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Abstract—The success of categorical data clustering generally much relies on the distance metric that measures the dissimilarity

degree between two objects. However, most of the existing clustering methods treat the two categorical subtypes, i.e., nominal and

ordinal attributes, in the same way when calculating the dissimilarity without considering the relative order information of the ordinal

values. Moreover, there would exist interdependence among the nominal and ordinal attributes, which is worth exploring for indicating

the dissimilarity. This paper will therefore study the intrinsic difference and connection of nominal and ordinal attribute values from a

perspective akin to the graph. Accordingly, we propose a novel distance metric to measure the intra-attribute distances of nominal and

ordinal attributes in a unified way, meanwhile preserving the order relationship among ordinal values. Subsequently, we propose a new

clustering algorithm to make the learning of intra-attribute distance weights and partitions of data objects into a single learning

paradigm rather than two separate steps, whereby circumventing a suboptimal solution. Experiments show the efficacy of the proposed

algorithm in comparison with the existing counterparts.

Index Terms—Categorical data clustering, nominal-and-ordinal attribute, intra-attribute distance, learnable weighting

Ç

1 INTRODUCTION

WIDESPREAD categorical data can be easily collected
from questionnaires, medical scales, scoring sys-

tems, and so on [1]. As one of the most widely used
machine learning and pattern recognition techniques,
clustering that partitions data objects into homogeneous
groups in unsupervised environment [2], [3] has been
commonly adopted for the analysis of categorical data [4],
[5]. In order to better discover homogeneous clusters,
weighting attributes according to their importance to the
clustering task [6] is adopted by many existing clustering
algorithms [7], [8], [9], [10], [11]. Since weighting an attri-
bute is equivalent to uniformly weighting all the intra-
attribute distances measured on this attribute, these algo-
rithms are actually based on the hypothesis that all the
intra-attribute distances are well defined, which is reason-
able for numerical data with well-defined distance mea-
sure [12]. However, for categorical data whose distance
measure is generally not well-defined, uniformly weight-
ing the intra-attribute distances is surely unreasonable
[13]. To solve this problem, most existing methods focus

on exploring appropriate distance measures [14], [15] and
attribute weighting mechanisms [11].

Successful attempts in exploring appropriate distance
measures include Lin’s [16] similarity measure, coupled
[17] similarity metric, association-based [18], Ahmad’s [19],
context-based [20], [21], and Jia’s [22] distance metrics. The
above-mentioned measures define intra-attribute distances
according to the possible value statistics, e.g., the occurrence
frequencies and conditional occurrence probabilities. Lin’s
measure computes the cumulative entropy of a range of
ordered possible values (i.e., the adjacent possible values
{good, neutral, bad} of an ordinal attribute with possible
values {very-good, good, neutral, bad, very-bad}) to indi-
cate the corresponding intra-attribute distance (i.e., the dis-
tance between good and bad) with preserving the order
relationship, which is suitable for the distance measurement
of ordinal data. The others define intra-attribute distances
according to the context information reflected by condi-
tional probability distributions between interdependent
attributes, which works well for nominal data. In recent
years, more powerful representation-based methods includ-
ing structure-based [23], coupled [24], [25], and heteroge-
neous coupling [26] representations, have been proposed to
represent categorical data by embedding more informative
and complex relationships existing in the level of values,
attributes, and objects, so as to achieve a more reasonable
distance measurement. Unfortunately, they still work well
for nominal data only.

In summary, all the above mentioned measures are pro-
posed without considering a very common situation that
real categorical data are usually composed of a mixture of
nominal and ordinal attributes [27], [28]. As the fragment of
medical scale data set shown in Table 1, the values of
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ordinal Attribute 1 stand for the degrees of lymph enlarge-
ment, the values of nominal Attribute 2 stand for the special
form of lymph, and the values of the Class attribute indicate
the diagnosis results, which are the desired true cluster
labels in cluster analysis.

In medicine, it is generally believed that the severity of
fibrosis, metastasis, and malign lymph increases in
sequence. Apparently, if we treat the ordered values of
Attribute 1 as nominal values, information provided by the
monotonic relationship between the values of Attribute 1
and the true class labels will be lost [29], which will directly
affect the clustering accuracy. Moreover, there also exists an
awkward gap between the cluster information provided by
nominal and ordinal attributes, because the values of an
ordinal attribute contain the relative order information, but
the values of a nominal one do not. Hence, to avoid the loss
of important information, entropy-based distance metrics
[30], [31] have been proposed to quantify intra-attribute dis-
tances of nominal and ordinal attributes as information
entropy [32] in a unified way. However, they have not
established an essential connection between nominal and
ordinal attributes for data clustering.

As for attribute weighting mechanism, most efforts have
tried to weight attributes for each cluster, which is called sub-
space clustering. Typical subspace approaches include [9],
[10], [11], which learn the different weight combinations of
attributes for each cluster to explore more appropriate sub-
spaces for gathering homogeneous data objects. Neverthe-
less, they uniformly weight all intra-attribute distances
measured on the same attribute, which still makes these
approaches incompetent in adapting the contributions of dif-
ferent intra-attribute distances to search for more appropriate
clustering results. Most recently, a distance weighting-based
clustering algorithm [33] has been proposed to learn the
weights of intra-attribute distances automatically during
clustering. This algorithm has remarkable performance on
ordinal data sets, but it relies on the order relationship
among attribute values for learning the distance weights,
which makes it applicable to ordinal data only. To the best of
our knowledge, clustering algorithm that can learn the
weights of intra-attribute distances for categorical data with
nominal and ordinal attributes has yet to be proposed.

In this paper, we will propose a new clustering method
composed of a novel distance definition and an automatic dis-
tance weighting mechanism for any-type categorical data
clustering, i.e., clustering data composed of any combination
of nominal and ordinal attributes. Specifically, we study the
intrinsic difference and connection of nominal and ordinal
attributes, and convert each possible value of nominal

attributes, e.g., “vesicles” of Attribute 2 as shown in Table 1,
into a Boolean attribute with two possible values “vesicles”
and “not vesicles”. Such Boolean attribute is a special case of
ordinal attribute, i.e., an ordinal attribute with two extreme
degrees “vesicles” and “not vesicles”. Thus, the heteroge-
neous clustering information provided by nominal and ordi-
nal attributes becomes homogeneous information provided
by ordinal attributes. On this basis, the information provided
by interdependent attributes in three cases (i.e., (i) both attrib-
utes are nominal, (ii) both attributes are ordinal, and (iii) one
is nominal and the other is ordinal) is utilized to measure
intra-attribute distances of nominal and ordinal attributes in a
unified way. Since the defined distances are not connected to
a certain clustering task, we also propose a novel intra-attri-
bute distance weighting mechanism to learn the distance
weights iteratively based on the present data partition result
to search for better clustering results. The proposed distance
definition and weighting mechanism are complementary to
each other in clustering. It turns out that the clustering algo-
rithm utilizing them is competent for the cluster analysis of
any-type categorical data. The main contributions of this
paper are summarized below:

� Inherent connection of nominal and ordinal attrib-
utes is studied, and a novel measure suitable for
intra-attribute distance measurement of any-type
categorical data clustering is proposed accordingly.

� An intra-attribute distance weighting mechanism that
iteratively updates the distance weights to search for
better data partitions, if any, is designed to make the
measured intra-attribute distances learnable.

� A new categorical data clustering algorithm is pre-
sented by utilizing the learnable distance measure.
Given the number of sought clusters (which is a com-
mon setting in cluster analysis), this algorithm is
parameter-free and has superior clustering perfor-
mance on any-type categorical data.

The remainder of this paper is organized as follows.
Section 2 reviews the related works. Section 3 formulates
the research problems. A design of homogeneous distance
metric is proposed in Section 4. Then, Section 5 introduces a
new clustering algorithm with the novel distance weighting
mechanism as the core. Experimental results are given in
Section 6. Finally, we draw a conclusion in Section 7.

2 RELATED WORK

This section makes an overview of the existing related
works on categorical data clustering.

2.1 Distance Measure

The distance measures for categorical data clustering can be
generally categorized as the direct, context-based, and
representation-based ones. The simplest direct measure [34]
directly assigns distances 0 and 1 to identical and different
intra-attribute values, respectively. The other direct meas-
ures [16], [30], [35] compute the intra-attribute distance
between two possible values according to their occurrence
frequencies. Direct measures are easy to use and have dem-
onstrated great computational efficiency because their com-
putation does not involve parameter selection, context

TABLE 1
Fragment of Lymphography Data Set

No. Attribute 1 Attribute 2 Class

(enlarge) (form) (diagnosis)

1 " non-special normal find
2 " vesicles fibrosis
3 "" vesicles fibrosis
4 """ chalices metastasis
5 """ chalices malign lymph
6 """" vesicles malign lymph
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information extraction, iterative learning, etc. However,
since the valuable information provided by the correlated
attributes is totally ignored, intra-attribute distances defined
by them are not always reasonable in indicating the real dis-
similarity degrees.

