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Abstract—Similarity search is essential to many important applications and often involves searching at scale on high-dimensional data

based on their similarity to a query. In biometric applications, recent vulnerability studies have shown that adversarial machine learning can

compromise biometric recognition systems by exploiting the biometric similarity information. Existingmethods for biometric privacy

protection are in general based on pairwisematching of secured biometric templates and have inherent limitations in search efficiency and

scalability. In this paper, we propose an inference-based framework for privacy-preserving similarity search in Hamming space. Our

approach builds on an obfuscated distancemeasure that can conceal Hamming distance in a dynamic interval. Such amechanism

enables us to systematically design statistically reliable methods for retrievingmost likely candidates without knowing the exact distance

values.We further propose to applyMontgomerymultiplication for generating search indexes that canwithstand adversarial similarity

analysis, and show that information leakage in randomizedMontgomery domains can bemade negligibly small. Our experiments on public

biometric datasets demonstrate that the inference-based approach can achieve a search accuracy close to the best performance possible

with secure computationmethods, but the associated cost is reduced by orders of magnitude compared to cryptographic primitives.

Index Terms—Biometric identification, privacy protection, nearest neighbour search, hypothesis testing, multi-index hashing
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1 INTRODUCTION

BEYOND conventional applications in forensic investiga-
tions and border control, personal identification based

on biometrics (e.g., face, iris, fingerprint) is also expanding
in the private sector. For instance, hundreds of US health-
care organizations are using iris and palm-vein biometrics
for patient identification and authentication [1]. India’s
DCB Bank has introduced Aadhaar-based fingerprint-
reading ATMs where customers can access their bank
accounts using their Aadhaar number and biometric details
instead of a PIN [2]. The service is required to connect with
the Aadhaar server for authenticating the identity of a cus-
tomer every time a transaction is initiated. Today’s social
media websites provide photo-sharing services and are
expected to handle face search in a database on the order of
millions of enrolled records every day [3]. Such applications
of biometric identification in general involve handling
queries and searches at scale in a networked environment.

Biometric identification systems typically require one-to-
many comparisons by evaluating biometric similarity between
an input query and the database records in some retrieval
space. Security analysis has shown that information leakage
in storing and processing biometric data can lead to identity
theft and adversarial tracking [4], [5]. In particular, adversarial
machine learning of biometric recognition is found possible in
the retrieval space [6]. Even if individual templates are
secured in the database, it was shown that an adversary can
still exploit the biometric similarity information to compro-
mise system operations. For instance, the similarity informa-
tion can be used to fabricate a biometric spoof in a hill-
climbing attack [7] or to perform a biometric equivalent of the
dictionary attack [8]. Another example is in multibiometric
systems where multiple biometric traits are combined to
increase the recognition accuracy and the population cover-
age of large-scale personal identification. Without fabricating
any fake trait, it is possible to evademultibiometric systems if
the attacker seizes the genuine similarity distribution of one
single trait [9], [10]. Security and privacy risks associated
with the biometric similarity information signify the impor-
tance of protecting it in the process of biometric identification.

Binary representations of biometric features are of grow-
ing interest for search applications as they can ensure fast
matching operations in Hamming space [11], [12], [13]. To
achieve high discriminative power and matching accuracy,
binary representations of biometric features typically con-
tain hundreds, if not thousands, of bits [13], [14]. Moreover,
due to acquisition noise and other factors, biometric fea-
tures are known to have inherently large intra-class varia-
tions between samples that are taken from the same trait.
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This indicates that the input query is not likely to find an
identical match in the biometric database and the true
match may have a relatively large distance, i.e., the number
of mismatching bits, to the query for similarity evaluation
in Hamming space. Rather than exhaustively exploring the
database by pairwise comparisons, nearest neighbour (NN)
methods for long binary representations with a large search
radius of interest are proposed for fast retrieval in Ham-
ming space [11], [15], [16]. These methods are designed to
reduce the matching complexity of a similarity search by
using certain data structures, e.g., hash tables.

Without privacy protection in design, NN methods have
built-in mechanisms that are vulnerable to information leak-
age. For example, search indexes are often generated
directly from biometric features through distance-preserving
transformations [12], [13], [17], [18]. This allows an adver-
sary who can access the data structures to analyse the search
indexes and glean critical similarity information of the data-
set. Another source of information leakage is at the retrieval
stage. To increase the retrieval accuracy, NN methods gen-
erally require distance computations and comparisons
between the query and matching candidates retrieved from
the data structure. From the perspective of privacy protec-
tion, it is desirable to return the retrieval results in order
without revealing their distance values [19].

Secure multiparty computation techniques are proposed
in the context of one-to-one verification to protect biometric
similarity evaluations [5], [19], [20], [21]. They are mostly
based on combining cryptographic primitives such as homo-
morphic encryption and garbled circuits to process
encrypted biometric data without the need of decrypting
them. As distance measures are not preserved in the
encrypted domain, adversarial learning can be effectively
prevented. In our context of one-to-many identification,
however, a similarity searchmust returnmultiple candidates
in order according to their similarity measures to the query.
The process involves not only intensive distance computa-
tions but also intensive distance comparisons that are espe-
cially cumbersome to perform in the encrypted domain [22].

In this paper, we propose an inference-based framework
for privacy-preserving similarity search of biometric identi-
ties in Hamming space. We argue that, from the perspective
of adversarial machine learning, an attacker must collect
sufficient and reliable training data that characterise the
underlying biometric feature space. This motivates us to
design effective mechanisms to diffuse the feature informa-
tion over piecewise obfuscated sub-hash codes, rather than
concealing everything in the encrypted domain. In this way,
we aim to facilitate information-theoretic privacy in the
design of hash-based indexing methods without sacrificing
too much of search accuracy and efficiency.

The main contributions of this paper are:

� We start with the Hamming-ball search problem and
model it as binary channel estimation for which we
derive the optimal decision rule based on the theory
of binary hypothesis testing. This enables the design
of an inference-based approach for detecting, with a
high accuracy in the retrieval space, matching candi-
dates within a predefined neighbourhood of the
querywithout knowing the actual distance values.

� As a key element of the binary channel, we present a
distance obfuscation mechanism based on matching
piecewise obfuscated binary codes for hash-based
similarity search. We derive analytically the condi-
tion where it is guaranteed to have a substring colli-
sion for neighbouring pairs, and show how it gives
rise to an obfuscated distance measure that conceals
the Hamming distance in a dynamic interval.

� We show how the inference-based approach for
Hamming-ball search can be extended to handle a
test-based rank-ordered search that arranges the
retrieved candidates in rank order without the need
of comparing distance values. We further show
how to perform an approximate NN search by
choosing candidates based on the obfuscated dis-
tance measure with or without the need of test-
based ranking.

� We apply Montgomery multiplication to generate
privacy-preserving search indexes that allow detec-
tion of substring collisions in randomized Montgom-
ery domains. This enables the design of a search
protocol that restricts all parties involved in the pro-
cess to perform their respective computations in sep-
arate Montgomery domains for privacy protection.

� We study the privacy-preserving strength of our
search scheme in an information-theoretic approach.
In particular, we quantify the privacy gain of index-
ing in randomized Montgomery domains, and ana-
lyze how difficult it is for an adversary to infer
biometric identities from search indexes in the pro-
posed indexing and retrieval process.

The remainder of this paper is organized as follows.
Section 2 reviews the related work. Section 3 provides the
details of the inference-based similarity search framework.
Section 4 presents the design of index generation in random-
ized Montgomery domains and the description of the search
protocol. Analysis of the privacy-preserving strength is pre-
sented in Section 5. Performance evaluation is reported in
Section 6. Finally, we draw conclusions in Section 7.

2 RELATED WORK

Biometric privacy study has been largely focused on
enabling one-to-one matching without revealing the biomet-
ric features that characterize an individual, known as bio-
metric template protection [4], [23], [24]. Depending on how
the protected reference is generated and matched, template
protection schemes can be classified into bio-cryptosystems
and feature transformations [4]. Bio-cryptosystems generate
error correction codewords for an indirect matching of bio-
metric templates [23]. They typically yield a yes/no decision
for verification on one-to-one basis, which is not suitable for
returning candidates in the order of their matching degrees.
Feature transformation methods apply non-invertible func-
tions to biometric templates [24]. The protected references
are usually distance preserving to performmatching directly
in the transformed space.

