CoreNLP [37]
is utilized to parse the part-of-speech (POS) vector Ti

pos for
the i th word. Similarly, an embedding matrix Wpos is further
utilized to encode the POS vector, and we concatenate these
two embedding vectors to represent the word

tTi = WwTi
word

����WposTi
pos (2)
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Fig. 2. Schematic architecture of the proposed RACG framework.

where tTi encodes the i th word vector that can capture both of
the index and POS information in the sentence. Note that, the
bidirectional encoding of word information is important for
sentence-level representation [34], [38], and we further trans-
form tTi into d-dimensional feature space using a bidirectional
gated recurrent unit (bi-GRU). That is, the encoding of the i th
word is sequentially aggregated by averaging the hidden state
of forward and backward bi-GRU

hT
i =

−→
GRU

�
tTi

�+ ←−
GRU

�
tTi

�
2

(3)

where
−→

GRU(tTi ) and
←−

GRU(tTi ), respectively, denote the aggre-
gated vector of tTi derived in forward and backward directions.
Consequently, the semantic-enhanced textual representation
HT = {hT

1 , hT
2 , . . . , hT

nw
} is discriminatively obtained to

characterize the contextual information in the sentence, where
nw is the number of the word units.

It is noted that the recent Bidirectional Encoder Represen-
tations from Transformers (BERT) [39] encoder is another
powerful language encoding method, which aims to learn the
deep bidirectional representations from the sentence by jointly
conditioning on both left and right contexts in all network
layers. Alternatively, the BERT encoder is also selected to
characterize each word in the sentence

hT
i = FCb

�
BERT

�
tTi

���
(4)

where BERT denotes the bert encoder, and FCb(·) denotes the
fully connected layer that utilized to map the output of BERT
encoder into d-dimensional feature space.

B. RACG Encoder

Inspired by recent advances in graph representation, scene
graphs are popularized to model the objects and their relations
in high-level semantic understanding tasks. To the best of
our knowledge, existing graph models often perform the
intramodal relation aggregation and correlation regularization

in a successive way rather than learning simultaneously. Note
that, the cross-graph relation, as the complementary, is able to
provide valuable intermodal relation for fine-grained semantic
correlation learning. To this end, we design an RACG encoder
to aggregate both of the intramodal correlations and the
intermodal interactions. As shown in Fig. 2, we construct an
integrated graph G = (V , E), in which V denotes a set of
nodes that consist of object nodes in image and word nodes in
text, and E is the edge set that represents a connection between
two nodes. In particular, the adjacent matrix, usually marked
as A ∈ R

n×n, is often utilized to represent the relationships
between the nodes in V , with each element Ai j characterizing
the connection strength between the i th node and the j th node,
where n = no + nw is the sum of node numbers. There will
be an edge with high weight value connecting two nodes if
they have strong semantic relationships, and vice versa. More
specifically, the graph encoder G is comprised of three sub-
graph encoders, i.e., visual graph encoder GI , textual graph
encoder GT , and cross-graph encoder GC , with architectures
detailed as follows.

1) Visual Graph Encoder: The scene graph GI = (VI, EI)
is constructed from the visual modality, where the salient
objects are represented as the nodes VI ∈ HI in the graph
and are connected by the edge set EI . The node relationships
are expressed by the weighted adjacent matrix AI ∈ R

no×no .
More formally, an implicit relation between two nodes can
be reflected in the form of triplets, e.g., (hI

i , AI
i j , hI

j ), which
semantically describes the semantic connection from head
node hI

i to tail node hI
j . Furthermore, two mapping functions

κ(·) and μ(·), respectively, termed head mapping function and
tail mapping function, are utilized to map the head node and
tail node into the high-level hyperspaces

κ(h) = Wκ h + bκ, μ(h) = Wμh + bμ (5)

where h denotes the node feature vector in the graph, and
Wκ , bκ and Wμ, bμ are the trainable parameters. During
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Fig. 3. Dependency parser of a sentence example.

the training process, the mapping functions Wκ and Wμ

are initialized by standard Xavier normal initializer, with
zero mean and the standard deviation adaptively set at
sqrt(2/( fin + fout)), where fin is the input layer size, and fout

is the output layer size. Accordingly, the graph self-attention
can be utilized to perform node aggregation, and the weighted
adjacency matrix can be computed from the hidden represen-
tations of each graph node by attending over its neighbors

AI
(i, j) =

exp
�
κ
�
hI

i

� · μ�
hI

j

�T
�

�
k∈Ni

exp
�
κ
�
hI

i

� · μ�
hI

k

�T
� (6)

where AI
(i, j) represents the relation propagation between the

i th node and the j th node, and Ni denotes the neighboring
node set of the i th node. In particular, we construct pairwise
combinations between all salient objects and utilize the fully
connected graph to consider their intramodal relations.