In contrast, the context-based measures [17], [18], [19],
[20], [21], [22], [31] compute the distance between two intra-
attribute values based on the context information, i.e., the
statistical information provided by the other attributes that
are correlated with the target one. In general, these meas-
ures outperform the direct ones, but their performance
dependents more on the interdependence of attributes. For
the data composed of independent attributes, some meas-
ures [18], [19], [20], [21] that are based on the sole informa-
tion provided by the interdependent attributes would even
fail for distance measurement.

Among all the above-mentioned direct and context-
based measures, the two measures [30], [31] that unify the
distance concept of nominal and ordinal attributes as the
information divergence to avoid information loss are suit-
able for any-type categorical data clustering. Nevertheless,
they only provide scale-level distance unification, but have
yet to consider the intrinsic connection between nominal
and ordinal attributes.

The representation-based distance measures encode cate-
gorical values into numerical ones, and then the advanceddis-
tance measures and clustering algorithms proposed for
numerical data can be utilized. In many practical application
scenarios, the encoding is performed by domain experts,
which makes the performance sensitive to the prior knowl-
edge. Further, for large-scale, high-dimensional, and multi-
variate categorical data, the encoding process is a laborious
and non-trivial task. A commonly adoptedway to circumvent
these issues is to simply encode each possible value of nomi-
nal attributes into a binary-valued numerical attribute and the
ordered possible values of each ordinal attribute into consecu-
tive integers, which is called simple coding. It turns out that
simple coding is applicable to any-type categorical data. Nev-
ertheless, since it ignores the original statistical information of
possible values, and it assigns the identical distance to differ-
ent possible value pairs, empirical studies in [33] have shown
that its performance is generallyworse than themeasures spe-
cially designed for categorical data. Recently, representation
learning methods [23], [25], [26] have been proposed for auto-
matically encoding categorical data in unsupervised environ-
ment. The one called SBC [23] reconstructs the original data
set according to the inter-object dissimilarities. CDE in [25]
encodes the original data set by performing k-means cluster-
ing and PCA on intra- and inter-attribute couplings. The
newly proposed UNTIE [26] represents data set by using
more types of couplings learned in multiple kernel spaces,
and achieves superior clustering performance. However, all
the above-mentioned representation learning methods are
actually designed for nominal data only, and their perfor-
mance somewhat depends on the non-trivial selection of
parameters or kernel functions.

2.2 Clustering Algorithm

From the perspective of attribute weighting, the existing cate-
gorical data clustering algorithms can be roughly categorized

as the non-attribute-weighting and attribute-weighting ones,
respectively. As a non-attribute-weighting algorithm, the
conventional k-modes [36] adopts Hamming distance [34] as
a distance measure to compute the distance between data
objects and the k modes. Based on the object-mode distan-
ces, it iteratively searches for better partitions of data set. Fur-
thermore, some of its variants also focus on improving its
robustness and scalability [37], [38]. In addition, clustering
algorithm adopting entropy as a measure [39] has been pro-
posed in the literature. It computes the entropy value of the
present partition after moving an object into a cluster, and
performs cluster analysis by searching for the partition with
the minimum entropy value [40]. In general, all the above-
mentioned algorithms assume that the attributes are of iden-
tical importance for clustering tasks, which is, however, not
always true in practice.

In the literature, an attribute weighting-based categorical
data clustering algorithm [7] has been proposed provided
that the attributes are of different importance. It assigns dif-
ferent weights to the attributes according to their contribu-
tions in forming more compact clusters. That is, if the total
distance between data objects and their clusters measured
on a certain attribute is low, it indicates that this attribute
contributes more than the others in forming the clusters
with similar objects. Subsequently, a higher weight is thus
assigned to this attribute in the next iteration to search for
more compact clusters. Nevertheless, this weighting mecha-
nism finds only a certain attributes’ subset that is important
to a certain subset of clusters, which is evidently incompe-
tent in a more complex case. Therefore, subspace clustering
algorithms [9], [10], [11] that weight each attribute accord-
ing to its contribution in forming each certain cluster have
been proposed.

In general, weighting an attribute is equivalent to uni-
formly weighting all the distances measured on it. Thus, all
the above-mentioned attribute weighting-based algorithms
actually assume that the distance measure can accurately
indicate the intra-attribute distances. If the adopted distance
measure is not appropriately defined, uniformly weighting
the intra-attribute distances measured by them will just
bring more irrationality into the clustering process. There-
fore, the most recently proposed clustering algorithm [33]
addresses this issue by iteratively weighting the importance
of intra-attribute distances according to the present partition
to search for more appropriate clustering results of the data
set. Unfortunately, distance weighting of this algorithm
relies on the order relationship among intra-attribute val-
ues, which makes it only applicable to the categorical data
sets composed of ordinal attributes.

3 PROBLEM STATEMENT

We formulate the problem of distance weighting-based
clustering of categorical data in this section. Table 2 lists the
notations and symbols used in this paper.

A categorical data set S can be represented as a tuple S ¼
< X;A;O > , where X ¼ fxiji 2 NXg is the object set with
n elements, and NX ¼ f1; 2; . . . ; ng is the index set of X. For
attribute set A composed of d attributes, we assume that the
former dðordÞ attributes are ordinal and the latter dðnomÞ attrib-
utes are nominal for convenience without loss of generality,

3562 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 44, NO. 7, JULY 2022

Authorized licensed use limited to: Hong Kong Baptist University. Downloaded on June 05,2022 at 01:50:50 UTC from IEEE Xplore.  Restrictions apply. 



and we have dðordÞ þ dðnomÞ ¼ d. Formally, AðordÞ ¼ fArjr 2
N

ðordÞ
A g is the ordinal attribute set, AðnomÞ ¼ fAsjs 2 N

ðnomÞ
A g

is the nominal attribute set, N
ðordÞ
A ¼ f1; 2; . . . ; dðordÞg and

N
ðnomÞ
A ¼ fdðordÞ þ 1; dðordÞ þ 2; . . . ; dg are the index sets of

AðordÞ and AðnomÞ, respectively. A ¼ AðordÞ [AðnomÞ is the
complete attribute set, and NA ¼ N

ðordÞ
A [N

ðnomÞ
A is the com-

plete index set of A. Accordingly, three types of categorical
data can be distinguished by

datatypeðSÞ ¼
mixed; AðordÞ 6¼ ;; AðnomÞ 6¼ ;
ordinal; AðordÞ 6¼ ;; AðnomÞ ¼ ;
nominal; AðordÞ ¼ ;; AðnomÞ 6¼ ;:

8<
: (1)

Hereinafter, a categorical data set composed of a mixture
of ordinal and nominal attributes, pure ordinal attributes,
and pure nominal attributes is called mixed, ordinal, and
nominal data set, respectively. Or ¼ formjm 2 Nr

Og is the set
of vr possible values of attribute Ar, and Nr

O ¼ f1; 2; . . . ; vrg
is the index set of Ar’s possible values. The ith object of X
is represented as xi ¼ ½x1i ; x2

i ; . . . ; x
d
i �> with xr

i 2 Or, r 2 NA.
If Ar is an ordinal attribute (i.e., r � dðordÞ), its possible val-
ues satisfy or1 � or2 � . . . � orvr where the symbol “�” indi-
cates that the values on its left are rank higher than the
values on its right.

In crisp partitional clustering task, X is partitioned into k
clusters, which can be represented as a cluster set C ¼
fCljl 2 NCg with NC ¼ f1; 2; . . . ; kg. Accordingly, X can be
represented as a collection of k disjoint subsets X ¼S k

l¼1XCl
where XCl

is the object set corresponding to the
lth cluster. The k clusters are represented by their corre-
sponding statistical information P ¼ fPljl 2 NCg where
Pl ¼ fpr

l jr 2 NAg is the statistical information of Cl and pr
l ¼

½prl1; prl2; . . . ; prlvr �> is the probability distribution of the rth
values of the objects in Cl. Values of P are dependent on Q,
which is an n� k matrix indicating the partition of X. The
ði; lÞth entry of Q is denoted as qil. If xi belongs to Cl, we
have qil ¼ 1, otherwise, qil ¼ 0. To learn the importance of
intra-attribute distances, we solve the clustering problem
in a distance weighting framework. The weights of intra-
attribute distances are denoted as a set of matrices W ¼
fWrjr 2 NAg where Wr is a vr � vr symmetric matrix stor-
ing the weights of intra-attribute distances of Ar. The
ðm;hÞth entry of Wr is denoted as wr

mh, which represents
the weight of the distance between possible values orm and
orh. The clustering problem can be formulated as minimizing

the objective function

ZðQ; P;WÞ ¼
Xn
i¼1

Xk
l¼1

qildistðxi; ClÞ (2)

s:t:

Pk
l¼1 qil ¼ 1; qil 2 f0; 1g; i 2 NX;Pd
r¼1

Pvr�1
m¼1

Pvr

h¼mþ1 w
r
mh ¼ 1; wr

mh 2 Rþ
0 :

(

The object-cluster distance distðxi; ClÞ is defined as

distðxi; ClÞ ¼
Xd
r¼1

distrðxi; ClÞ; (3)

and distrðxi; ClÞ is the object-cluster distance measured on
attribute Ar. If xr

i ¼ orm, dist
rðxi; ClÞ can be written as

distrðxi; ClÞ ¼
Xvr
h¼1

wr
mhdist

rðorm; orhÞprlh; (4)

and the intra-attribute distance distrðorm; orhÞ is defined as

distrðorm; orhÞ ¼
1

d

Xd
s¼1

distrsðorm; orhÞ; (5)

where the superscript “rs” of distrsðorm; orhÞ indicates that
this is the intra-attribute distance between Ar’s possible val-
ues with respect to As. We define distance in the form of
Eq. (5) in order to exploit context information provided by
interdependent attributes for distance measurement as
most categorical data distance measures do [17], [18], [19],
[21], [22], [31]. The exact definition of distrsðorm; orhÞ will be
given in Section 4.3.