Recently, secure signal processing methods have been
introduced to protect biometric matching by concealing
both the feature contents and similarity evaluation in the
encrypted domain [5], [20], [25], [26]. These techniques use
cryptographic primitives as a wrapper of distance-related

1612 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 40, NO. 7, JULY 2018



functions. Thus, a privacy-preserving similarity search can
be decomposed into two steps: secure distance computa-
tion followed by minimum (distance) finding via oblivious
transfer [27]. As unauthorized information gathering is
precluded in the encrypted domain, secrecy and accuracy
can be ensured in pairwise matching for biometric identifi-
cation. However, cryptographic primitives are generally
associated with high computation costs and excessive
communication overheads. For instance, minimum finding
is very complex to perform in the encrypted domain. It
demands pairwise comparison of all encrypted distance
values and frequent interactions between the query and
the database [22]. This makes it intrinsically difficult, if not
impossible, to meet the efficiency and scalability require-
ments of search applications, especially when dealing with
high-dimensional data, in the encrypted domain [22], [27].

Other than search in the encrypted domain, the concept
of search with reduced reference is proposed in privacy-
preserving content-based information retrieval to protect
the original content and accelerate the search simulta-
neously [22], [28], [29]. The basic idea therein is to enforce
k-anonymity or l-diversity properties by raising the ambigu-
ity level of a data collection [30], [31]. Techniques of this par-
adigm are mostly based on randomized embedding [27]
and in particular locality sensitive hashing (LSH) [28], [32],
[33], [34]. LSH performs approximate NN search by hashing
similar items into the same bucket and those that are distant
from one another into different buckets, respectively, with
high probabilities. However, LSH by itself does not guaran-
tee privacy [27], [33], [34]. It requires all parties involved in
a search to use the same random keys in generating hash
codes. Moreover, to achieve a good precision in search,
LSH-based algorithms usually require a large number of
random hash functions and may increase privacy risks [35].

Privacy-enhanced variants of LSH are recently proposed
by combining LSH with cryptographic or information-
theoretic protocols [27]. The privacy protection framework
proposed in [28] generates a partial query instance by
omitting certain bits in one or more sub-hash values to
increase the ambiguity of query information for the server.
The hash values of retrieved candidates are returned to the
client for refinement. The framework is extended in [29]
where partial encryption is performed on the hash code of
each item to prevent an untrustworthy server from precisely
linking queries and database records. In particular, the
server uses the unencrypted part of each item for approxi-
mate indexing and searchwhile the client uses the encrypted
part for re-ranking the candidates received from the server.
To limit the number of candidates sent to the client, the
server performs a preliminary ranking based on the partial
distance computed from the unencrypted part. The trade-off
between privacy and utility of a search at the server side
is therefore controlled by the number of unencrypted bits.
We call this approach “LSH + partial distance” for brevity
and will use it as one baseline approach for performance
comparison.

3 PRIVACY-PRESERVING SIMILARITY SEARCH

In this section, we study the privacy-preserving similarity
search problem in the framework of binary hypothesis test-
ing. Section 3.1 details how we model the Hamming-ball

search problem as binary channel estimation. Section 3.2
derives the decision rule for the binary hypothesis test.
Section 3.3 presents the design of the distance obfuscation
mechanism and the obfuscated distance measure. Section 3.4
describes the test-based rank-ordered search scheme and
discusses how to perform an approximate NN search based
on the obfuscated distance measure.

3.1 Inference-Based Hamming-Ball Search

Consider a set V of binary strings, each of which represents
a biometric identity and is of length D bits. Note that D
is typically large for biometric data. The query q is also of
length D bits. As binary embedding is usually distance-
preserving, we treat two biometric identities as similar if
their Hamming distance is close.

Any string p 2 V is considered to be an r-neighbour of the
query q if the Hamming distance between p and q, denoted
by dðp;qÞ, satisfies dðp;qÞ � r. All strings p 2 V that
satisfy dðp;qÞ � r constitute the set, denoted by Bðq; rÞ, of
r-neighbours of the query q within its neighbourhood of
Hamming radius r. This is known as the r-neighbour detec-
tion or Hamming-ball search problem [15]. A related prob-
lem, known as k-NN search, is to find k records in V that
are closest in Hamming distance to the query q. We first
resolve the r-neighbour detection problem, and later show
how it can be extended to handle the k-NN search problem.

Our inference-based approach for r-neighbour detection
requires a distance obfuscation mechanism to conceal the
exact value of dðp;qÞ in a certain interval ½a; b�, where both
variables a and b take on integer values and satisfy
a � dðp;qÞ � b. In this way, it is clear that dðp;qÞ > r if
r < a and dðp;qÞ < r if r > b. There is an uncertainty in
comparing dðp;qÞ with r when a � r � b. In this case, we
consider that an estimate of dðp;qÞ, denoted by d̂ðp;qÞ, is
randomly chosen from the interval ½a; b� with equal proba-
bility. Then,

Prfd̂ðp;qÞ � rg ¼ r� aþ 1

b� aþ 1
: (1)

For convenience, let

p ¼def r� aþ 1

b� aþ 1
; (2)

from which we have 1=ðb� aþ 1Þ � p � 1 for a � r � b,
and the value of p depends on a and b for any given r.

We make inference based on the variable p. Specifically,
let x ¼ 0 if dðp;qÞ > r and x ¼ 1 if dðp;qÞ � r. Let Y be a
binary random variable taking on values y ¼ 0 if p < h and
y ¼ 1 if p � h, where h 2 ð0; 1Þ is a predefined threshold.
We resolve the r-neighbour detection problem as a binary
hypothesis test H0 : x ¼ 0; H1 : x ¼ 1 that predicts the origi-
nal binary input x based on a decision rule d as a function
dðyÞ of the values of Y .

This can be regarded as a binary channel estimation
problem [36] where a binary digit x is transmitted over
some noisy channel that outputs a random observation Y
with outcome being either 0 or 1, as illustrated in Fig. 1. Due
to uncertainties introduced by distance obfuscation and
threshold comparison, the original binary input x may be
received as Y 6¼ x with probabilities �0 ¼ PrfY ¼ 1jx ¼ 0g
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and �1 ¼ PrfY ¼ 0jx ¼ 1g. We wish to find an optimal way
to decide what was transmitted based on the values of Y . In
the following section, we design the decision rule d given
the “transmission” error probabilities �0 and �1.

3.2 Design of the Decision Rule d

Any decision rule d is associated with two types of errors in
testing the null hypothesis (i.e., H0) versus the alternative
hypothesis (i.e., H1). Let PFðdÞ denote the false-alarm proba-
bility that H1 is falsely accepted when H0 is true. Let PMðdÞ
denote the miss probability that H1 is falsely rejected when
H1 is true. The detection probability PDðdÞ ¼ 1� PMðdÞ is
also called the power of the decision rule d. There is a fun-
damental trade-off between PFðdÞ and PMðdÞ in the hypoth-
esis test. According to the Neyman-Pearson criteria [37],
the optimal decision rule is the one to the constrained opti-
mization problem: maxd PDðdÞ subject to PFðdÞ � a, with a

being the significance level of the test. The Neyman-Pearson
lemma [37] states that the likelihood ratio test is the most
powerful test.

Consider the binary channel estimation problem in Fig. 1.
The observation Y has probability mass functions pxðyÞ ¼ �x

if y 6¼ x and pxðyÞ ¼ 1� �x if y ¼ x, for x ¼ 0; 1. The likeli-
hood ratio for an observation Y ¼ y is thus given by

LðyÞ ¼ p1ðyÞ
p0ðyÞ ¼

�1
1��0

; if y ¼ 0

1��1
�0

; if y ¼ 1 :

8<
: (3)

The Neyman-Pearson test rejects H0 for LðY Þ > h for some
h, and h is chosen such that PrfLðY Þ > hg ¼ a if H0 is true.
When �0 þ �1 < 1, the Neyman-Pearson decision rule,
which is the conditional probability of accepting H1 given
that we observe Y ¼ y, turns out to be [36]

~dNPðyÞ ¼
a
�0
; if y ¼ 1

0; if y ¼ 0

�
; (4)

for 0 � a < �0, and

~dNPðyÞ ¼
1; if y ¼ 1
a��0
1��0

; if y ¼ 0

(
; (5)

for �0 � a � 1. The resulting detection probability is

PDð~dNPÞ ¼
a 1��1

�0

� �
; if 0 � a < �0

1� �1 þ �1
a��0
1��0

� �
; if �0 � a < 1 :

8><
>: (6)

It can be seen in (5) that ~dNPðyÞ ¼ y when a ¼ �0. In other
words, by allowing PFðdÞ � �0, the simple decision rule
dðyÞ ¼ y that accepts Hx if y ¼ x yields the same perfor-
mance as the most powerful test according to the Neyman-

Pearson criteria. The resulting detection probability is
PDðdÞ ¼ 1� �1. In this case, the inherent transmission error
probability serves as an upper bound of the hypothesis test-
ing error probability, i.e., PFðdÞ þ PMðdÞ � �0 þ �1. This ena-
bles us to design the binary channel directly through a
trade-off between the channel characteristics �0 and �1.