2) Textual Graph Encoder: The textual semantic graph
GT = (VT , ET ) is constructed from the textual modality,
where the word units are represented as nodes VT ∈ HT in
the graph and are connected by the edge ET . In particular,
the node relationships are implicitly reflected by the weighted
adjacent matrix AT ∈ R

nw×nw . Similarly, the triplet tuple
(hT

i , AT
i j , hT

j ) is utilized to semantically describe the semantic
connection from head node hT

i to tail node hT
j .

Furthermore, the mapping functions κ(·) and μ(·), formu-
lated in (5), are also utilized to, respectively, map the head
node and the tail node into the high-level hyperspaces. That
is, the transformed node feature vector κ(hT

i ) is selected as
the source of message propagation, while the transformed
node feature vector μ(hT

j ) is chosen as the destination of
message propagation. Similarly, the graph attention is utilized
to perform node aggregation, and the weighted adjacency
matrix can be computed from the hidden representations of
each node in the graph by attending over its neighbors

AT
(i, j) =

exp
�
κ
�
hT

i

� · μ�
hT

j

�T
�

�
k∈Ni

exp
�
κ
�
hT

i

� · μ�
hT

k

�T
� (7)

where AT
(i, j) denotes the relation propagation between the i th

node and the j th node in textual graph. As shown in Fig. 3,
the off-the-shelf Stanford CoreNLP [37] not only can parse
the object (nouns), relation (verbs), and attribute (adjectives
or quantifiers) in a sentence, but also encodes their semantic
dependencies in the sentences. Accordingly, we set each word
as the graph node, and there exists connection between two
word nodes if they are semantically dependent.

3) Cross-Graph Relation Encoder GC: The existing graph
models only consider the intramodal relation within each
media data representations, which ignore the important

intermodal relation that can interactively provide complemen-
tary information for semantic correlation learning. Note that,
the node interactions between different modalities are impor-
tant to benefit the cross-modal correlation learning. Toward
this end, a cross-graph relation encoder GC = (VC, EC)
is newly designed to bridge the image and text, where the
node set consists of pairwise combinations of nodes, respec-
tively, from VI and VT , i.e., VC = {(vi , v j )|vi ∈ VI,v j ∈
VT }. The edge set EC assembles the intermodal interactions.
As shown in Fig. 2, we group the no visual nodes and nw

textual nodes together and construct the cross-modal adjacent
matrix AC to express the intermodal relation. Accordingly, the
triplet tuple (hI

i , AC
i j , hT

j ) is utilized to semantically charac-
terize the relationship from the head node hI

i to the tail node
hT

j . In this cross-graph encoder, there exit two connection
flows, one of which is formed from the image to text, and the
other is derived from the text to image. Similarly, the mapping
functions κ(·) and μ(·) are further utilized to map the head
node and the tail node into the high-level hyperspaces. Then,
each visual node associated with its relevant textual nodes or
textual node associated with its relevant visual nodes will be
aggregated by the cross-graph attention module

ACIT
(i, j) =

exp
�
κ
�
hI

i

� · μ�
hT

j

�T
�

�
k∈Ni

exp
�
κ
�
hI

i

� · μ�
hT

k

�T
� (8)

ACT I
(i, j) =

exp
�
κ
�
hT

i

� · μ�
hI

j

�T
�

�
k∈Ni

exp
�
κ
�
hT

i

� · μ�
hI

k

�T
� (9)

where ACIT
(i, j) denotes the intermodal relation of the i th image

node correlating with the j th word node, and ACT I
(i, j) repre-

sents the intermodal relation of the i th word node correlating
with the j th image node. In general, the nouns and attributes
within the sentence have a direct semantic connection with
the salient objects in the image, while the other words in
the sentence contribute little to the cross-modal connection.
Therefore, the nouns and attributes within text data are only
utilized to form a direct connection with the object nodes in
the image.