Similar to most existing k-modes-type algorithms, the
minimization problem of Eq. (2) can be solved by iteratively
computing one variable and fixing the others. Since the val-
ues of P are completely dependent on the values of Q, we
can iteratively solve the following two problems:

� P.1: Fix W ¼ Ŵ and P ¼ P̂ , solve the reduced prob-
lem ZðQ; P̂ ; ŴÞ, update P according toQ;

� P.2: Fix Q ¼ Q̂ and P ¼ P̂ , solve the reduced prob-
lem ZðQ̂; P̂ ;WÞ.

4 HOMOGENEOUS DISTANCE MEASUREMENT

For cluster analysis, the adopted distance measure usually
dominates clustering performance. In this section, we study
the differences and commonalities of ordinal and nominal
attributes, and then propose a homogeneous intra-attribute
distance definition for them.

4.1 Attribute Structure

We first discuss the difference between ordinal and nominal
attributes. As shown in Fig. 1, if we treat the intra-attribute
possible values as nodes connected by edges, since nodes of
an ordinal attribute are naturally ordered, one node cannot
be reached along the edges from another non-adjacent node
without crossing its adjacent node, while for a nominal attri-
bute, a node can be directly reached along an edge from any
node without involving such “crossing”. We construct
graphs for studying the heterogeneity between ordinal and

TABLE 2
Style of Notations and Explanation of Symbols

Notation (example) Style

Attribute index (e.g., Ar) Superscript
Value note (e.g., dðordÞ) Superscript with parentheses
Function (e.g., distð�; �Þ) Parentheses
Space (e.g.,Rþ

0 ) Uppercase, calligraphic font
Vector (e.g., pr

l ) Lowercase, bold font
Matrix (e.g.,Q) Uppercase, bold font

Symbol (example) Explanation of example

; (e.g., AðordÞ ¼ ;) AðordÞ is an empty set
> (e.g., ½x1

i ; x
2
i ; . . . ; x

d
i �>) Transpose of ½x1

i ; x
2
i ; . . . ; x

d
i �� (e.g., or1 � or2) or1 ranks higher than or2: (e.g., :osg) As’s possible values excluding osg
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nominal attributes because graph is effective in modeling
complex relationships between nodes [41], [42], and has
been successfully applied to different machine learning
tasks, such as sketch synthesis [43], item recommendation
[44], and object retrieval [45]. It can be seen according to
Fig. 1 that the structure of ordinal attribute is line-like while
the structure of nominal attribute is net-like. These structures
are consistent with the relationships among intra-attribute
possible values of ordinal and nominal attributes from the
practical point of view. For example, if we compare two
choices, i.e., bad and very-good, of the review result regard-
ing the novelty of a manuscript with the five choices
fvery-good; good; neural; bad; very-badg. We will not skip
neutral and good to directly compare bad and very-good,
because all the choices are clearly ordered. In contrast, if we
compare two choices that belong to a choice set without such
order relationship, we will directly compare the two choices
without involving the other choices. It is obvious that the
structures of ordinal and nominal attributes are heteroge-
neous, which makes their intra-attribute distances difficult
to be defined in a homogeneousway.

4.2 Homogeneous Learning

For mixed categorical data, there are two cases for Eq. (5):
1) As 2 AðordÞ, and 2) As 2 AðnomÞ. Since the possible values
of an ordinal attribute represent the different degrees of a
concept while the possible values of a nominal attribute
represent different concepts, we convert possible values of
a nominal attribute into ordinal attributes as shown in
Fig. 2 so that the original nominal attribute becomes homo-
geneous with ordinal attributes. Specifically, for As 2
AðnomÞ with vs possible values, we convert it into a set of vs

ordinal attributes

Bs ¼ fAgjg 2 Ns
Og; (6)

where Ag is a newly generated ordinal attribute corre-
sponding to the possible value osg of As. Each Ag has two
possible values og1 ¼ osg and og2 ¼ :osg where vg ¼ 2 and og1 �
og2. Here, :osg stands for all the possible values of As except
osg. Each Ag can be viewed as a special case of ordinal attri-
bute, in which there are only two possible values indicat-
ing two extreme degrees, i.e., “is osg” and “is not osg”. In this
way, all the nominal attributes can be converted into ordi-
nal attributes, and the intra-attribute distances can then be
measured according to the same type of information pro-
vided by the attributes.

4.3 Design of Proposed Distance Metric

The distance between two possible values (e.g., orm and orh of
attribute Ar) with respect to another attribute (e.g., As) is

defined in this part. Before presenting the details of this dis-
tance definition, let us first define the conditional probabil-
ity distribution of an attribute (e.g., As) with respect to a
possible value (e.g., orm), which can be written as

urs
m ¼ ½pðos1jormÞ; pðos2jormÞ; . . . ; pðosvs jormÞ�>; (7)

where pðosgjormÞ is the conditional probability of osg with
respect to orm following Bayes’ theorem:

pðosgjormÞ ¼
cardðXs

g \Xr
mÞ

cardðXr
mÞ

: (8)

Here, Xs
g ¼ fxijxs

i ¼ osg; i 2 NXg is a subset of X with the sth
values of all its objects equal to osg, and the function cardð�Þ
counts the cardinality of a set. Then, we define the distance
between two possible values (e.g., orm and orh of attribute Ar)
with respect to another attribute (e.g., As) as follows:

distrsðorm; orhÞ ¼
cðurs

m;u
rs
h Þ; As 2 AðordÞ

1
vs

Pvs

g¼1 cðurg
m;u

rg
h Þ; As 2 AðnomÞ;

(
(9)

where cð�; �Þ computes the distance between two probability
distributions. For the nominal case (i.e.,As 2 AðnomÞ), the dis-
tance with respect to As is computed as the mean of the
distances with respect to the ordinal attributes Ag 2 Bs that
are converted fromAs as shown in Fig. 2. See Eq. (6) and cor-
responding discussions in Section 4.2 for more details. As
both As in the ordinal case and Ag in the nominal case are
ordinal attributes, we only need to discuss how to define
cð�; �Þ in the ordinal case.

In the literature, although the distance between two proba-
bility distributions is commonly computed in the form of
l1-norm (i.e., jjurs

m � urs
h jj1) or l2-norm (i.e., jjurs

m � urs
h jj2), they

are not suitable here because they cannot preserve order rela-
tionship among possible values of an ordinal attribute. For
example, given u1 ¼ ½1; 0; 0; 0�>, u2 ¼ ½0; 1; 0; 0�>, u3 ¼
½0; 0; 0; 1�>, we have jju1 � u2jj1 ¼ jju1 � u3jj1. However, if
u1, u2, u3 are obtained from an ordinal attribute, it is obvious
that u1 and u2 are more similar than u1 and u3, because the
two possible values that rank 1st and 2nd are more similar
than the two possible values that rank 1st and 4th. To preserve
the order relationship, we define cð�; �Þ as the cost of trans-
forming a probability distribution into another according to
the structure of ordinal attribute shown in Fig. 1, and
cðurs

m;u
rs
h Þ can bewritten as

cðurs
m;u

rs
h Þ ¼

Pvs�1
t¼1 jPt

g¼1 pðosgjormÞ � pðosgjorhÞ
� �

j
vs � 1

: (10)

Fig. 1. Structural difference between ordinal and nominal attributes from
the perspective of graph. The black nodes stand for possible values and
the edges reflect the spatial relationships among possible values.

Fig. 2. Converting a nominal attribute As into a set of ordinal attributes
Bs: Each nominal possible value osg is converted into an ordinal attribute
Ag with two ordered possible values osg and :osg.
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The distance defined in Eq. (10) computes the minimum
moving cost for transforming urs

m into urs
h (or urs

h into urs
m),

where jPt
g¼1ðpðosgjormÞ � pðosgjorhÞÞj in Eq. (10) is the total

‘supplies’ or ‘demands’ at location ost that should be moved
to locations ostþ1; o

s
tþ2; . . . ; o

s
vs for offsetting. During the above

computation, the ‘moving distance’ between adjacent val-
ues is 1 because the prior knowledge we have is that the
rank of a possible value is different from its adjacent possi-
ble value(s) by 1. A toy example shown in Fig. 3 intuitively
illustrates the computation process.