3.3 Design of the Binary Channel

As discussed in Section 3.1, the binary channel in our con-
text is in the form of a noisy channel that consists of dis-
tance obfuscation followed by threshold comparison. The
former maps a distance value into an interval ½a; b� that
defines p in (2). The latter yields �0 and �1 under the null
and alternative hypotheses, respectively. Here, we present
a distance obfuscation mechanism based on matching
piecewise obfuscated binary codes in a carefully designed
multi-index multi-probe (MIMP) scheme for hash-based sim-
ilarity search.

Specifically, for all strings p 2 V and the query q, we
divide each of them into L non-overlapping segments,
denoted by fpð1Þ;pð2Þ; . . . ;pðLÞg and fqð1Þ;qð2Þ; . . . ;qðLÞg. By
definition, we have p ¼ pð1Þjjpð2Þjj . . . jjpðLÞ and q ¼ qð1Þ

jjqð2Þjj . . . jjqðLÞ, where jj is the concatenation operator. If the
string length D is divisible by L, each substring is of length
s ¼ D=L bits. If D is not divisible by L, each of the first
ðD modLÞ substrings is of length s ¼ dD=Le bits, and each
of the remaining substrings has s� 1 bits.

For each substring pðiÞ of p, i ¼ 1; 2; . . . ; L, we create a set
VpðiÞ containing pðiÞ and a one-bit variant of pðiÞ that differs
from pðiÞ by one bit at a randomly selected position. For con-
venience, we write VpðiÞ ¼ f~pðiÞ

j g where j ¼ 0; 1, with
~p
ðiÞ
0 ¼ pðiÞ and ~p

ðiÞ
1 being the one-bit variant of pðiÞ. For each

substring qðiÞ of the query q, i ¼ 1; 2; . . . ; L, we create a set
that contains all possible one-bit variants of qðiÞ, denoted by
VqðiÞ ¼ f~qðiÞ

k g, where k ¼ 1; 2; . . . ; s if the substring is of
length s bits and k ¼ 1; 2; . . . ; s� 1 if the substring has s� 1
bits. We call a match between ~p

ðiÞ
j 2 VpðiÞ and ~q

ðiÞ
k 2 VqðiÞ as a

substring collision. Let CðVpðiÞ ;VqðiÞ Þ denote the collision count
(i.e., the number of all possible substring collisions) between
VpðiÞ and VqðiÞ .

Proposition 1. The collision count between VpðiÞ and VqðiÞ satis-

fies CðVpðiÞ ;VqðiÞ Þ � 1 for all i. The case CðVpðiÞ ;VqðiÞ Þ ¼ 1

implies dðpðiÞ;qðiÞÞ � 2. The case CðVpðiÞ ;VqðiÞ Þ ¼ 0 implies
dðpðiÞ;qðiÞÞ � 2.

Proof. The following cases hold for each i ¼ 1; 2; . . . ; L.

� If dðpðiÞ;qðiÞÞ ¼ 0, we have CðVpðiÞ ;VqðiÞ Þ ¼ 1, since

~p
ðiÞ
0 6¼ ~q

ðiÞ
k for all k and there exists exactly one

~q
ðiÞ
k 2 VqðiÞ such that ~p

ðiÞ
1 ¼ ~q

ðiÞ
k .

� If dðpðiÞ;qðiÞÞ ¼ 1, we have CðVpðiÞ ;VqðiÞ Þ ¼ 1, since

~p
ðiÞ
1 6¼ ~q

ðiÞ
k for all k and there exists exactly one

~q
ðiÞ
k 2 VqðiÞ such that ~p

ðiÞ
0 ¼ ~q

ðiÞ
k .

� If dðpðiÞ;qðiÞÞ ¼ 2, we have CðVpðiÞ ;VqðiÞ Þ � 1

where the equality holds if and only if the one-bit
variant of pðiÞ flips at a bit position at which pðiÞ

and qðiÞ differ.
� If dðpðiÞ;qðiÞÞ > 2, we have CðVpðiÞ ;VqðiÞ Þ ¼ 0,

since ~p
ðiÞ
j 6¼ ~q

ðiÞ
k for all j; k. tu

Fig. 1. Inference-based r-neighbour detection modelled as binary chan-
nel estimation with decision rule d.
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Corollary 1. The sum of collision count CðVpðiÞ ;VqðiÞ Þ over all i
is at most L, i.e.,

PL
i¼1 CðVpðiÞ ;VqðiÞ Þ � L.

Corollary 2. Since 0 � dðpðiÞ;qðiÞÞ � s, we have 0 � dðpðiÞ;
qðiÞÞ � 2 given CðVpðiÞ ;VqðiÞ Þ ¼ 1, and 2 � dðpðiÞ;qðiÞÞ � s

given CðVpðiÞ ;VqðiÞ Þ ¼ 0.

Proposition 2. If p 2 Bðq; rÞ with r < 2L, then there exists at
least one i, 1 � i � L, such that CðVpðiÞ ;VqðiÞ Þ ¼ 1.

Proof. Suppose thatCðVpðiÞ ;VqðiÞ Þ ¼ 0 for all i. By Proposition

1, we must have dðpðiÞ;qðiÞÞ � 2 for all i. Then, dðp;qÞ ¼PL
i¼1 dðpðiÞ;qðiÞÞ � 2L. That is, we have p =2 Bðq; rÞ with

r < 2L, which gives a contradiction. tu
Let m denote the sum of collision count CðVpðiÞ ;VqðiÞ Þ

over all i, i.e.,

m ¼
XL
i¼1

CðVpðiÞ ;VqðiÞ Þ : (7)

Proposition 2 suggests that, under the condition
r < 2L, the MIMP scheme ensures that any r-neighbor of
the query q has a non-zero value of m. We shall see that
m serves as an obfuscated distance measure and is key to
the design of the inference-based r-neighbor detection
approach in our context. Note that m � L from Corol-
lary 1. Without loss of generality, let us assume that

CðVpðiÞ ;VqðiÞ Þ ¼ 1 for i ¼ 1; 2; . . . ; m and CðVpðiÞ ;VqðiÞ Þ ¼ 0

for i ¼ mþ 1; . . . ; L. Then, by Corollary 2, we have 0 �Pm
i¼1 dðpðiÞ;qðiÞÞ � 2m and 2ðL�mÞ �PL

i¼mþ1 dðpðiÞ;qðiÞÞ �
sðL�mÞ. Since by definition

dðp;qÞ ¼
Xm
i¼1

dðpðiÞ;qðiÞÞ þ
XL

i¼mþ1

dðpðiÞ;qðiÞÞ; (8)

we know that dðp;qÞ is within the range given by

2ðL�mÞ � dðp;qÞ � sðL�mÞ þ 2m: (9)

Substituting a ¼ 2ðL�mÞ and b ¼ sðL�mÞ þ 2m in (2), we

obtain

p ¼ 2� ð2L� 1� rÞ=m
ðsL� 2Lþ 1Þ=mþ 4� s

; (10)

for 2ðL�mÞ � r � sðL�mÞ þ 2m or, equivalently,

L� r

2
� m � sL� r

s� 2
: (11)

Note that, with r < 2L, we must have ðsL� rÞ=ðs� 2Þ > L.

Sincem � L by Corollary 1, we rewrite (11) as

L� r

2
� m � L: (12)

In addition, with s � 2, p in the form of (10) monotonically

increases as m increases. Accordingly, based on the defini-

tion of p, a larger value of m corresponds to a higher proba-

bility that p is an r-neighbour of q.

As a result of (12), any string p 2 V with m < L� r=2 is
not an r-neighbour of the query q. On the other hand, all
strings p 2 V with m being in the inference region defined

by (12) are subjected to the hypothesis testing, from which
we can obtain through (10) the empirical probability mass
functions of p under hypothesis H0 and hypothesis H1,
respectively, and then choose a value for the threshold h to
set the channel characteristics �0 and �1.

For example, let us consider the UBIRIS dataset [38] and
use 400 eyes each with 10 iris images. Each iris image is rep-
resented by an iris code of 400 bits generated using a rota-
tion invariant ordinal feature coding scheme [13]. We enroll
each eye with one iris code at a time, and then use another
iris code from the same eye to search. This is run for 24
times with different enrollments and queries, which results
in a total of 3,840,000 pairwise comparisons, including 6,026
neighbouring pairs and 3,833,974 non-neighbouring pairs
as ground truth, given the Hamming radius r ¼ 50.

We set L ¼ 30 and perform the MIMP scheme in each
run. All enrolled strings whose m value with respect to cor-
responding queries satisfying (12), which is 5 � m � 30 in
this example, are subjected to inference. This involves 6,026
neighbouring pairs and 5,859 non-neighbouring pairs. Com-
paring with the ground truth, the inference set includes all
neighbouring pairs and a small fraction (i.e., 0.15 percent) of
non-neighbouring pairs. By (10), the p values can be evalu-
ated for these instances. Fig. 2 plots the empirical probabil-
ity mass functions of p underH0 andH1, respectively.