4) Relation-Aggregated Integration: As shown in Fig. 4,
the relation-aggregated node representations associated with
its relevant nodes from another modality can provide comple-
mentary information for learning fine-grained correspondence.
Therefore, an efficient graph model should not only aggregate
the intramodal relations, but also is capable of assembling
the intermodal relations. To this end, we put nodes of two
modalities together and build an integrated relation-aggregated
graph G to aggregate both of the intramodal correlations and
the intermodal interactions, where its weighted adjacent matrix
A is integrated as follows:

A =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

AI
(i, j)/n, i ≤ no, j ≤ no

AT
(i, j)/n, no < i ≤ n, no < j ≤ n

ACIT
(i, j) /n, no < i ≤ n, j ≤ no

ACT I
(i, j) /n, i ≤ no, no < j ≤ n

0, otherwise

(10)
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Fig. 4. Illustration of cross-graph relation interaction, in which the circles of
different colors denote the graph nodes in different modalities, and the large
blue arrow indicates that the relation information in the head hyperspace will
flow to the tail hyperspace. The solid line denotes the intramodal relations,
while the dashed line of red color represents the intermodal relations.

where A ∈ R
n×n denotes the weighted adjacent matrix

that expresses an implicit relation aggregated from both of
intramodal graph nodes and intermodal graph nodes. Accord-
ingly, the semantic graph correspondence can be explicitly
inferred by propagating the neighboring node correspondence,
and the representations of graph nodes can be enhanced
and updated by aggregating information from their adjacent
nodes. To be specific, each node is updated by integrating
neighborhood node vectors using graph convolution network
(GCN) [32]

ci =
������

1

n



k∈Ni

W c
2

�
A(i,k)W c

1hk + hi
�+ bc

������
2

(11)

where ci is the i th updated node vector, hi denotes the i th node
feature vector in G, W c

1, W c
2, and bc are trainable parameters,

and �·�2 denotes the �2 normalization. Consequently, the
relation-aggregated node features C = {c1, . . . , cno+nw

} are
obtained. Through aggregation and updating of nodes, the
dependency between two modalities is well correlated, and the
semantic relations across different modalities are enhanced.

C. Node-Level Semantic Correspondence

In essence, each relation-aggregated node should seman-
tically match the input node to maintain the semantic con-
sistency. Therefore, we compute the similarities between the
input node and the relation-aggregated nodes and utilize the
normalized attention coefficients to indicate their semantic
consistency
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where WI ∈ R
no×n and WT ∈ R

nw×n are, respectively, the
similarity matrix of visual modality and textual modality, and
λ is a scaling factor. In general, the node-level correspondence
can be indicated by mutual reconstruction from the node-level
representations. Accordingly, we reconstruct the nodes as a
weighted combination of the relation-aggregated node vectors

RI = WIC, RT = WT C (14)

where RI = {rI1 , . . . , rIno
} and RT = {rT1 , . . . , rTnw

}, respec-
tively, denote the reconstructed node feature vectors of visual
and textual modalities. As such, an optimal similarity func-
tion, by minimizing the representation learning error for each
modality, can be utilized to train the whole model.

D. Multihead Similarity Function

The semantic correspondence can be inferred by computing
the similarly score between the node pairs. Unlike previous
approaches [13] that compute the global similarity, we employ
a multihead module to compute block-wise similarity between
the input node and the reconstructed node representation, with
large similarity indicating the semantically matched node pair
and small similarity indicating the semantically unmatched
node pair. To be specific, the multihead mechanism is lever-
aged to split the i th node feature vector into k-heads

hI
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where � indicates the concatenation operation, hI
i,k is the kth

split feature vector from hI
i , and vice versa. Accordingly,

we calculate the multiblock similarity for each head
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where �·� denotes �2 regularization. Accordingly, the output of
similarity score is defined as a concatenation over the output
of k-heads, followed by two fully connected layers:
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where FCI
1 , FCI

2 , FCT
1 , and FCT

2 are trainable parameters,
and tanh denotes the nonlinear activation function. The final
similarity S between the image–text pair can be obtained by

S = 1

2

��n0
i=1 sIi
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+
�nw

i=1 sTi
nw

�
. (20)

E. Loss Function

Following most existing works [5], [14], the triplet loss
is generally utilized to optimize the hard negative samples.
Accordingly, (20) can be employed for regularization at each
mini-batch, totally resulting the following loss:
Lmain =



(I,T )

��
α − SIT + SIT̂

�
+ +

�
α − SIT + SÎT

�
+
�

(21)
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where [·]+ = max(·, 0), and parameter α denotes the margin
between the positive pairs and negative pairs. Î and T̂ are the
corresponding hard negative samples, respectively, obtained
by Î = argmaxĨSĨT and T̂ = argmaxT̃ SIT̃ , where Ĩ and
T̃ are negative samples. Note that, the triplet loss is able to
enlarge the distance between the positive sample pairs and
the negative sample pairs, but which cannot ensure that the
similarity value between the matched sample pair is large,
and the similarity score between the unmatched sample pair
is small. To tackle this problem, we further design an auxiliary
loss Laux to increase the absolute score of matched pairs while
decreasing the absolute score of unmatched pairs

Laux =



(I,T )

��
SIT̂ − γ

�
+ +

�
SÎT − γ

�
+ + [β − SIT ]+

�

(22)

where β and γ are hyperparameters. Consequently, the total
loss is the sum of main loss and auxiliary loss

L = Lmain + τLaux (23)

where hyperparameter τ is utilized to balance the contributions
of two loss functions. Through the joint exploitation of (23),
the semantic correspondence derived from image and text is
well obtained for various image–text retrieval tasks.