Eq. (10) elaborately reflects the distance between two
probability distributions obtained from an ordinal attribute,
and we discuss it in detail below:

� According to our design, ‘supplies’ and ‘demands’
are moved strictly according to the structure of ordi-
nal attribute as shown in Fig. 1. It turns out that the
order relationship among the possible values is
taken into account in computing the distance
between two distributions by Eq. (10).

� It is intuitive that two more different distributions
yield more ‘supplies’ and ‘demands’ for moving,
and thus result in a larger distance computed by
Eq. (10), which is consistent with the general distance
definitions like Manhattan and euclidean distance.

� In terms of the form, Eq. (10) can be viewed as a special
case of the Earth Movers’ Distance (EMD) [46], [47],
[48], as Eq. (10) only permits ‘moving’ between adja-
cent bins of histograms. However, Eq. (10) is designed
under the guidance of the proposed graph structure
shown in Fig. 1, which is very different from the moti-
vation and principle for designing EMD.

Eqs. (9) and (10) have defined the distance between two
possible values with respect to an attribute. Then, according
to the structures of nominal and ordinal attributes studied
in Section 4.1, we define the overall distance between two
possible values by combining their distances with respect to
each attribute as follows:

distrðorm; orhÞ ¼
1
d

Pd
s¼1

Pmaxðm;hÞ�1
t¼minðm;hÞ distrsðort ; ortþ1Þ

Ar 2 AðordÞ
1
d

Pd
s¼1 dist

rsðorm; orhÞ; Ar 2 AðnomÞ:

8>><
>>:

(11)

Based on Eq. (11), the distance between two data objects
xi and xj with their rth values denoted as xr

i ¼ orm and xr
j ¼

orh, respectively, can be written as

distðxi;xjÞ ¼ 1

d

Xd
r¼1

distrðorm; orhÞ: (12)

Theorem 1. Distance measure defined in Eqs. (9), (10), (11), and
(12) is a distance metric.

Proof According to Eqs. (9), (10), and (11), it is clear that the
defined intra-attribute distance satisfies the following
properties for anym;h; t 2 Nr

O and r 2 NA:

1) distrðorm; orhÞ 	 0;
2) orm ¼ orh , distrðorm; orhÞ ¼ 0;
3) distrðorm; orhÞ ¼ distrðorh; ormÞ;
4) distrðorm; orhÞ � distrðorm; ort Þ þ distrðort ; orhÞ.
According to Eq. (12), it is clear that the following

properties hold for any i; j; l 2 NX :

1) distðxi;xjÞ 	 0;
2) xi ¼ xj , distðxi;xjÞ ¼ 0;
3) distðxi;xjÞ ¼ distðxj;xiÞ;
4) distðxi;xjÞ � distðxi;xlÞ þ distðxl;xjÞ.
The defined distance measure satisfies all the distance

metric properties. tu
In practice, a set of distance matrices, i.e., D ¼ fDrjr 2

NAg where Dr is a vr � vr symmetric matrix storing intra-
attribute distances of Ar, can be computed before clustering.
The ðm;hÞth entry of Dr is denoted as drmh where drmh ¼
distrðorm; orhÞ. With D, distances can be directly read off dur-
ing clustering.

Theorem 2. Time complexity for computing the distance matri-
cesD is Oðnd2 þ d2V 3Þ.

Proof. Conditional probability distributionurs
m with r; s 2 NA

andm 2 Nr
O should be obtained before distance computa-

tion. For each urs
m, o

r
m’s corresponding values on As should

be scanned once with time complexity OðcardðXr
mÞÞ, and

for all the urs
m withm 2 Nr

O, the scan is with time complex-
ity OðnÞ. Such scan should be performed for each pair of
attributes, and thus the time complexity isOðnd2Þ.

Given a pair of possible values orm and orh with m;h 2
Nr

O and r 2 NA, the time complexity for computing the
distance between them based on the known urs

m and urs
h

is OðV Þ in both the two cases of Eq. (9). Note that V ¼
maxðv1; v2; . . . ; vdÞ is the maximum number of possible
values among all the attributes, which is adopted to sim-
plify the time complexity analysis. To obtain Dr, the time
complexity for computing the V ðV � 1Þ=2 intra-attribute
distances is OðdV 3Þ in the case Ar 2 AðnomÞ of Eq. (11). In
the case Ar 2 AðordÞ of Eq. (11), distance between possible
values with order difference 1 can be computed first, and
then the distance between possible values with order dif-
ference 2, 3, ..., V � 1 can be successively computed
based on the distances computed in the previous step.
Therefore, the time complexity for computing the V ðV �
1Þ=2 intra-attribute distances is also OðdV 3Þ in the case
Ar 2 AðordÞ of Eq. (11). The time complexity for comput-
ing a total of d distance matrices Dr is thus Oðd2V 3Þ.

Fig. 3. Computation process of Eq. (10). In step 1, we have urs
m ¼

½0:5; 0:3; 0:2�>, i.e., the upper histogram, and urs
h ¼ ½0:2; 0:2; 0:6�>, i.e.,

the lower histogram. To transform urs
m into urs

h , we first subtract them and
obtain the histogram ½0:3; 0:1;�0:4�> in step 2. The slash-filled bins indi-
cate supplies, and the dot-filled bin indicates demand. Then, 0.3 supply
at the first place is moved to the second place with 0.1 supply, the mov-
ing cost is (0.3�1)/2 = 0.15. In step 3, the total 0.4 supply at the second
place is moved to the third place with 0.4 demand, the moving cost is
(0.4�1)/2 = 0.2. Since the supply and demand exactly offset each other
after step 3, the transforming is completed in step 4, and the total trans-
forming cost is 0.15 + 0.2 = 0.35.
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Hence, the overall time complexity for obtaining D is
Oðnd2 þ d2V 3Þ. tu

5 CLUSTERING BASED ON INTRA-ATTRIBUTE

DISTANCE WEIGHTING

Often, separately treating the cross-coupled distance defin-
ing and data clustering results in a suboptimal solution.
This section will therefore propose a learning mechanism
that adjusts the defined intra-attribute distances to suit cer-
tain clustering tasks. We have constructed graph-like struc-
ture for the intra-attribute possible values to define their
distances in Section 4.3, and will learn the weights of the
distances in an iterative way with data clustering in the fol-
lowing subsections. Before introducing the details of our
algorithm, let us conceptually discuss the existing methods
whose learning paradigms are intuitively similar to ours.

Several clustering of bandits algorithms [44], [49], [50]
have been proposed to construct graph for the objects (i.e.,
users in their application scenarios) and dynamically per-
form graph clustering according to the item preference of
users over time. Further, the one in [51] captures the collab-
orative effects of the users, and the one in [52] captures the
bi-collaborative effects between users and items by itera-
tively partitioning user and item graphs. The commonality
of our method and the above-mentioned ones is that they
all iteratively learn (1) the relationship between objects and
(2) certain predictions for the objects. The differences are:
(1) we construct graphs only for studying the distance defi-
nition between possible values, while most of the above-
mentioned methods construct graphs for objects and cutting
the graphs for object partitioning, (2) we optimize the pre-
diction from objects to object clusters, while they optimize
the prediction of items to be recommended to users.
Although the above-mentioned methods are not solving the
same type of problem as ours, their paradigms can provide
inspiration for applying our method in more complex envi-
ronments in the future, for example, in on-line or distrib-
uted situations. In the following, we will elaborate how to
solve the two problems P. 1 and P. 2 stated in Section 3, and
present the clustering algorithm, together with the time-
complexity analysis.

5.1 UpdateQ As GivenW and P

The process of solving problem P:1 is to obtain a data parti-
tion according to a certain distance measure and cluster
representation, which actually adopts the same basic idea
as most k-modes-type algorithms. The difference is that we
use the statistical information P (defined in Section 3)
instead of cluster modes in representing the clusters, which
ensures the extraction of more rich information for learning
distance weights W in solving problem P:2. Specifically,
the details of solving P:1 are presented as follows. Accord-
ing to the objective function defined in Eq. (2), P:1 is solved
by fixing W ¼ Ŵ and P ¼ P̂ , and computing Q. Given dis-
tance matricesD,Q is computed by

qil ¼
1; if l ¼ argminydistðxi; CyÞ

¼ argminy
Pd

r¼1

Pvr

h¼1
^wr
mhd

r
mhp̂

r
yh

0; otherwise

8<
: ; (13)

for xi with xr
i ¼ orm. Since we represent the clusters using

their probability distributions by P instead of using cluster
modes, the form of the solution in Eq. (13) is different form
the conventional k-modes-type algorithms. Thus, solution
to P:1 is also rigorously given in Theorem 3.