We choose the threshold h to minimize �0 þ �1 for the
binary channel, which we recall is the upper bound of the
hypothesis testing error probability PFðdÞ þ PMðdÞ as a result
of the chosen decision rule dðyÞ ¼ y discussed in Section 3.2.
Note that we may also choose a smaller h value to increase
the detection probability PDðdÞ, i.e., 1� �1, by allowing a
larger �0. In Fig. 2, h ¼ 0:1144, which yields �0 ¼ 0:082 and
�1 ¼ 0:036. Given the h value, the inference-based approach
determines if an enrolment is an r-neighbour of the query by
testing if its p value satisfies p � h. Accordingly, taking into
account all the 3,840,000 pairwise comparisons in this exam-
ple, the overall detection probability is 96.4 percent and the
overall false-alarm probability is 0.0125 percent.

3.4 Test-Based Rank-Ordered Search

Conventionally, a rank-ordered search is done by ordering
the retrieved candidates according to their distance values.
In this section, we present a test-based rank-ordered search
scheme without the need of comparing distance values.
The basic idea is to apply our proposed inference-based
r-neighbour detection approach and evaluate a series of
nested inference regions with sequentially increased values
of the Hamming radius r.

Fig. 2. Empirical probability mass functions of p under H0 and H1,
respectively, with the UBIRIS dataset, given L ¼ 30 and r ¼ 50. Choos-
ing h ¼ 0:1144minimizes �0 þ �1.
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Take the UBIRIS dataset for example. Let us consider
three values for the Hamming radius r as shown in Table 1,
i.e., r1 ¼ 30, r2 ¼ 40, r3 ¼ 50. We perform the MIMP scheme
with L ¼ 30. Thus, the inference region I defined by (12) for
each corresponding r value is I 1 ¼ ½15; 30�, I2 ¼ ½10; 30�,
I 3 ¼ ½5; 30�, respectively. Note that in the case of the MIMP
scheme, as long as L is fixed, the m value of any enrollment
remains the same regardless of the r value. For each value
of r, we obtain through (10) the empirical probability mass
functions of p, and choose the threshold h to minimize
�0 þ �1. For the UBIRIS dataset, it turns out that h1 ¼ 0:1064,
h2 ¼ 0:1110, h3 ¼ 0:1144, respectively.

Once the h values are learned, we can determine if an
enrollment p is an r-neighbour of the query q by testing if
the p value of p satisfies p � h. Given p in the form of (10),
it can be shown that testing p � h is equivalent to testing

m � hðsL� 2Lþ 1Þ þ 2L� 1� r

2þ hðs� 4Þ ¼def m: (13)

Note in (13) that it suffices for m to assume integer values
since m in this context takes on integer values only. Thus,
for the UBIRIS dataset, we have m1 ¼ 22, m2 ¼ 19, m3 ¼ 16,
respectively. The resulting detection probability and false-
alarm probability of r-neighbour detection are provided in
Table 1 for each value of r.

Given m1 > m2 > m3 and since the inference region I
is nested, i.e., I1 � I2 � I3, the inferred set B0ðq; rÞ of
r-neighbours of the query q in this case must also be nested,
i.e., B0ðq; r1Þ � B0ðq; r2Þ � B0ðq; r3Þ. In general, if we con-
sider G sequentially increased values of the Hamming
radius r and given that the inferred set of r-neighbours is
nested, we can order the retrieved candidates in G ranks. In
particular, those in the set B0ðq; r1Þ are designated as Rank 1
candidates. Subsequently, for g ¼ 2; 3; . . . ; G, those in
B0ðq; rgÞ� B0ðq; rg�1Þ form the set of Rank g candidates.

As a special case, an approximate k-NN search can be
performed by finding the smallest G such that the set
B0ðq; rGÞ contains at least k candidates. We return all candi-
dates in the top G� 1 ranks, and the remaining candidates
are chosen from Rank G candidates arbitrarily. The latter is
due to the nature of binary hypothesis testing where candi-
dates in the same rank are considered to be of the same sim-
ilarity level to the query regardless of their m values. It is
interesting to observe that, in the case of the test-based
rank-ordered search, given mi > mj, the m values of Rank i
candidates must be larger than those of Rank j candidates.
This observation motivates us to further consider a simple
implementation of k-NN search where we simply choose

the top k candidates in descending order of the m value
without the need of test-based ranking.

4 PRIVACY-PRESERVING INDEX GENERATION

In Section 3, we introduced an inference-based approach for
similarity search. The MIMP scheme works by matching
piecewise obfuscated binary codes and enables hash-based
indexing of biometric identities. This can be regarded as
substring obfuscation by introducing controlled “noise” to
piecewise biometric data before disseminating them over
hash tables. However, as shown in Section 5.3, from the per-
spective of privacy protection, such segments of biometric
data should not be used directly as search indexes and
stored in hash tables. Cryptographic hashing may be used
to generate secure signatures. However, standard cipher
codes typically have hundreds of bits, e.g., 256 bits by SHA-
256, while codes of length longer than 32 bits are not suit-
able for indexing data structures [15]. Subdivision of cipher
codes does not help as Hamming distances are not pre-
served after encryption. In this paper, we address the prob-
lem by indexing in randomized Montgomery domains.

4.1 Indexing in Montgomery Domains

Montgomery multiplication has been used in cryptographic
schemes mainly for implementing fast modulo operations
with large-integer arithmetic [39]. Here, we exploit its ele-
mentary form to generate randomized signatures. Specifi-
cally, let N be a prime number, and let R be a positive
integer that is coprime to N , i.e., gcdðR;NÞ ¼ 1. The Mont-
gomery form of an integer x is defined as

Mðx;R;NÞ ¼ xRmodN; (14)

whereN is the modulus and R is the multiplier. We also call
Mðx;R;NÞ as the ðR;NÞ-residue of x following Definition
9.2.2 in [39]. In our context, for a binary string pðiÞ of length
s bits, its Montgomery form can be evaluated by the sum of
ðR;NÞ-residues at each one-bit position in pðiÞ. That is,

MðpðiÞ;R;NÞ ¼
Xs
b¼1

pðiÞ½b� � 2b�1

 !
R mod N

¼
Xs
b¼1

pðiÞ½b� �Mð2b�1;R;NÞ mod N;

(15)

where pðiÞ½b� 2 f0; 1g. The reference Mð2b�1;R;NÞ may be
pre-computed for large-integer arithmetic. We regard (15)
as a projection of pðiÞ into the Montgomery domain of
ðR;NÞ-residues, also called the ðR;NÞ-domain for brevity.
Note that Montgomery multiplication does not preserve the
original distance values and thus the resulting signatures
can withstand adversarial similarity analysis.

We consider a three-party scenario that involves a user, a
data owner and a server, which is typical in a networked
computing environment like cloud [21]. The data owner is
responsible for user enrolment, server registration and
index generation. The server maintains the hash tables and
provides the computation-intensive task of similarity search
on behalf of the data owner. Upon a query from the user,
the server retrieves the most likely candidates and returns
the search results to the user. Fig. 3 illustrates the main

TABLE 1
Inference-Based r-Neighbour Detection

over the UBIRIS Dataset

Hamming radius r 30 40 50
Inference region I ½15; 30� ½10; 30� ½5; 30�
Threshold h for p 0.1064 0.1110 0.1144
Threshold m form 22 19 16
Overall detection probability 96.5% 95.9% 96.4%
Overall false-alarm probability 0.0186% 0.0140% 0.0125%
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procedures of our three-party protocol that enables similar-
ity search in randomized Montgomery domains. They are
described below in more details.

User Enrolment. The user generates the binary string p
from biometric data and divides it into L substrings fpðiÞg,
each of which is associated with a set VpðiÞ as described in

Section 3.3. For each chosenmodulusNðiÞ
u , the user randomly

generates a multiplier RðiÞ
u that is coprime to N ðiÞ

u , and maps
all ~p

ðiÞ
j 2 VpðiÞ into the ðRðiÞ

u ; NðiÞ
u Þ-domain. Then, the user

sends Mð~pðiÞ
j ;RðiÞ

u ; NðiÞ
u Þ as the signature of ~p

ðiÞ
j for all i; j to

the data owner.

Server Registration. For provision of service, the server
registers at the data owner with a set of moduli fN ðiÞ

s g.
Then, for each i, the data owner randomly generates a mul-
tiplier R

ðiÞ
o that is coprime to N

ðiÞ
s for index generation.