F. Testing Stage With ReRanking Strategy

The similarity ranking of the searching results reflects the
most relevant results to the user and is of crucial importance
to the retrieval systems. Inspired by the reranking scheme
proposed by works [11], [23], a reranking process reorganizes
the similarity matrix to get a more accurate one, which could
narrow the gap between the training and testing data. Similar to
work [11], we also select the image-to-text reranking scheme
in the experiments. Given a query image I and its initial
ranking list produced by (20), we define RIT (I, K ) as the
initial cross-modal K -nearest neighbor text of image I

RIT (I, K ) = �
T1, . . . , T j , . . . , TK

�
. (24)

Accordingly, for each candidate text T j , a set RT I(T j , N)
of N-nearest images can be defined as

RT I
�
T j , N

� = {I1, . . . , Ik, . . . , IN } (25)

where N is the number of images in the testing set. To fuse
the bidirectional nearest neighbors, the position index of each
candidate T j can be redefined as

p(Ti ) = k, ifIk = I, Ik ∈ RT I
�
T j , N

�
. (26)

Then, a position set P can be built for all candidate text in
the initial K -nearest neighbors RIT (I, K )

P(I, K ) = �
p(T1), . . . , p

�
T j

�
, . . . , p(TK )

�
. (27)

Consequently, we can refine the retrieval list for the query
image I by reranking the position set as a final retrieval result.

IV. EXPERIMENTS

This section conducts a series of quantitative experiments
to validate the efficiency of the proposed framework on fine-
grained image–text retrieval task. The performance evaluations
and analysis will be detailed in Section IV-A.

A. Dataset and Evaluation Metrics

Two public multimodal datasets, i.e., Flickr30k [40] and
Microsoft Common Objects in Context (MSCOCO) [41], are
utilized to evaluate the image–text retrieval task, including text
retrieval (image query) and image retrieval (text query). Each
dataset is briefly described as follows.

1) Flickr30k Dataset: It consists of 31 783 images collected
from the Flickr website, and each image is associated
with five sentences. Similar to work [32], we split
1000 images for validation, 1000 images for testing, and
the rest for training.

2) MSCOCO Dataset: It contains 123 287 images, each of
which corresponds to five manually annotated sentences.
Similar to the work [32], the dataset is divided with
5000 images for validation, 5000 images for testing
(MSCOCO 5K), and 113 287 images for training. Mean-
while, we also perform MSCOCO 1K testing in the
experiments, in which the test dataset is divided into
five 1k subsets, and the image–text retrieval results are
the average performance on them.

To quantitatively evaluate the image–text retrieval perfor-
mance, we report the score of popular R@K , which is the
percentage of queries whose ground truth is ranked within
top-K instances, with higher score indicating the better perfor-
mance. Meanwhile, we also compute an additional “mR” score
for overall evaluation, which averages all the recall values to
assess the overall performance for both retrieval tasks.

B. Implementation Details

In the experiments, the proposed framework is implemented
in the PyTorch platform. For image representation learning,
the pretrained visual features with 36 patches provided by
Stacked Cross Attention Network (SCAN) [10] are selected for
training, and each patch is characterized with 2048-D vector.
Meanwhile, the position information of each region is encoded
with 128-D vector. For text representation learning, the word
embedding size and the POS size are, respectively, set at
300 and 15. Meanwhile, we utilize either a GRU encoder [34]
(word embedding size: 300, batch size: 80) or a pretrained
BERT model [39] (word embedding size: 768, batch size: 64)
to learn the word-level representations. The output dimension
of visual and textual encoder is fixed at 1024. During the
training, we utilize Adam optimizer with 25 epochs, and
the initial learning rate is set at 0.0002, with decaying 10%
every 10 and 15 epochs, respectively, for the Flickr30k and
MSCOCO datasets. In multihead similarity function, we set
the head number k at 64 and fix the scaling factor λ at 4. For
the regularization parameters, the balance parameter τ is set
at 0.2, and the margin values are set at α = 0.2, β = 0.7, and
γ = 0.3.
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TABLE I