Theorem 3. Let W and P be fixed, ZðQ; P̂ ; Ŵ Þ is minimized iff
Q is computed utilizing Eq. (13).

Proof. For any given W ¼ Ŵ and P ¼ P̂ , all the inner sums
of the quantity

ZðQ; P̂ ; ŴÞ ¼
Xn
i¼1

Xk
l¼1

qildistðxi; ClÞ;

are nonnegative and independent. Let orm ¼ xr
i , we can

write the inner sum contributed by xi as

zi ¼
Xk
l¼1

qildistðxi; ClÞ ¼
Xk
l¼1

qil
Xd
r¼1

Xvr
h¼1

^wr
mhd

r
mhp̂

r
lh:

Let zil ¼
Pd

r¼1

Pvr

h¼1
^wr
mhd

r
mhp̂

r
lh, which is the inner sum

contributed by xi in Cl. We then obtain

zi ¼
Xk
l¼1

qilzil:

Since
Pk

l¼1 qil ¼ 1 and qil 2 f0; 1g, it is clear that zi is mini-
mized iff the minimum zil is assigned with qil ¼ 1where l
is determined by

l ¼ argmin
y

ziy ¼ argmin
y

Xd
r¼1

Xvr
h¼1

^wr
mhd

r
mhp̂

r
yh;

and the other zils are assigned with qil ¼ 0. The result
follows. tu
We have presented the solution of updatingQ. Each time

a newQ is obtained, the cluster representation P is updated
accordingly, and such process is iterated until convergence.

5.2 UpdateW As GivenQ and P

In Section 5.1, we have presented the solution of P:1. Then,
P:2 should be solved based on the present Q and P to learn
distance weights W . In this part, a novel learning scheme is
designed by mining the latent interaction between data par-
tition and intra-attribute distances, so as to seek for more
appropriate data partition in the next iteration based on the
defined intra-attribute distances and the newly learned W .
The details of solving P:2 are presented as follows. Given
fixed Q̂ and P̂ , the objective function defined by Eq. (2) can
be written as

ZðQ̂; P̂ ;W Þ ¼
Xn
i¼1

Xk
l¼1

q̂ildistðxi; ClÞ

¼
Xn
i¼1

Xk
l¼1

q̂il
Xd
r¼1

Xvr
h¼1

wr
mhd

r
mhp̂

r
lh

¼
Xd
r¼1

Xvr
m¼1

Xvr
h¼1

wr
mhd

r
mh

Xk
l¼1

fr
lmf

r
lh

fl
;

(14)
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where fr
lm ¼ cardðXr

m \XCl
Þ and fr

lh ¼ cardðXr
h \XCl

Þ are
the total number of objects in Cl with their rth values
equal to orm and orh, respectively, fl ¼ cardðXCl

Þ is the
number of objects in Cl, and we have frlh=fl ¼ p̂rlh. In
most k-modes-type algorithm with attribute weighting
mechanism [7], [8], [10], Lagrangian multiplier is used to
convert the constrained weights computation problem
into an unconstrained problem so that the optimal attri-
bute weights can be computed directly in each iteration.
However, solving our intra-attribute distance weighting
problem in this way may encounter two awkward issues:

� Frequency Effect: For attribute weighting, each attri-
bute has the identical number of values, which is the
basis for success in making the computed weights
comparable. However, the occurrence frequencies
of intra-attribute distances (i.e.,

Pk
l¼1 f

r
lmf

r
lh of drmh)

are usually different from each other, which makes
the computed weights of intra-attribute distances
incomparable.

� Co-occurrence Sparsity: It is common for a real cate-
gorical data set that an intra-attribute distance (i.e.,
drmh) never occur in a cluster, so that no statistical
information is provided for the computation of its
corresponding weight wr

mh. If we set such weights to
0, the problem still cannot be fixed because there are
many such weights preventing the algorithm from
convergence.

We propose a novel intra-attribute distance weight
updating scheme to circumvent the above-discussed issues.
In general, a larger drmh indicates that the two corresponding
possible values orm and orh are more dissimilar. That is, drmh is
expected to contribute more in partitioning the objects in
Xr

m ¼ fxijxr
i ¼ orm; i 2 NXg and the objects in Xr

h ¼ fxijxr
i ¼

orh; i 2 NXg into different clusters. Thus, given a data parti-
tion Q̂, if drmh is larger but more objects in Xr

m and Xr
h are

assigned into the same cluster, it is indicated that drmh does
not contribute in partitioning the objects Xr

m and Xr
h into

different clusters as expected. Accordingly, the weight of
drmh should be estimated as its expectation in reducing
ZðQ̂; P̂ ;W Þ, and we have

wr
mh / drmh

Xk
l¼1

fr
lmf

r
lh

fr
mf

r
h

" #�1

; (15)

where frm ¼ cardðXr
mÞ ¼

Pk
l¼1 f

r
lm and fr

h ¼ cardðXr
hÞ ¼Pk

l¼1 f
r
lh are the intra-cluster occurrence frequencies of orm

and orh, respectively. The term ðfr
lmf

r
lhÞ=ðfrmfrhÞ quantifies the

occurrence of drmh in Cl as a joint occurrence probability of
orm and orh in Cl, which avoids the Frequency Effect. If we
directly update W by wr

mh ¼ ½drmh

Pk
l¼1ðfrlmfrlhÞ=ðfr

mf
r
hÞ��1

according to Eq. (15), the Co-occurrence Sparsity issue may
make the values of different weights vary greatly in the inter-
val ½1=drmh;1Þ, which may cause non-convergence. Thus, we
discuss how to novelly circumvent the Co-occurrence Sparsity
issue in the following.

Lemma 1. Given an arbitrary partition Q of data set S, sum of
the intra-cluster distance E

rðintraÞ
mh and inter-cluster distance

E
rðinterÞ
mh contributed by drmh is a constant.

Proof. We first note that E
rðintraÞ
mh ¼ drmh

Pk
l¼1 f

r
lmf

r
lh and

E
rðinterÞ
mh ¼ drmh

Pk�1
s¼1

Pk
u¼sþ1ðfrsmfr

uh þ fr
umf

r
shÞ. Let E

rðtotalÞ
mh

¼ E
rðintraÞ
mh þE

rðinterÞ
mh , we have

E
rðtotalÞ
mh ¼ drmh

Xk
l¼1

frlmf
r
lh þ

Xk�1

s¼1

Xk
u¼sþ1

frsmf
r
uh þ frumf

r
sh

� � !

¼ drmh

Xk
s¼1

X
u¼s

frsmf
r
uh

 

þ
Xk�1

s¼1

Xk
u¼sþ1

frsmf
r
uh þ

Xk�1

s¼1

Xk
u¼sþ1

frumf
r
sh

!

¼ drmh

Xk
s¼1

Xk
u¼1

frsmf
r
uh ¼ drmh

Xk
s¼1

frsm
Xk
u¼1

fruh

¼ drmhf
r
mf

r
h:

Since drmh, f
r
m, and frh are constants for a given data set S,

it is clear that E
rðtotalÞ
mh is a constant. The result follows. tu

Based on Lemma 1, Eq. (15) can be transformed to avoid
the Co-occurrence Sparsity issue.

Lemma 2. Given Eq. (15), wr
mh / drmh

Pk�1
s¼1

Pk
u¼sþ1ðfr

smf
r
uh þ

frumf
r
shÞ=ðfr

mf
r
hÞ holds when 9 l 2 NC so that frlmf

r
lh 6¼ 0.

Proof. LetHr
mh ¼ drmh

Pk�1
s¼1

Pk
u¼sþ1ðfr

smf
r
uh þ fr

umf
r
shÞ=ðfr

mf
r
hÞ.