Index Generation. The data owner maps the user’s signa-
ture Mð~pðiÞ

j ;RðiÞ
u ; N ðiÞ

u Þ into the ðRðiÞ
o ; N

ðiÞ
s Þ-domain, and then

sends the nested Montgomery form MðMð~pðiÞ
j ;RðiÞ

u ; NðiÞ
u Þ;

R
ðiÞ
o ; N

ðiÞ
s Þ for all ~pðiÞ

j 2 VpðiÞ to the server for indexing pðiÞ in
the ith hash table. To enable the user to search at the server,
the data owner randomly generates for each i a multiplier

RðiÞ
q that is coprime to N

ðiÞ
s , and sends RðiÞ

q for all i to the

user. Let R0ðiÞ
q be a modular multiplicative inverse of RðiÞ

q mod-
ulo N

ðiÞ
s , i.e.,

RðiÞ
q R0ðiÞ

q modN ðiÞ
s ¼ 1: (16)

The data owner also computes

RðiÞ
s ¼ MðR0ðiÞ

q ;RðiÞ
o ; N ðiÞ

s Þ; (17)

and sends the resulting multiplier R
ðiÞ
s for all i to the server.

Query and Search. The user divides the query q into L
substrings and, for each substring qðiÞ, generates a set VqðiÞ
as described in Section 3.3. For each i, the user maps all
~q
ðiÞ
k 2 VqðiÞ into the ðRðiÞ

u ; N ðiÞ
u Þ-domain, and computes

z
ðiÞ
k ¼ Mð~qðiÞ

k ;RðiÞ
u ; NðiÞ

u ÞRðiÞ
q ; (18)

using the multiplier RðiÞ
q . The user sends z

ðiÞ
k to the server

who in turn maps it into the ðRðiÞ
s ; N

ðiÞ
s Þ-domain. Note that

the result MðzðiÞk ;R
ðiÞ
s ; N

ðiÞ
s Þ and the nested Montgomery

form of ~q
ðiÞ
k , i.e., MðMð~qðiÞ

k ;RðiÞ
u ; N ðiÞ

u Þ;RðiÞ
o ; N

ðiÞ
s Þ, are equiva-

lent. This is because, by (15), (16), (17), and (18) and using

the congruence relation aðb mod nÞ 	 ab mod n ðmod nÞ
that holds for all positive integers a; b; n, we have

MðzðiÞk ;RðiÞ
s ; N ðiÞ

s Þ ¼ MðMð~qðiÞ
k ;RðiÞ

u ; N ðiÞ
u ÞRðiÞ

q ;RðiÞ
s ; N ðiÞ

s Þ
¼Mð~qðiÞ

k ;RðiÞ
u ; N ðiÞ

u ÞRðiÞ
q ðR0ðiÞ

q RðiÞ
o mod N ðiÞ

s Þmod N ðiÞ
s

¼Mð~qðiÞ
k ;RðiÞ

u ; N ðiÞ
u ÞRðiÞ

q R0ðiÞ
q RðiÞ

o mod N ðiÞ
s mod N ðiÞ

s

¼Mð~qðiÞ
k ;RðiÞ

u ; N ðiÞ
u ÞRðiÞ

o ðRðiÞ
q R0ðiÞ

q mod N ðiÞ
s Þmod N ðiÞ

s

¼Mð~qðiÞ
k ;RðiÞ

u ; N ðiÞ
u ÞRðiÞ

o mod N ðiÞ
s

¼MðMð~qðiÞ
k ;RðiÞ

u ; N ðiÞ
u Þ;RðiÞ

o ; N ðiÞ
s Þ :

(19)

Thus, the server can use the ðRðiÞ
s ; N

ðiÞ
s Þ-residue of z

ðiÞ
k to

probe the search indexes in the ith hash table and perform

the MIMP scheme as described in Section 3.3.

4.2 Substring Collision in Montgomery Domains

Note that, given a substring collision between ~p
ðiÞ
j 2 VpðiÞ

and ~q
ðiÞ
k 2 VqðiÞ , we must have

MðMð~pðiÞ
k ;RðiÞ

u ; N ðiÞ
u Þ;RðiÞ

o ; N ðiÞ
s Þ

¼ MðMð~qðiÞ
k ;RðiÞ

u ; NðiÞ
u Þ;RðiÞ

o ; NðiÞ
s Þ:

(20)

However, having (20) does not necessarily imply ~p
ðiÞ
j ¼ ~q

ðiÞ
k .

Therefore, collision detection based on (20) may result in
false positives but no false negatives. In other words, match-
ing in Montgomery domains may increase the false-alarm
probability but have no effect on the detection probability in
our inference-based similarity search scheme. To reduce the
false positives, we enhance the search protocol by indexing
in Montgomery domains using multiple independently gen-
erated signatures rather than one. The idea can be conve-
niently explained by considering two arbitrary substrings of
length s bits as follows.

Let x and y be the natural number representation of the two
substrings, respectively.We first consider T randomly chosen
pairs of ðRt;NtÞ, t ¼ 1; 2; . . . ; T , each yielding a Montgomery
form for x and y. For convenience, let gtðxÞ ¼ Mðx;Rt;NtÞ
and gtðyÞ ¼ Mðy;Rt;NtÞ, and let ggðxÞ ¼ fgtðxÞg and
ggðyÞ ¼ fgtðyÞg denote the set of T randomized signatures for
x and y, respectively. In this way, we consider the two sub-
strings matched, i.e., x ¼ y, if and only if ggðxÞ ¼ ggðyÞ, i.e.,
gtðxÞ ¼ gtðyÞ for all t.

Suppose that Rt is encoded by cR bits, i.e., 0 < Rt < 2cR ,
and Nt is encoded by cN bits, i.e., 0 < Nt < 2cN . Then, the
binary code of xRt and yRt has sþ cR bits. Let nð2cNÞ be the

number of primes in the range ð0; 2cNÞ. We choose eachmod-
ulusNt independently from the nð2cNÞ prime numbers at ran-
dom with equal probability. A prime number is “bad” for
matching x and y if the random choice ofNt results in a false
positive, i.e., gtðxÞ ¼ gtðyÞ given x 6¼ y. It is known that, for
sþ cR < nð2cNÞ, there can be at most sþ cR � 1 such “bad”
prime numbers in the range ð0; 2cNÞ [40]. Since every prime
number has an equal probability of being chosen, the proba-
bilityPrfgtðxÞ ¼ gtðyÞjx 6¼ yg is bounded by

sþ cR � 1

nð2cNÞ ¼def bðs; cR; cNÞ: (21)

The false positive probability PrfggðxÞ ¼ ggðyÞjx 6¼ yg is
therefore bounded by bðs; cR; cNÞT , which can be controlled
by tuning the parameters cR, cN and T for a given s.

Fig. 3. Main procedures of the three-party search protocol.
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Next, consider the nested Montgomery form for x and for
y. That is, for each gtðxÞ and gtðyÞ, we further choose T pairs
of ðRv;NvÞ, v ¼ 1; 2; . . . ; T , independently at random. Each
pair of ðRv;NvÞ yields the nested Montgomery form
MðgtðxÞ;Rv;NvÞ for x and MðgtðyÞ;Rv;NvÞ for y. For conve-
nience, let ctvðxÞ ¼ MðgtðxÞ;Rv;NvÞ and ctvðyÞ ¼ MðgtðyÞ;
Rv;NvÞ. Accordingly, we generate a set of T 2 randomized
signatures for x and y, denoted by ccðxÞ ¼ fctvðxÞg and
ccðyÞ ¼ fctvðyÞg, respectively. In this way, we consider
x ¼ y if and only if ccðxÞ ¼ ccðyÞ, i.e., ctvðxÞ ¼ ctvðyÞ for all t
and v. Since Nt < 2cN , both gtðxÞ and gtðyÞ can be encoded
by cN bits. Setting s ¼ cN in (21) yields PrfctvðxÞ ¼
ctvðyÞjgtðxÞ 6¼ gtðyÞg � bðcN; cR; cNÞ. Then, it can be shown
that PrfctvðxÞ ¼ ctvðyÞjx 6¼ yg is bounded by bðsþ cN;
2cR; cNÞ. The resulting false positive probability
PrfccðxÞ ¼ ccðyÞjx 6¼ yg in the case of using nested Mont-
gomery forms as search indexes is therefore bounded by
bðsþ cN; 2cR; cNÞT

2
.

Fig. 4 plots the bound bðsþ cN; 2cR; cNÞT
2
with respect to

the parameter cN for T ¼ 1; 2; 3, given s ¼ 14 and cR ¼ 15. It
can be seen that the bound reduces drastically as cN or T
increases. For example, with T ¼ 2, cN ¼ 15 and hence
nð215Þ ¼ 3512, the false positive probability is less than
7:44
 10�8. In this paper, we use T ¼ 2 and cN ¼ 15 in our
experimental settings.