QUANTITATIVE RESULTS OF IMAGE–TEXT RETRIEVAL ON DIFFERENT DATASETS, AND THE BEST RESULTS ARE HIGHLIGHTED IN BOLD

Meanwhile, we compare the proposed RACG model with
the state-of-the-art competing methods, including the follow-
ing: 1) global matching methods: Deep Structure-Preserving
Embedding (DSPE) [3], Visual-Semantic Embeddings with
hard negatives (VSE++) [5], Text-Image Modality Adver-
sarial Matching (TIMAM) [4], and Generative Cross-modal
Network (GXN) [6]; 2) local matching methods: Semantic
Concept-Order (SCO) [28], SCAN [10], Cross-modal Adap-
tive Message Passing (CAMP) [29], Cross-modal Attention
with Semantic Consistency (CASC) [12], Position Focused
Attention Network (PFAN) [35], and Dual Semantic Relations
Attention Network (DSRAN) [11]; and 3) graph matching
methods: Visual Semantic Reasoning Network (VSRN) [13],
SGM [32], and GSMN [14]. Note that, the best results reported
in SCAN [10], GSMN [14], and CASC [12] works are
generally obtained by an ensemble of two models or their
fused similarities. To be specific, SCAN [10] and PFAN [35]
combine the two retrieval models by averaging their predicted
similarity scores, while CASC [12] fuses the local attention
alignment and global constraint to produce the highest results.
GSMN [14] models the text as either a sparse graph or a
dense graph and ensembles them by averaging their similarity
to improve the performance. Similar to GSMN [14], we also
ensemble the similarity of sparse graph (baseline) and dense
graph to evaluate the performance. For simplicity, we mark
such ensemble method with symbol “*” and report its results.

C. Performance Analysis and Comparison

The image–text retrieval results tested on different datasets
are shown in Tables I and II, and it can be found that the
global matching methods have delivered relatively lower recall
scores, for reason that the semantic correlation between the
image and text is not well exploited by global correspondence

learning methods. For instance, GXN [6] utilizes generative
models to exploit the global correspondence between the entire
image and the sentence, which generally ignores the local
structure embedded in real-world data and, therefore, results
in a lower matching performance. In contrast to this, the local
matching methods often yield the better performances than the
global matching methods. For instance, SCAN [10] performs
cross-modal attention for local alignment and aggregates the
region-word similarity for image–text retrieval, which gener-
ally deliver the better image–text matching performances. For
example, the R@1 scores of text retrieval obtained by the
SCAN method are reached up to 67.4 and 72.7, respectively,
tested on the Flickr30k and MSCOCO 1K datasets. By consid-
ering the relationships between different objects in the scene,
the graph matching methods often improve the image–text
matching performances. Along this way, the performances
delivered by SGM, VSRN, and GSMN methods are gener-
ally better than that obtained by global matching methods
and most local matching methods. In particular, SGM [32]
utilizes the graph representations to characterize both image
and sentences, which can well model the salient objects and
their high-level semantic relationships. As a result, the R@1
scores of text retrieval obtained by the SGM approach reach
up to 71.8 and 73.4, respectively, evaluated on the Flickr30k
and MSCOCO 1K datasets. This indicates that the high-level
semantic relationships can provide valuable information for
fine-grained image–text retrieval.

Comparatively speaking, the proposed framework aggre-
gates more semantic relationships by considering both
intramodal and intermodal relations, which can explicitly
learn the fine-grained semantic correspondence to correlate
the image and sentence. As shown in Tables I and II, the
proposed RACG framework has yielded comparable and even
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TABLE II

QUANTITATIVE COMPARISONS OF IMAGE–TEXT RETRIEVAL ON
MSCOCO 5K TEST DATASET, AND THE BEST RESULTS ARE

HIGHLIGHTED IN BOLD

better performances than that obtained by other baselines in
most cases. It is noted that SGM [32], VSRN [13], and
GSMN [14] methods also explore the higher order con-
cepts and their semantic relationships. Nevertheless, the SGM
method only considers the intramodal relationships in the
graph representation, while the VSRN approach only reasons
the relationships of image patches. GSMN [14] attempts to
model the objects and relations as the structured phrases and
utilizes the graph convolutional layer to learn their semantic
correspondences. Similarly, such structured phrase also only
considers the intramodal graph representations. In contrast
to this, the proposed RACG framework improves the graph
representation by extracting both intramodal and intermodal
relationships, while considering more discriminative loss func-
tion to learn the fine-grained semantic correspondence. As a
result, the proposed RACG framework outperforms the global
matching methods and most local matching methods by a large
margin.