We first prove that Hr
mh < E

rðtotalÞ
mh =ðfr

mf
r
hÞ. According to

the proof of Lemma 1, we derive

E
rðtotalÞ
mh

frmf
r
h

�Hr
mh ¼ drmh

Pk
l¼1 f

r
lmf

r
lh

fr
mf

r
h

: (16)

Since 9 l 2 NC so that fr
lmf

r
lh 6¼ 0, and fr

lm and frlh are non-

negative integers, we have
Pk

l¼1 f
r
lmf

r
lh > 0; Since fr

m and

fr
h are positive constants and drmh > 0 for two different

possible values orm and orh, we then have

drmh

Pk
l¼1 f

r
lmf

r
lh

fr
mf

r
h

> 0 ) Hr
mh <

E
rðtotalÞ
mh

frmf
r
h

:

From Eqs. (15) and (16), we derive

wr
mh / 1

E
rðtotalÞ
mh
frmfr

h
�Hr

mh

:

Since we have proved Hr
mh < E

rðtotalÞ
mh =ðfr

mf
r
hÞ, and

E
rðtotalÞ
mh =ðfr

mf
r
hÞ is a constant, it is clear that the value of wr

mh

is proportional to the value ofHr
mh, which can bewritten as

wr
mh / drmh

Pk�1
s¼1

Pk
u¼sþ1ðfr

smf
r
uh þ fr

umf
r
shÞ

frmf
r
h

: (17)

The result follows. tu
According to Lemma 2, the weights of intra-attribute dis-

tances are updated by

w
r(new)
mh ¼ drmh

Pk�1
s¼1

Pk
u¼sþ1ðfr

smf
r
uh þ fr

umf
r
shÞ

fr
mf

r
h

: (18)

Eq. (18) is obtained with restriction 9 l 2 NC so that fr
lmf

r
lh 6¼

0. We also demonstrate that when 8 l 2 NC , frlm; f
r
lh ¼ 0,
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Eq. (18) is still meaningful. 8 l 2 NC , f
r
lm; f

r
lh ¼ 0 indicates

that the objects in Xr
m and the objects in Xr

h never appear in
the same cluster, which means that the contribution of drmh

in partitioning the objects in Xr
m and the objects in Xr

h into
different clusters reaches the maximum, i.e.,

Pk�1
s¼1

Pk
u¼sþ1

ðfrsmfr
uh þ fr

umf
r
shÞ=ðfr

mf
r
hÞ ¼ 1. Since the value of

Pk�1
s¼1Pk

u¼sþ1ðfr
smf

r
uh þ fr

umf
r
shÞ=frmfr

h is in the interval [0,1], it is

clear that weights updating utilizing Eq. (18) will not be

influenced by the Co-occurrence Sparsity issue. We also use

soft-max, i.e., wr
mh ¼ w

rðnewÞ
mh =

Pd
s¼1

Pvs�1
g¼1

Pvs

t¼gþ1 w
sðnewÞ
gt , to

make the updated weights satisfy
Pd

r¼1

Pvr�1
m¼1

Pvr

h¼mþ1

wr
mh ¼ 1.
Advantages of the proposed weights updating scheme

are summarized below:

� Frequency Dominance issue is avoided.
� Co-occurrence Sparsity issue is novelly circumvented.
� It is parameter-free, and the clustering algorithm

based on it (see Section 5.3) always converge quickly,
which has been illustrated in Section 6.

5.3 Complete Clustering Algorithm

The complete clustering algorithm called HD-NDW integra-
tes the solutions of P:1 and the Novel Distance Weighting
(NDW) mechanism for solving P:2. As described in Algo-
rithm 1, it iteratively updates the data partitions andweights
of the distances defined by the Homogeneous Distance (HD)
metric for data partitioning. More specifically, Step1 acts as
a complete clustering algorithm that learns a data partition,
which provides information for updating the weights of dis-
tances in Step2. This is why we put Step1 before Step2 in
HD-NDW. After reasonable distance weights are learned
according to the data partition, the weights are fed back to
Step1 for learning more appropriate data partition, and
such procedures iterate until convergence. Time complexity
of HD-NDW is analyzed in Theorem 4.

Algorithm 1.HD-NDW Clustering Algorithm

Input: Data set S, number k of clusters, distance matricesD.
Output: PartitionQ.
Step 0: Initialize the time-step by t ¼ 0; Initialize P ðtÞ andW ðtÞ;
Step 1: FixW ðtÞ and P ðtÞ, iteratively updateQðtÞ by Eq. (13) and
update P ðtÞ according to QðtÞ until convergence, obtain
Qðtþ1Þ and P ðtþ1Þ; If Qðtþ1Þ 6¼ QðtÞ, go to Step 2; Otherwise,
stop andOutputQðtÞ.

Step 2: Fix Qðtþ1Þ and P ðtþ1Þ, update W ðtÞ by Eq. (18), obtain
W ðtþ1Þ; Update the time-step by t ¼ t þ 1, go to Step 1;

Theorem 4. Time complexity of Algorithm 1 is OðEðkdVnI þ
dnþ dV 2kÞÞ, supposing Step1 needs I iterations to converge,
and the loop of Step1 and 2 needs E iterations to converge.

Proof. InStep1, time complexity for computing the values of
a row of QðtÞ is OðkdV Þ because there are k clusters to be
considered, and for each cluster, the distance is computed
based on the d intra-attribute distances stored in D, and
each attribute has a maximum of V possible values. See the
proof of Theorem 3 for more details of the computing of
QðtÞ. Since there are n rows in QðtÞ and Step1 repeats I
times, the total time complexity of Step1 isOðkdVnIÞ.

According to the proof of Lemma 1, the termPk�1
s¼1

Pk
u¼sþ1ðfr

smf
r
uh þ frumf

r
shÞ=ðfr

mf
r
hÞ in Eq. (18) can be

directly computed by 1�Pk
l¼1 f

r
lmf

r
lh=ðfr

mf
r
hÞ. Before the

computation, we should first obtain the set of occur-
rence frequency matrices F ¼ fF1;F2; . . . ;Fdg where Fr

is a k� vr matrix storing the occurrence frequencies of
Ar’s possible values in each cluster, and the ðl;mÞth
entry of Fr is fr

lm. To obtain F , the d values of each data
object xi should be scanned once according to the corre-
sponding qil ¼ 1 in Q. Since there are n objects in total,
the time complexity for obtaining F is OðdnÞ. It is there-
fore clear that the time complexity for computing the
dV ðV � 1Þ=2 weights according to each of the k clusters
using Eq. (18) is Oðdnþ dV 2kÞ in Step2.

Since the loop of Step1 and 2 repeats E times, the time
complexity ofHD-NDW isOðEðkdVnI þ dnþ dV 2kÞÞ. tu

6 EXPERIMENTS

We conduct a series of experiments on various benchmark
and real data sets to evaluate the proposed clustering
method. We first describe the experimental settings. Then,
we demonstrate and discuss the experimental results.

6.1 Experimental Settings

6.1.1 Experimental Design

Five experiments are designed as follows:

� Clustering Performance of HD-NDW. We compare
HD-NDW with various clustering algorithms on
mixed, ordinal, and nominal categorical data sets to
illustrate the superiority of HD-NDW.

� Effectiveness of HD. HD is a core component of HD-
NDW.We compareHD and various distancemeasures
by combining them with the simplest k-modes cluster-
ing algorithm to illustrate the effectiveness ofHD.

� Effectiveness of NDW. NDW is also a core component
of HD-NDW. We compare HD-NDW and its non-
weighting version to prove the effectiveness NDW.

� Convergence Evaluation. Convergence curves of HD-
NDW on various data sets are demonstrated to illus-
trate its effectiveness and fast convergence.

� Computational Efficiency Evaluation. We compare the
execution time of various clustering methods on syn-
thetic data sets to illustrate the efficiency of HD-
NDW.

For all the experiments, the number k of the clusters is set
at the true number k
 of the clusters according to the data
label. We run all the experiments 50 times and report the
average results.

6.1.2 Validity Indices

We select the commonly used Adjusted Rand Index (ARI)
[53] because it is powerful in discriminating clustering per-
formance [54], [55]. Normalized Mutual Information (NMI)
[22], [56] is selected to evaluate clustering performance
from the perspective of information theory [57]. To make
the evaluation comprehensive, the traditional Clustering
Accuracy (CA) [58], [59] is also selected. NMI and CA are in
the interval [0,1] and ARI is in the interval ½�1; 1�. For all
these selected validity indices, a higher value indicates a
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better clustering performance. We also adopt Wilcoxon
signed-rank test and Bonferroni-Dunn test [60] to evaluate
the statistical significance of the difference between cluster-
ing performance of different methods. In addition, we com-
pute the averaged Intra- and Inter-Cluster Distance (ICD for
short) [19] to intuitively demonstrate the cluster discrimina-
tion ability of different methods.

6.1.3 Counterpart Selection

The most representative partitional clustering algorithms are
selected as counterparts for the experiments. We select
k-modes (KMD) [36] because it is the most conventional one.
We select Entropy-based Categorical data Clustering (ECC)
[39] because it is conventional and representative among the
entropy-based clustering algorithms. We also select attribute
Weighting k-modes (WKM) [7], Mixed-attribute Weighting
k-modes (MWKM) [10], and attribute Weighting and Object-
cluster-similarity-based Clustering (WOC) [11] algorithms as
another three counterparts. WKM andMWKMare two repre-
sentative algorithms in the attribute-weighting clustering
stream, andWOC is the most state-of-the-art one that extends
the attribute weighting into subspace. Space structure-Based
Clustering (SBC) [23], Coupled Data Embedding-based clus-
tering (CDE) [25], and UNsupervised heTerogeneous cou-
plIng lEarning-based clustering (UNTIE) [26] are also chosen
as the counterparts in the stream of data representation-based
clustering. SBC has two versions, denoted as SBC-1 and SBC-
2, whose difference is to adopt the different distance functions
only. For simplicity, we just therefore report the performance
of the one with better performance on each data set. Also, the
state-of-the-art Distance Learning-based Clustering (DLC)
[33] algorithm is selected. Since it is designed for ordinal
data only, we first perform the ‘simple coding’ as discussed in
Section 2.1 to encode the nominal attributes of mixed data
sets, and then performDLC for clustering.