5 PRIVACY-PRESERVING STRENGTH

In this section, we study the privacy-preserving strength of
our inference-based framework for similarity search in ran-
domized Montgomery domains. In particular, we are con-
cerned with adversarial learning of the biometric similarity
information that can be gleaned from the search indexes
and the retrieval process. We begin by presenting in
Section 5.1 a security analysis of the three-party search
protocol to understand what an attacker can do if they
know the various primitives (i.e., multipliers and moduli)
in each indexing step. We argue that the privacy threats
may all boil down to the problem of how hard it is for the
attacker to infer the biometric identity from the user’s signa-
tures in Montgomery forms. This motivates us to apply an
information-theoretic approach for evaluating in Section 5.2
the information leakage in Montgomery domains and in
Section 5.3 the privacy gain in index generation. We further
provide in Section 5.4 a discussion on the well-known
trade-off between privacy and utility that is applied also in
our context of similarity search.

5.1 Security Analysis of the Search Protocol

In our design of the three-party search protocol, we consider
a model where the different parties do not necessarily trust
each other. We also assume that 1) the three parities do not
collude with each other, 2) the communication channel
between the parties is secure (e.g., encrypted), and 3) each
party may behave in a curious-but-honest way, i.e., it fol-
lows the search protocol but may use any data in possession
to glean additional information [5], [6], [28], [29]. As shown
in Fig. 3, the three parties operate in separate Montgomery

domains defined by the corresponding primitive pair, i.e.,

ðRðiÞ
u ; N ðiÞ

u Þ for the user, ðRðiÞ
o ; N

ðiÞ
s Þ for the data owner, and

ðRðiÞ
s ; N

ðiÞ
s Þ for the server. The following discusses the pri-

vacy threat in each main procedure of the search protocol.
User Enrolment. The attacker may seize user signatures in

the form of Mð~pðiÞ
j ;RðiÞ

u ; NðiÞ
u Þ, but is not likely to know the

user’s primitive pair ðRðiÞ
u ; NðiÞ

u Þ, as the latter is kept private

to the user. In Section 5.2, we show that recovering ~p
ðiÞ
j from

its Montgomery form without knowing the primitives can
be made almost as difficult as a wild guess. On the other
hand, even if the attacker is able to crack user signatures, it
needs to do so for a sufficiently large number of users in
order to derive the underlying biometric similarity distribu-
tion. This makes the inference cost of adversarial learning
even more prohibitive.

Server Registration. We note that, if different application
servers use the same set of moduli fN ðiÞ

s g to register provi-
sion of service at the data owner, the attacker can track users
covertly by cross-matching over different applications,
known as linkage attack [4]. To deal with this privacy threat,
the servers can choose different sets of moduli fN ðiÞ

s g, so
that the data owner can produce distinct sets of search
indexes for the same biometric database.

Index Generation. The attacker may sniff all the search
indexes generated by the data owner. Since the search
indexes are generated in the nested Montgomery form

MðMð~pðiÞ
j ;RðiÞ

u ; NðiÞ
u Þ;RðiÞ

o ; N
ðiÞ
s Þ, the attacker cannot derive

the biometric similarity distribution directly from the
search indexes, as Montgomery multiplication does not
preserve the original distance values. The attacker may
alternatively attempt to glean the information by infer-
ring each biometric identity from the search indexes and
then performing pairwise comparisons for distance com-
putation. In this way, the attacker needs to compromise
two layers of Montgomery multiplications defined in the
respective Montgomery domains. We note that secure
communications can prevent the attacker from obtaining

the primitives N
ðiÞ
s , R

ðiÞ
s and RðiÞ

q . Otherwise, the attacker

may derive the data owner’s primitive R
ðiÞ
o , which will

enable the attacker to obtain Mð~pðiÞ
j ; RðiÞ

u ; N ðiÞ
u Þ. The pri-

vacy threat is again reduced to cracking the user’s signa-
tures as discussed before.

Query and Search. Recall that the obfuscated distance
measure is key to our design of the inference-based similar-
ity search scheme. It enables the server to retrieve most
likely candidates without knowing the exact distance val-
ues. The attacker may attempt to glean the similarity infor-
mation from the obfuscated distance measure. As a result,
the risk of data disclosure in the retrieval process also
depends on how different the distribution of the obfuscated

Fig. 4. Bound bðsþ cN; 2cR; cNÞT2
with respect to the modulus encoding

length cN for T ¼ 1; 2; 3, given s ¼ 14 and cR ¼ 15.
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distance values can be made from that of the exact distance
values, which we will discuss in Section 5.4.

5.2 Information Leakage in Montgomery Domains

In privacy studies, mutual information is often used to mea-
sure the average risk of data disclosure [41]. Accordingly,
we quantify information leakage in our context as the
mutual information between a substring data variable and
its independently generated signatures in Montgomery
domains. Specifically, consider a substring of length s bits
whose natural number representation is a discrete random
variable X with probability mass function pðxÞ ¼ 2�s for all
x in the range X ¼ ½0; 2sÞ. The entropy of X, denoted by
HðXÞ, is thus s bits [42]. For t ¼ 1; 2 and given the modulus
Nt, the Montgomery form of X, denoted by Gt, is also a dis-
crete random variable. In particular, let RðNtÞ be the set of
all eligible values of the multiplier Rt in the range ð0; 2cRÞ
that are coprime to Nt. Then, for X ¼ x, every Rt 2 RðNtÞ
yields an ðRt;NtÞ-residue, i.e., gt ¼ Mðx;Rt;NtÞ. Let all pos-
sible values of Gt constitute the subset Gt � ½0; NtÞ. The
mutual information between X and its Montgomery forms
G1;G2, denoted by IðX;G1;G2Þ, is then given by [42]

IðX;G1;G2Þ ¼ HðXÞ �HðXjG1;G2Þ: (22)

The conditional entropy HðXjG1;G2Þ can be obtained by
the chain rule for entropy [42] as

HðXjG1;G2Þ ¼ HðG1;G2; XÞ �HðG1;G2Þ; (23)

where HðG1;G2; XÞ and HðG1;G2Þ can be obtained from the
joint distribution pðx; g1; g2Þ as follows. Since G1 and G2 are
independent, we have

pðx; g1; g2Þ ¼ pðg1; g2jxÞpðxÞ ¼ pðxÞ
Y2
t¼1

pðgtjxÞ; (24)

where the conditional distribution pðgtjxÞ can be derived by
enumerating all Rt 2 RðNtÞ with respect to Nt. The mar-
ginal distribution pðg1; g2Þ can be obtained as

pðg1; g2Þ ¼
X
x2X

pðx; g1; g2Þ: (25)

Then, the joint entropyHðG1;G2; XÞ is given by

HðG1;G2; XÞ ¼ �
X
x2X

X
g12G1

X
g22G2

pðx; g1; g2Þlog pðx; g1; g2Þ; (26)

and the joint entropyHðG1;G2Þ is given by

HðG1;G2Þ ¼ �
X
g12G1

X
g22G2

pðg1; g2Þlog pðg1; g2Þ: (27)

Fig. 5 plots IðX;G1;G2Þ with respect to the parameter cR
for s ¼ 4; 7; 14. With cN ¼ 15, we randomly select ten pairs
of moduli N1 and N2 from the nð215Þ ¼ 3512 available
primes. For each pair of N1 and N2, and for each particular
value of cR and s, we calculate IðX;G1;G2Þ and present in
Fig. 5 the mean and standard deviation of IðX;G1;G2Þ. It
can be seen that, as cR increases, IðX;G1;G2Þ monotonically
decreases and approaches zero. The larger the value of s,
the smaller is IðX;G1;G2Þwhen it converges.

Fig. 6 shows the effect of modulus on IðX;G1;G2Þ. Given
s ¼ 7 and cR ¼ 15, the plot displays IðX;G1;G2Þwith respect
to the moduli N1 and N2 that are chosen to span the range
ð0; 215Þ. In general, as N1 or N2 increases, IðX;G1;G2Þ
decreases and approaches zero. When both N1 and N2 are
larger than 139, corresponding to 99 percent of prime num-
bers in the range ð0; 215Þ, IðX;G1;G2Þ quickly drops to 0.066
bits. This indicates that information leakage in Montgomery
domains can also be made negligibly small by choosing suf-
ficiently large moduli values.