For the Flickr30k dataset, the proposed RACG model yields
slightly lower R@10 score than that obtained by DSRAN
in image retrieval task. In particular, DSRAN develops a
multilevel semantic enhancement approach to jointly learn the
accurate visual representations, which can, therefore, promote
the image retrieval task. By contrast, the proposed RACG
model not only achieves the competitive image retrieval per-
formance, but also always delivers the better text retrieval
performance. For the MSCOCO 1K dataset, the proposed
RACG model delivers a bit lower R@10 score and R@5 score,
respectively, evaluated on text retrieval and image retrieval
task. Within these results, the proposed RACG model almost
approaches the best scores, and their value margins are very
small. Importantly, our proposed model has achieved the best
R@1 results on all retrieval tasks and simultaneously delivered
the best m R values on all datasets. That is, the proposed
cross-graph correlation learning scheme is able to index more
relevant examples in the ranked one results and is also capable

TABLE III

ABLATION STUDIES TESTED ON Flickr30k DATASET, AND THE BEST
RESULTS ARE HIGHLIGHTED IN BOLD

of benefiting the overall cross-modal retrieval performance.
For the MSCOCO 5K test set, the proposed RACG model with
reranking scheme gains the R@1 improvements of 0.3 at text
retrieval task and 1.0 at image retrieval task in comparison
with the competing DSRAN method. Note that, even if the
reranking scheme or ensemble strategy is not enrolled, the
proposed RACG model with either BERT encoder or GRU
encoder still produces quite competitive performance in com-
parison with most baselines. This indicates that the proposed
framework is capable of indexing much more similar samples
in the cross-modal retrieval results.

D. Ablation Studies

To validate the impact of different network modules,
we alternatively evaluate the proposed RACG model by
attempting different structures: 1) w/o image branch: model
without the visual-relation aggregation; 2) w/o text branch:
model without textual-relation aggregation; 3) w/o cross-
graph aggregation: model without intermodal relation aggre-
gation; 4) w/o multihead mechanism: calculate the cosine
similarity between the origin features and reconstructed fea-
tures; 5) w/o image position: remove the position information
in visual embedding; 6) w/o text POS: ignore the POS
information in textual embedding; 7) w/o auxiliary loss:
remove the auxiliary loss; 8) dense graph: utilize the dense
connections to build textual graphs; and 9) baseline (sparse
graph): select the sparse connections to build textual graphs.

The ablation results tested on the Flickr30k dataset
are shown in Table III, and it can be found that the
removal of visual-relation aggregation significantly degrades
the image–text retrieval performance, while the deletion of
textual-relation aggregation also hurts the retrieval perfor-
mances. That is, the graph representations are beneficial to
model the objects and relationships efficiently, which can
promote the image–text retrieval performance. Meanwhile, the
embeddings of position information and the POS information
are able to improve the cross-modal retrieval performances.
For instance, the embedding of image position gains 0.3%
improvement of R@1 in text retrieval task and also brings
0.6% improvement of R@1 in image retrieval task. That is,
the employment of the image position is able to index more
relevant examples in the ranked one results and, therefore,
benefits the fine-grained cross-modal retrieval performance.
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Fig. 5. Visualization of cross-modal retrieval results on the Flickr30k dataset. For each image query, top-5 ranked texts are displayed, and the matched texts
are marked as green. For each text query, top-3 ranked images are displayed, and the matched images are highlighted in green.

Furthermore, the performance degradation brought by w/o
multihead mechanism indicates that the computation of
block-wise similarity can exploit the fine-grained similar-
ity to differentiate the semantically matched and unmatched
image–text pairs. Similar to the results in GSMN [14], the
sparse textual graph also performs better than the dense graph;
this is because the redundant relationships may bring negative
impact to the semantically irrelevant words if a fully connected
graph is built in textual data.

Comparing with w/o cross-graph aggregation, the proposed
RACG model with cross-graph relation aggregation has gained
3.7% and 4.5% improvement of R@1 score, respectively,
evaluated on the text retrieval and image retrieval tasks. This
indicates that the integration of cross-graph relation is capable
of providing complementary correlation for fine-grained corre-
spondence learning, which can further strengthen the semantic
interaction between different modalities and, therefore, boost
the image–text retrieval performances. Remarkably, the pro-
posed RACG approach almost outperforms all of them, for the
fact that the aggregation of more informative feature vectors,
multihead mechanism, and the cross-graph relation can jointly
learn more precise semantic correspondence to promote the
image–text retrieval performance.