We select categorical data distance measures as counter-
parts of the proposed HD distance metric. We select Ham-
ming distance metric [34] because it is the most commonly
used one in categorical data clustering. We also select Lin’s
Similarity Measure (LSM) [16] as a representative for the
stream of entropy-based measures, and Context-Based Dis-
tance Metric (CBDM) [21] as a representative for the stream
of context-based metrics. We also select three state-of-the-art
categorical data distance metrics, i.e., Jia’s Distance Metric
(JDM) [22], Entropy-Based DistanceMetric (EBDM) [31], and
Coupled Metric Similarity (CMS) [17] as counterparts. We
set the parameters of the above-mentioned counterparts at
the values suggested by the corresponding papers.

6.1.4 Data Sets

We collect 15 data sets for the experiments, and the data sta-
tistics are shown in Table 3.

Among the six mixed categorical data sets (mixed data
sets for short), Lenses, Breast Cancer (abbreviated as Can-
cer), Hayes-Roth (abbreviated as Hayes), Lymphography
(abbreviated as Lym), and Nursery, are benchmark data
sets collected from the UCI Machine Learning Repository
(UCI-MLR)1 [61], Assistant Evaluation (abbreviated as

Assistant) is a real mixed categorical data set collected from
university questionnaires. Among the five ordinal data
sets, Lecturer Evaluation (abbreviated as Lecturer), Social
Works (abbreviated as Social), and Employee Selection
(abbreviated as Selection) are benchmark data sets col-
lected from the Weka website2 [62], Photo Evaluation
(abbreviated as Photo) is a real ordinal data set collected
from university questionnaires, and Car Evaluation (abbre-
viated as Car) is a benchmark data set collected from UCI-
MLR. For all these five ordinal data sets, monotonic corre-
lation exists among all the attributes, i.e., an object com-
posed of higher ranked values always ranks higher in
comparison with the other objects composed of lower
ranked values [29]. To utilize such known monotonicity,
the original object-cluster distance is replaced with dist
ðxi; ClÞ ¼ jdistðx0;xiÞ � distðx0; ClÞj for the measures (i.e.,
LSM, EBDM, DLC, and HD) that are capable in distin-
guishing the order of values, in conducting the clustering
experiment in Section 6.2. Note that x0 here is a con-
structed object composed of the highest ranked value of
each attribute. All the four nominal data sets, i.e., Solar
Flare (abbreviated as Solar), Zoo, Voting Records (abbrevi-
ated as Voting), and Soybean, are benchmark data sets col-
lected from UCI-MLR.

6.1.5 Initialization of HD-NDW

In Step0 of the proposed HD-NDW algorithm, values of P
and W should be initialized. For P , although different ini-
tialization strategies can be utilized, we adopt a strategy
similar to the random initialization of the conventional
k-modes algorithm. That is, we randomly select k
 objects as
modes, and then assign values to the k
 � d vectors of P
accordingly. Taking the data set shown in Table 1 as an
example, suppose we have o11 ¼" , o12 ¼"" , o13 ¼""" , o14 ¼"""
" , o21 ¼non-special, o22 ¼vesicles, and o23 ¼chalices. If the 6th
object in Table 1 (i.e., x6 ¼ ½""""; vesicles�>) is initialized as

TABLE 3
Statistics of the 15 Utilized Data Sets

Data type Data set # Instance # Attribute # Class

Mixed

Lenses 24 2+2 12
Assistant 72 2+2 3
Hayes 132 2+2 3
Lym 148 3+15 4
Cancer 286 4+5 2
Nursery 12,960 7+1 4

Ordinal

Photo 66 4 3
Selection 488 4 9
Lecturer 1,000 4 5
Social 1,000 10 4
Car 1,728 7 4

Nominal

Soybean 47 21 4
Zoo 101 16 7
Solar 323 9 6
Voting 435 16 2

“# Attribute” of mixed categorical data sets indicates “# ordinal attributes +
# nominal attributes”

1. http://archive.ics.uci.edu/ml/datasets.html 2. https://www.cs.waikato.ac.nz/ml/weka/datasets.html
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the mode of the 2nd cluster, then the corresponding two
vectors in P2 will be p1

2 ¼ ½0; 0; 0; 1�> and p2
2 ¼ ½0; 1; 0�>,

respectively. For W , we uniformly initialize each weight of
it to 1=ðPd

r¼1 v
rðvr � 1Þ=2Þ. In this way, the sum of all the ini-

tialized weights equals to 1, which is equal to the sum of the
weights after updating, as the updated weights will be proc-
essed using soft-max (see the discussions following Eq. (18)
for more details). Another purpose of such a uniform ini-
tialization is to make the initialized weights have no effect
on the learning of Step1 in Algorithm 1. If we randomly
initialize W , inappropriate distance weights will prevent
Step1 from learning reasonable data partition, which will
further influence the subsequent learning iterations.

6.2 Clustering Performance Evaluation of HD-NDW

Since a key working principle of HD-NDW is to convert the
nominal attributes into ordinal ones for more reasonable
distance measurement, the superiority of HD-NDW will be
more prominent on mixed and ordinal data sets. In order to
conduct a more targeted evaluation, we report the cluster-
ing performance on mixed and ordinal data sets in Table 4.
To ensure the completeness of the evaluation, the perfor-
mance on nominal data sets is reported in Table 5. The best
and second-best results are highlighted using boldface and

underline, respectively. Improvements achieved by HD-
NDW in comparison with the best-performing counterparts
on different data sets are reported in the column of ‘D’. For
each data set, the compared methods are ranked according
to their performance, and the averaged rank of each method
is reported. From the results shown in Tables 4 and 5, we
have the following observations:

� HD-NDW obviously outperforms the other counter-
parts on mixed categorical data sets, because the
homogeneous distance definition and the distance
weighting mechanism may have desired effects on
mixed categorical data sets.

� HD-NDW and DLC significantly outperform the
other counterparts on ordinal data sets, because they
take into account the intra- and inter-attribute order
relationship, by which the learned distances are
more appropriate for clustering.

� In the comparison on nominal data sets, superiority
of HD-NDW is not as significant as on mixed and
ordinal data sets because the HD component that
uniformly defines distances for ordinal and nominal
attributes will not have desired impact when proc-
essing nominal data. Nevertheless, since NDW still

TABLE 4
Clustering Performance of Various Clustering Algorithms on Mixed and Ordinal Categorical Data Sets

Index Data Set KMD ECC WKM MWKM SBC WOC CDE UNTIE DLC HD-NDW D

ARI

Assistant 0.111�0.06 0.133�0.09 0.113�0.08 0.138�0.09 0.153�0.04 0.194�0.08 0.131�0.06 0.152�0.04 0.152�0.09 0.330�0.05 70.1%
Lenses 0.088�0.13 0.104�0.14 0.087�0.17 0.124�0.13 0.148�0.11 0.117�0.16 0.085�0.15 0.088�0.13 0.146�0.10 0.227�0.21 53.4%
Cancer 0.018�0.05 0.050�0.07 0.014�0.04 0.056�0.06 0.083�0.08 0.076�0.07 0.083�0.08 0.085�0.11 0.035�0.05 0.090�0.10 6.5%
Hayes -0.001�0.03 0.017�0.05 0.020�0.02 0.016�0.01 -0.012�0.01 0.019�0.04 0.081�0.04 0.084�0.06 0.026�0.03 0.091�0.03 8.8%
Lym 0.108�0.04 0.194�0.04 0.075�0.05 0.131�0.05 0.127�0.07 0.163�0.06 0.193�0.03 0.197�0.05 0.200�0.06 0.195�0.03 -2.4%
Nursery 0.054�0.02 0.072�0.10 0.083�0.11 0.058�0.02 0.017�0.01 0.002�0.00 0.053�0.02 0.084�0.02 0.115�0.08 0.133�0.07 15.8%
Photo 0.102�0.06 0.121�0.09 0.100�0.08 0.140�0.09 0.186�0.05 0.158�0.09 0.115�0.07 0.115�0.09 0.267�0.07 0.318�0.06 19.3%
Lecturer 0.034�0.02 0.035�0.02 0.032�0.02 0.038�0.01 0.046�0.01 0.040�0.02 0.034�0.02 0.033�0.02 0.151�0.01 0.154�0.01 1.5%
Social 0.043�0.02 0.059�0.02 0.043�0.01 0.047�0.02 0.093�0.02 0.036�0.02 0.068�0.02 0.071�0.02 0.108�0.00 0.112�0.01 3.2%
Selection 0.151�0.04 0.181�0.03 0.173�0.03 0.171�0.03 0.200�0.01 0.183�0.04 0.219�0.03 0.221�0.03 0.313�0.01 0.328�0.02 5.1%
Car 0.025�0.04 0.058�0.05 0.026�0.04 0.031�0.02 0.027�0.03 0.035�0.03 0.019�0.05 0.023�0.06 0.112�0.02 0.128�0.04 14.5%