5.3 Privacy Gain in Index Generation

To measure the effect of applying privacy-preserving mech-
anisms in index generation, we introduce the notion of pri-
vacy gain, defined in our context as the increase in the
uncertainty of inferring a biometric identity p from the
search indexes. Let p̂ be a random variable whose possible
values are estimates of p, which we recall is in the form of a
binary string of length D bits. In an information-theoretic
approach, the privacy gain can be measured by the entropy
of p̂ conditional on the knowledge of the search indexes.
Accordingly, the privacy gain is null if one directly uses the
segments fpð1Þ;pð2Þ; . . . ;pðLÞg for indexing p as the adver-
sary can recover p ¼ pð1Þjjpð2Þjj . . . jjpðLÞ unambiguously. On

the other hand, the privacy gain is maximum, i.e., D bits, if
the search indexes are generated in an uninformative way.

Let us consider what if we use exactly the original form
of the obfuscated segments fVpð1Þ ;Vpð2Þ ; . . . ;VpðLÞg for hash-

based indexing. It is clear in this case that, for any i, an esti-
mate of pðiÞ has only two outcomes in the set VpðiÞ , i.e.,

p̂ðiÞ ¼ ~p
ðiÞ
j for j ¼ 0; 1 with equal probability. Thus, the con-

ditional entropy Hðp̂ðiÞ j VpðiÞ Þ is exactly one bit for all i, and
hence the privacy gain in this case is L bits.

Fig. 5. IðX;G1;G2Þ with respect to the multiplier encoding length cR for
s ¼ 4; 7; 14. The mean and standard deviation are obtained with ten pairs
of prime moduliN1 andN2 randomly chosen in ð0; 215Þ.

Fig. 6. IðX;G1;G2Þ with respect to the prime moduli N1 and N2 chosen to
span the range ð0; 215Þ, given s ¼ 7 and cR ¼ 15.
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We recall that the baseline “LSH + partial distance”
approach [29] generates the search indexes by performing
random sampling of bit positions. As a result, the more the
distinct positions that are sampled, the less is the uncer-
tainty left in inferring the biometric identity. The privacy
gain of the LSH-based approach is thus equal to the number
of unknown bits. For comparison, we randomly sample an
input string with s ¼ 8 bits at a time for L ¼ 50 times with
replacement. We perform simulations over 100,000 input
strings each of length 400 bits. The input bits are indepen-
dently generated and each bit is 0 or 1 with equal probabil-
ity. The results show that the privacy gain in such a context
is 147 bits on average.

Now, consider our proposed index generation scheme
using the Montgomery form of each substring ~p

ðiÞ
j 2 VpðiÞ .

In this context, if every ~p
ðiÞ
j has two independently gener-

ated signatures in Montgomery domains, we have a total
of four randomized signatures for indexing pðiÞ, denoted
by G

ðiÞ
1 ;G

ðiÞ
2 ;G

ðiÞ
3 ;G

ðiÞ
4 . In this case, let us again treat the natu-

ral number representation of p̂ðiÞ as a discrete random vari-
able X with probability mass function pðxÞ ¼ 2�s for all x
in the range X ¼ ½0; 2sÞ. Then, in a similar manner to the
way we calculate HðXjG1;G2Þ in Section 5.2 through (23),
(24), (25), (26), and (27), and setting s ¼ 8, cR ¼ 15, cN ¼ 15,
we obtain the mean value of the conditional entropy
Hðp̂ðiÞ jGðiÞ

1 ;G
ðiÞ
2 ;G

ðiÞ
3 ;G

ðiÞ
4 Þ as 7.82 bits and therefore the pri-

vacy gain is 391 bits for L ¼ 50, which is rather close to
D ¼ 400 bits in this case.

5.4 Privacy-Utility Trade-Off in Similarity Search

As discussed in Section 3, the distance obfuscation mecha-
nism in the MIMP scheme enables inference-based similar-
ity search to make judicious test decisions based on the
obfuscated distance measure without the need of directly
evaluating the Hamming distance. For any particular pair
of p and q, given the number of substrings L and the value
of m that is obtained from (7), the Hamming distance
dðp;qÞ is concealed in an interval given by (9) that depends
on the value of m. This is analogous to the concept of data
anonymization [31].

It is important to note that the parameter L plays a criti-
cal role in the trade-off between privacy and utility (i.e.,
search accuracy) in this context. We observe that:

� In the extreme case where L ¼ D, each substring has
exactly one bit. Since dðpðiÞ;qðiÞÞ in this case is either
0 or 1, by Proposition 1, we must have
CðVpðiÞ ;VqðiÞ Þ ¼ 1 for all i and hence m ¼ D regard-
less of the value of dðp;qÞ. This case yields the

maximum privacy achievable as all strings p 2 V
have the same m value and thus cannot be ranked.
However, in this extreme case, the inference-based
approach does not work as similarity search is
reduced to a wild guess, representing a worst-case
scenario for the search accuracy.

� In the other extreme case where L ¼ 1, by Proposi-
tion 1, we must have m ¼ 1 for dðp;qÞ � 1, m � 1
for dðp;qÞ ¼ 2 and m ¼ 0 for dðp;qÞ > 2. That is,
for any string p 2 V, the m value is either 0 or 1.
We can determine for all strings with m ¼ 1 that
their Hamming distance to the query is not greater
than two. For those with m ¼ 0, they cannot be fur-
ther ranked. Accordingly, if the Hamming distance
of the true match is greater than two, which is most
likely true in a biometric database, the inference-
based search in this extreme case is also no better
than a wild guess.

Intuitively, when L is neither too large nor too small,
the values of the obfuscated distance measure m are more
likely to span a wider range. As we have observed in
Section 3.4 for the UBIRIS dataset, this makes it more feasi-
ble to order the retrieved candidates in multiple ranks and
hence increases the search accuracy of the inference-based
approach.

As a result of Proposition 1, for a pair of p and q with a
particular value of m, the actual Hamming distance dðp;qÞ
may take any integer value from a certain range. On the
other hand, if 1 < L < D, it is clear that different distribu-
tions of the mismatching bits between p and q can lead to
different values of m even if the Hamming distance dðp;qÞ
retains the same. Such a one-to-many relationship between
the Hamming distance and the obfuscated distance measure
ensures in all cases more or less privacy protection for the
inference-based approach.

Fig. 7 illustrates the effect of distance obfuscation with
L ¼ 30 for the UBIRIS dataset. As discussed in Section 3.3,
we consider a total of 3,840,000 pairwise comparisons.
Among them, given the Hamming radius r ¼ 50, we have
6,026 neighbouring pairs and 3,833,974 non-neighbouring
pairs. In Fig. 7a, we plot the mapping from the Hamming
distance d to the obfuscated distance measure m for all the
3,840,000 pairwise comparisons, which clearly exhibits a
one-to-many relationship between d and m. In Fig. 7b, we
present the histogram of d and that of m for all neighbour-
ing pairs (i.e., those with d � 50). Likewise, the histograms
for all non-neighbouring pairs (i.e., those with d > 50) are
presented in Fig. 7c. In both cases, we observe that the dis-
tribution of d is very different from that ofm.

Fig. 7. Effect of distance obfuscation with L ¼ 30 for the UBIRIS dataset. (a) Mapping from Hamming distance d to obfuscated distance measure m.
(b) Histogram of d and that ofm for neighbouring pairs with d � 50. (c) Histogram of d and that ofm for non-neighbouring pairs with d > 50.
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6 PERFORMANCE EVALUATION

In this section, we evaluate the performance of the proposed
MIMP scheme in randomized Montgomery domains for
inference-based similarity search. For ease of description,
we shall hence call it as MIMP-RM for short. As discussed
in Section 3.4, a simple implementation of k-NN search
using MIMP-RM is to choose the top k candidates with the
largest values of the obfuscated distance measure m. We
demonstrate that the accuracy of candidate retrieval using
this simple and privacy-preserving approach is close to that
of conventional similarity search based on explicit distance
values, but the associated cost is significantly reduced com-
pared to cryptographic methods. We implement the test
algorithms in Matlab and run the experiments on a 3.4 GHz
Intel machine. For all experiments, the parameters used
in MIMP-RM to generate the search indexes are T ¼ 2,
cN ¼ 15, and cR ¼ 15.

6.1 Impact of Mismatching Bit Distribution

Here, we investigate how the mismatching bit distribution
can affect the retrieval performance of MIMP-RM. Specifi-
cally, we randomly generate a query set containing 200
binary strings of length D ¼ 2800 bits. For each query q, we
randomly generate a database of 200 records in the follow-
ing way. First, only ten of them are r-neighbours of the
query q where r ¼ 350. Second, we consider three different
distributions of the mismatching bits. That is, the positions
of the mismatching bits are randomly chosen from the range
½1; D=i� for i ¼ 1; 2; 4. In this way, a smaller i corresponds to
more evenly distributed mismatching bits over the binary
string. Given that we know the ground truth set Bðq; rÞ in
this experiment, we perform MIMP-RM with L ¼ 200 on
the simulated dataset and evaluate the quality of the top k
retrieved candidates.