E. Visualization and Analysis

To verify the superiority of the proposed model, we further
visualize some representative image–text retrieval results on
the Flickr30k dataset. In particular, we select the Bi-GRU
as the text encoder and select the baseline model to index
the most relevant examples. Fig. 5 displays top-5 ranked
image-to-text (I→T) results and top-3 ranked text-to-image

(T→I) results obtained by the proposed RACG method and
the competing VSRN approach. For the first image query,
it can be found that the fourth textual result indexed by the
VSRN approach fails to match the image query. By contrast,
the proposed RACG approach has successfully indexed the
semantically relevant textual results. For the second image
query, there are many instance objects, i.e., “people” occupy
most parts of the image, while the semantics of “eating food”
exhibit the weak expression. Under such circumstance, it can
been found that the top-4 ranked textual results obtained by
VSRN approach are semantically irrelevant to the image query.
The main reason lies that the fine-grained relationships among
“people,” “eating,” and “picnic table” are not well exploited by
the VSRN approach, and the insufficient exploitation of such
fine-grained relations may lead to the mismatch. In contrast to
this, the proposed RACG framework is able to well learn the
fine-grained correspondence of the objects and their potential
relations, such as “a group of people” and “eating food,” and
three indexed textual results are semantically relevant to the
image query. Although two textural examples fail to exactly
match the image query, the main semantic descriptions, such as
“many people” and “a crowd of people,” are also successfully
retrieved. From these results, the proposed RACG method
really performs better than the competing VSRN approach.
For the first text query, the most relevant image sample
indexed by the VSRN approach is ranked at 3, and the rank
1 result is irrelevant. By contrast, the proposed RACG method
often retrieves the relevant results with a high rank. That
is, the proposed RACG framework is able to precisely learn
the fine-grained semantic correspondence between different
modalities and, therefore, promotes the retrieval performance.
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Fig. 6. Visualization of five data pairs from the Flickr30k dataset. (a) Before
training process. (b) Intramodal relation aggregation. (c) Relation-aggregated
integration. (d) Examples and notations.

Besides, we utilize t-Distributed Stochastic Neighbor
Embedding (t-SNE) algorithm to visualize the learned feature
representations, and five examples randomly selected from
Flickr30k dataset are chosen for visualization. As shown in
Fig. 6(a) and (b), the original feature representations of similar
semantics derived directly from the data encoders are scattered
far away from each other, and their feature representations
aggregated with intramodal relation often gather together.
Nevertheless, the intramodal relation aggregation cannot well
push the representations of heterogeneous image–text data
from the same semantics closer. Comparatively speaking,
as shown in Fig. 6(c), the relation-aggregated integration
embedded with cross-graph relation not only can push the
representations of image–text data from the same semantics
closer, but also is able to pull those image–text representations
of different semantics away. It indicates that the proposed
network structure exhibits high discriminability to learn the
semantically differentiable embeddings for each modality,
while showing the strong ability to correlate the semantically
relevant embeddings from different modalities.

F. Further Analysis

1) Analysis on Cross-Graph Relation: The cross-graph
relation encoder is reflected in the interactive link between
different graph representations, which provides valuable infor-
mation for fine-grained correspondence learning. As shown in
Fig. 7, we visualize some salient regions according to their
summed edge weights linking to the neighboring nodes. It can
be observed that these salient regions associated with high
weights reveal the important semantics of the image, such as
“players,” “soccer,” and “green uniforms” in the first picture,
and “man,” “hat,” and “glasses” in the second picture.

Meanwhile, some node pairs with relatively high weights
in GT , e.g., “players-passing-others,” “players-uniform,”
“wearing-hat,” and “man-ear-pierced,” often contain very dis-
criminative semantic information to correlate the text and
images, and it can also be observed that several node pairs with
higher edge weights linking from the image nodes to the text
nodes are also semantically relevant to each other. Therefore,
the high-level semantic information and cross-graph relation
are interacted across the image–text node pairs, which promote
to aggregate the fine-grained semantic correspondence.

Besides, we further select the Bert encoder as the base-
line and make a quantitative analysis of different text node
representations. As shown in Fig. 8, it can be found that the
dense connections between regions and words could induce
the irrelevant and redundant connection, which degrade the
image–text retrieval performance. Meanwhile, the utilization
of both noun and adjective nodes often boosts the image–text
retrieval performances. That is, the adjective nodes in text
enrich the cross-modal interactions and also provide valu-
able information to correlate the semantically relevant image
examples.