Fig. 8 plots the precision-recall (PR) curves under the three
different mismatching bit distributions. The PR curves are
derived by varying k from 1 to 30. The results demonstrate
that both the precision and the recall can be significantly
improved if the mismatching bits are more evenly distrib-
uted. Thus, in cases where the mismatching bits are less
evenly distributed, to improve the retrieval performance
based on matching piecewise binary codes, it is helpful to
apply a random synchronized permutation to binary feature
vectors before performing the search. The results also show
that the precision is very high when the recall is low, corre-
sponding to the cases where k is small and indicating that the

retrieved candidates are mostly relevant. This further dem-
onstrates the effectiveness of inference-based r-neighbour
detection where the retrieved candidates with largem values
have a high probability that they are r-neighbours of the
query as discussed in Section 3.3.

6.2 Impact of the Parameter L

In Section 5, we argued that the number of substrings L is
an important parameter of MIMP-RM. In particular, we
showed in Section 5.2 that, to reduce the information leak-
age in randomized Montgomery domains, it is desirable to
choose a large value of s, corresponding to a small value of
L. In Section 5.4, we established that choosing an appropri-
ate value for L is also subject to a fundamental trade-off
between privacy and search accuracy. Here, we provide
more extensive results and further demonstrate the impact
of L on the search accuracy of MIMP-RM.

The experiments are conducted on public biometric data-
sets. In addition to the UBIRIS dataset, we also consider two
benchmark face datasets. In particular, the LFW dataset [43]
includes 13,233 face images crawled from the Internet for
5,749 subjects, and the FERET dataset [44] contains 2,400
face images of 200 subjects each with 12 images taken under
semi-controlled environment.

Nowadays, face recognition based on features learned
from deep convolution networks, known as deep features,
can achieve an accuracy over 99 percent on the once hardest
LFW dataset [3]. For the LFW dataset, we leverage the state-
of-the-art deep features learned from a CNN framework
[45]. The deep network is trained on the CASIA-WebFace
dataset [46]. Here, we use LSH embedding [47] to convert
the deep features into a binary string representation of
400 bits per LFW face image. To test our method with differ-
ent data characteristics, we employ supervised PCA fea-
tures on the FERET dataset. Specifically, we use six face
samples per identity for training and six face samples for
testing. We apply linearly separable subcodes [14] to con-
vert the less robust PCA features into binary string repre-
sentations of 448 bits per FERET face image, followed by a
random synchronized permutation.

We enrol one sample per identity in the database and use
another sample of that identity to search in each run of the
experiments. The search accuracy is evaluated in terms of
the hit rate, defined as the percentage of queries with true
match found in the top k retrieved candidates. Fig. 9
presents the search accuracy results obtained by varying k
from 1 to 30. We test four different values of L, i.e., 25, 50,
75 and 100, respectively.

For all the three datasets, we observe that the hit rate
increases significantly from L ¼ 25 to L ¼ 50 and drops at
L ¼ 100, which is consistent with discussions in Section 5.4.
We also observe that the hit rate seems to peak at L ¼ 75
since there is only a marginal improvement from L ¼ 50 to
L ¼ 75. To understand this latter effect, we perform an
empirical study on the test samples of each database, and it
reveals that over 99 percent of true match pairs have a Ham-
ming distance smaller than r� ¼ 150. Recall from Proposi-
tion 2 that, in this case, with L > r�=2 ¼ 75, all such true
match pairs are guaranteed to have a collision count and
thus can be detected. Accordingly, in the context of MIMP-
RM, choosing L ¼ r�=2 may serve as a rule of thumb for

Fig. 8. Retrieval performance of MIMP-RM on the simulated dataset with
positions of mismatching bits randomly chosen from a range.
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maximizing the search accuracy, and one may use a smaller
L value to strike a balance between search accuracy and pri-
vacy while reducing the information leakage of hash-based
indexing in randomized Montgomery domains.

6.3 Search Accuracy

We demonstrate the effectiveness of MIMP-RM in search
accuracy by comparing it with two baseline approaches that
can be used in the context of privacy-preserving similarity
search. In addition to the “LSH + partial distance” approach
[29], we also consider what we call the “exhaustive
Hamming” approach that performs exhaustive search by
pairwise comparison based on full-string representations in
Hamming space. Note that “exhaustive Hamming” pro-
vides the highest search accuracy that is achievable with
secure computation methods as the latter can retain one-to-
one matching accuracy in the encrypted domain [22]. How-
ever, such cryptography-based methods require pairwise
comparison in the encrypted domain and have high compu-
tation cost as will be shown in Section 6.4.

For “LSH + partial distance”, we generate the unen-
crypted part by random sampling of bit positions as in
Section 5.3. In this way, we create L hash tables each being
indexed by sub-hash codes of s bits. To increase the ambigu-
ity of query information for the server [28], each sub-hash
code of the query has one bit value omitted so that the server
needs to fill the absent bits. The retrieved candidates from
the hit buckets are then ranked in the ascending order of their
partial distance computed from the plaintext bit positions,
i.e., the unencrypted part of the full-string representation.

Fig. 10 plots the search accuracy of the comparing meth-
ods in terms of the hit rate with respect to the k value. The
parameter L is set to 50, 50 and 56 for the UBIRIS dataset,
the LFW dataset and the FERET dataset, respectively, which
results in s ¼ 8 in all cases. We observe that MIMP-RM

performs closely to “exhaustive Hamming”, especially in
Figs. 10a and 10b where the full-string representations are
highly discriminative in Hamming space. In all cases,
MIMP-RM outperforms “LSH + partial distance” signifi-
cantly. We believe it is mainly because the LSH-based
approach in general has a low recall especially when the
number of random hash functions is relatively small. In the
above setting, the average number of plaintext bit positions
is 233, 233 and 261 for the three datasets, respectively, repre-
senting about 58 percent of the full-string length. In con-
trast, MIMP-RM utilizes the full-string binary feature but in
an obfuscated way that can provide highly accurate search
results while increasing the uncertainty for adversarial
learning in randomized Montgomery domains.

6.4 Computation Cost in Montgomery Domains

Index generation and search in our proposed MIMP-RM
approach mainly involve computing nested Montgomery
forms. As discussed in Section 4.1, the Montgomery form of
a natural number can be evaluated efficiently via (15). To
demonstrate the efficiency of computation in Montgomery
domains, we compare it with two popular cryptographic
methods, namely Paillier homomorphic encryption and the
cryptographic hash function of SHA-256. We implement the
former with the homomorpheR library and the latter with
the sodium library on an R platform.

Table 2 provides the computation cost of each method
conducted in R/3.2.2. The results are obtained for encoding
piecewise binary codes that are generated from the UBIRIS
dataset. The resulting cipher codes are further compressed
using ZIP. We evaluate the computation cost by four meas-
ures. In particular, “Ciphertext size” and “Zipped file size”
refer to the file size before and after compression, respec-
tively. “Encoding time” refers to the CPU time required for
encoding all records in the database. “Scanning time” refers

Fig. 9. Impact of the parameter L on the search accuracy of MIMP-RM with respect to the top k retrieved candidates. (a) The UBIRIS dataset. (b) The
LFW dataset. (c) The FERET dataset.

Fig. 10. Performance comparison in terms of the search accuracy with respect to the top k retrieved candidates. (a) The UBIRIS dataset. (b) The
LFW dataset. (c) The FERET dataset.
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to the CPU time required for a linear scan of the database
for pairwise matching.

It can be seen in Table 2 that randomized signatures gen-
erated in Montgomery domains have much smaller code
size and higher processing speed. Using the nested Mont-
gomery forms, encoding is over 150 times faster and scan-
ning is up to five orders of magnitude faster than that using
Paillier homomorphic encryption. The results confirm that
the efficiency of computation is significantly improved
when done in Montgomery domains.

7 CONCLUSION

We have studied the problem of privacy-preserving similar-
ity search in a biometric database to withstand adversarial
machine learning based on the critical biometric similarity
information. Unlike existing privacy protection methods for
biometric identification that are in general required to per-
form cumbersome distance comparisons in the encrypted
domain, the new approach proposed in this paper is based
on statistical inference and carefully designed data obfusca-
tion mechanisms that obviate the need for comparing exact
distance values. We have also proposed to protect the data
structures by performing hash-based indexing in random-
izedMontgomery domainswith virtually negligible informa-
tion leakage. Experiments on public biometric datasets have
confirmed that candidate retrieval using our simple and
privacy-preserving approach is both statistically reliable and
computationally efficient. In future work, we are interested
in extending the inference-based approach to other biometric
modalities such as fingerprints that do not have a fixed-
length binary string representation. We are also interested in
extending the inference-based approach to search problems
with distancemeasures other than inHamming space.
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