2) Analysis on Auxiliary Loss Function: To verify the
effectiveness of the designed loss functions, we draw the loss
curves and monitor the variations of auxiliary loss by adding or
dropping it from the integrated loss function. Fig. 9 shows the
loss values and retrieval results with the changing of iteration
numbers. On the one hand, it can be observed that the whole
loss function will converge to a lower value if the auxiliary
loss is integrated to learn together. On the other hand, the
embedding of auxiliary loss will also contribute to improve
the image–text retrieval performances, especially at the early
iterations. Therefore, the auxiliary loss has a very positive
impact to the image–text retrieval results.

3) Analysis on Training Time: To show the time complexity
of the proposed framework, we record the execution times at
each epoch. The proposed model is trained on GPU NVIDIA
RTX 2080Ti, and we select the competing GSMN method for
comparison. Since the proposed RACG approach integrates
more feature types, graph modules and loss functions to dis-
criminatively learn the relation-aggregated graph representa-
tions, the execution time of training time or testing time could
be much higher than that obtained by the competing GSMN
method. Fortunately, as illustrated in Table IV, the proposed
RACG method does not significantly increase the training time
and testing time to a large extent, while achieving the best
retrieval performances. From a practical viewpoint, the pro-
posed RACG method achieves a good balance between the
time cost and retrieval performance, which is suitable for fine-
grained image–text retrieval tasks.

4) Analysis on Model Parameters: The multihead mech-
anism is utilized to compute block-wise similarity between
the node pairs, which can jointly exploit the semantic corre-
spondence at different feature positions. Within the multihead
mechanism, we further explore the impact of head number k in
(15) and (16) and set the number value ranging from 8 to 128.
Representative results tested on the Flickr30k and MSCOCO
datasets are shown in Fig. 10, and it can be found that
the different settings of the head number could affect the
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Fig. 7. Cross-graph relation visualization. The first column shows the image examples, and the second column displays the top-3 ranked salient regions
from GV , and top-3 ranked regions linking from the text to the image in G. These salient regions are visualized with different colors according to their edge
weights, and the warmer red indicates that the region aggregates more relation information with other regions. In the third column, we quantify top-4 ranked
edges (black arrow) in GT . The orange dashed arrow indicates that the nouns are only utilized to connect image nodes, while the green dashed arrow indicates
that the nouns and adjectives are enrolled to connect image nodes.

Fig. 8. Quantitative analysis of different graph connections.

Fig. 9. Illustration of auxiliary loss on image–text retrieval results. (a) Loss
convergence curve. (b) Retrieval result in terms of R@1.

image–text matching accuracy to some degree, but not in
a large magnitude. Remarkably, the proposed RACG model
delivers the best results when the head number k is equal to 64.
On the one hand, if the head number is too small, the block-
wise similarity in multihead mechanism is not well exploited,
such that the derived similarity is not discriminative for fine-
grained semantic matching. On the other hand, if the head
number is too large, the dimension of the block features will
be very small, making it insufficient for precisely expressing

TABLE IV

EVALUATION OF EXECUTION TIMES ON Flickr30k DATASET

Fig. 10. Impacts of head number k in multihead mechanism. (a) Num of
heads on Flickr30k. (b) Num of heads on MSCOCO.

the object features in images and words in sentences. Similar
to most works [12], [13], the different value settings of
other balance parameters only induce a minor fluctuation to
the retrieval performance, and these parameters are generally
insensitive to the image–text retrieval performances within a
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wide range of values. Experimentally, the suggested values
always deliver the competing performances.

V. CONCLUSION

In this article, we propose an efficient RACG model to
achieve fine-grained image–text retrieval. Within the pro-
posed framework, a relation-aggregated graph model is newly
designed to explore the fine-grained relationships across dif-
ferent modalities, which can mutually boost cross-modal
interactions to learn more precise intermodal dependencies.
Accordingly, the representations of each node on the newly
designed graph model are optimized by aggregating both
intramodal and intermodal relations. Meanwhile, the feature
reconstruction module and multihead similarity are seamlessly
integrated to jointly optimize the node-level semantic corre-
spondence, whereby the derived feature embeddings aggre-
gated in such graph model are discriminatively obtained to
benefit the fine-grained image–text retrieval in a more inter-
pretable and plausible way. Extensive experiments conducted
on various kinds of image–text retrieval tasks have shown its
outstanding performance.

Along the line of this work, several open problems also
deserve our further research. For example, the current graph
model attempts to enhance the representations of each node by
aggregating both of the intramodal relations and the intermodal
relations. If the object number in an image and the word
number in the sentence are very large, the integrated graph
model will be very huge, and the updating of graph nodes will
need more computational load. Therefore, it is necessary to
study a fast graph node aggregation method for processing the
complex data samples. In addition, the salient object detection
methods would also have an influence on the fine-grained
image–text matching results, and more robust salient object
detection methods deserve further studies.
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