Averaged Rank 8.55 5.82 8.18 6.18 5.09 5.64 6.45 4.91 3.00 1.18

NMI

Assistant 0.152�0.07 0.182�0.10 0.160�0.10 0.172�0.10 0.184�0.05 0.262�0.09 0.159�0.07 0.188�0.06 0.212�0.11 0.390�0.04 48.8%
Lenses 0.227�0.10 0.255�0.14 0.199�0.18 0.276�0.12 0.305�0.07 0.262�0.14 0.203�0.14 0.213�0.13 0.308�0.09 0.342�0.16 11.3%
Cancer 0.011�0.02 0.029�0.04 0.008�0.02 0.024�0.03 0.040�0.03 0.034�0.03 0.045�0.04 0.046�0.05 0.014�0.02 0.062�0.03 37.1%
Hayes 0.019�0.04 0.032�0.05 0.026�0.02 0.033�0.03 0.003�0.01 0.043�0.06 0.087�0.03 0.086�0.05 0.032�0.03 0.103�0.03 18.3%
Lym 0.168�0.04 0.243�0.04 0.130�0.05 0.188�0.05 0.170�0.04 0.231�0.06 0.237�0.04 0.243�0.05 0.223�0.05 0.258�0.03 5.9%
Nursery 0.059�0.02 0.103�0.13 0.105�0.13 0.103�0.03 0.032�0.02 0.006�0.00 0.056�0.02 0.101�0.03 0.117�0.11 0.162�0.09 39.2%
Photo 0.143�0.06 0.177�0.09 0.151�0.10 0.180�0.10 0.221�0.05 0.222�0.11 0.181�0.08 0.200�0.10 0.339�0.03 0.373�0.03 10.1%
Lecturer 0.054�0.02 0.059�0.02 0.057�0.02 0.060�0.02 0.073�0.02 0.064�0.03 0.056�0.02 0.059�0.02 0.215�0.01 0.217�0.01 0.8%
Social 0.065�0.02 0.086�0.02 0.060�0.02 0.068�0.02 0.131�0.02 0.059�0.02 0.094�0.02 0.088�0.01 0.167�0.00 0.168�0.01 0.2%
Selection 0.280�0.04 0.335�0.03 0.305�0.03 0.308�0.02 0.353�0.01 0.307�0.04 0.370�0.02 0.368�0.02 0.491�0.01 0.510�0.01 3.7%
Car 0.047�0.02 0.121�0.07 0.062�0.05 0.064�0.03 0.071�0.04 0.079�0.06 0.091�0.07 0.106�0.06 0.219�0.01 0.228�0.01 3.9%

Averaged Rank 9.00 5.55 8.45 6.27 5.55 5.64 5.64 4.55 3.36 1.00

CA

Assistant 0.522�0.07 0.536�0.08 0.527�0.09 0.546�0.09 0.568�0.08 0.621�0.07 0.531�0.06 0.549�0.05 0.570�0.09 0.639�0.07 2.9%
Lenses 0.534�0.09 0.537�0.11 0.538�0.10 0.557�0.10 0.564�0.09 0.544�0.11 0.512�0.10 0.513�0.07 0.561�0.07 0.588�0.13 4.1%
Cancer 0.564�0.06 0.586�0.09 0.536�0.07 0.614�0.08 0.624�0.11 0.629�0.10 0.630�0.10 0.630�0.10 0.584�0.08 0.651�0.09 3.4%
Hayes 0.384�0.03 0.414�0.06 0.439�0.05 0.416�0.02 0.354�0.02 0.413�0.08 0.442�0.05 0.452�0.04 0.446�0.05 0.487�0.05 7.7%
Lym 0.462�0.05 0.512�0.04 0.433�0.07 0.482�0.06 0.505�0.06 0.551�0.05 0.519�0.04 0.550�0.05 0.538�0.06 0.601�0.07 9.2%
Nursery 0.378�0.04 0.368�0.07 0.395�0.09 0.359�0.03 0.323�0.03 0.292�0.02 0.366�0.00 0.397�0.01 0.404�0.04 0.423�0.06 4.8%
Photo 0.511�0.07 0.524�0.08 0.517�0.09 0.553�0.09 0.557�0.05 0.584�0.09 0.501�0.06 0.500�0.09 0.668�0.06 0.698�0.05 4.4%
Lecturer 0.335�0.03 0.328�0.03 0.319�0.03 0.322�0.03 0.339�0.02 0.331�0.04 0.319�0.03 0.338�0.05 0.455�0.04 0.465�0.04 2.2%
Social 0.370�0.03 0.384�0.03 0.371�0.02 0.372�0.03 0.421�0.02 0.372�0.03 0.391�0.02 0.409�0.02 0.414�0.02 0.453�0.04 7.6%
Selection 0.365�0.04 0.372�0.04 0.373�0.03 0.369�0.04 0.386�0.01 0.427�0.05 0.407�0.03 0.437�0.04 0.505�0.03 0.489�0.03 -3.2%
Car 0.370�0.04 0.384�0.06 0.375�0.07 0.369�0.03 0.357�0.04 0.366�0.05 0.389�0.05 0.390�0.05 0.437�0.04 0.453�0.06 3.5%

Averaged Rank 8.18 6.55 7.45 6.91 5.64 5.45 6.32 4.41 3.00 1.09

The column of ‘D’ reports the improvements achieved by HD-NDW in comparison with the best-performing counterparts on different data sets. Results of signifi-
cance tests are shown in Table 6 and Fig. 4.
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acts in booting the clustering performance, HD-
NDW is still competitive in comparison with the
state-of-the-art UNTIE, and obviously outperforms
the others.

� Although UNTIE is not specially designed for repre-
senting data set with ordinal attributes, it still shows
strong data representation ability, because it per-
forms the best in comparison with the counterparts
except the two methods (i.e., DLC and HD-NDW)
that contain specially designed mechanisms for
exploiting the information embedded in ordinal
attributes. As for the performance on nominal data
sets, UNTIE performs the best in general, while HD-
NDW is still very competitive.

6.2.1 Significance Test

According to the averaged rank shown in Table 4, UNTIE
and DLC are clearly the two most competitive counterparts.
We conduct significance test using Wilcoxon signed-rank
test and report the results in Table 6. It can be seen that even
at 99 percent confidence interval, HD-NDW is still signifi-
cantly better than the two counterparts in terms of all three
validity indices.

To intuitively compare the proposed HD-NDW with the
other counterparts, we further perform Bonferroni-Dunn
test [60] on the performance of different methods and visu-
alize the results in Fig. 4. The counterparts rank outside the
Critical Difference (CD) intervals are believed to be signifi-
cantly different from HD-NDW. It can be observed from

Fig. 4a that HD-NDW is significantly better than almost all
five methods proposed in recent five years at confidence
interval 90 percent. In comparison with all nine counter-
parts in Fig. 4b, HD-NDW is still significantly better than
eight counterparts at confidence interval 90 percent.
Although HD-NDW is not significantly better than DLC,
HD-NDW is capable in processing any-type categorical
data, while DLC is designed for ordinal data only, which
cannot be directly used for mixed data and is incompetent
for nominal data. Therefore, HD-NDW also demonstrates
superiority in comparison with DLC in terms of availability
for nominal data clustering.

6.2.2 Visualization of Data Representation

To intuitively compare the reasonableness of the learned
representation or distances of the three best performing
methods, i.e., UNTIE, DLC, and HD-NDW, we visualize
their representations in Fig. 5 by converting them into two-
dimensional points using t-Distributed Stochastic Neighbor
Embedding (t-SNE) [63]. Since DLC and HD-NDW are not

TABLE 5
Clustering Performance of Various Clustering Algorithms on Nominal Data Sets

Index Data Set KMD ECC WKM MWKM SBC WOC CDE UNTIE HD-NDW D

ARI Solar 0.223�0.06 0.194�0.06 0.132�0.09 0.199�0.06 0.126�0.03 0.229�0.10 0.237�0.08 0.255�0.10 0.318�0.08 24.8%
Zoo 0.628�0.18 0.530�0.15 0.651�0.18 0.594�0.18 0.413�0.14 0.618�0.13 0.741�0.11 0.748�0.13 0.721�0.15 -3.6%
Voting 0.520�0.02 0.544�0.01 0.535�0.00 0.542�0.01 0.560�0.03 0.537�0.00 0.534�0.08 0.558�0.07 0.564�0.00 0.6%
Soybean 0.688�0.22 0.659�0.16 0.772�0.21 0.740�0.22 0.816�0.11 0.788�0.21 0.821�0.19 0.829�0.17 0.803�0.21 -3.1%

Averaged Rank 6.75 7.00 6.25 6.25 5.75 5.25 3.75 1.75 2.25

NMI Solar 0.300�0.05 0.278�0.06 0.218�0.10 0.271�0.06 0.196�0.03 0.331�0.09 0.319�0.08 0.348�0.10 0.408�0.08 17.2%
Zoo 0.753�0.09 0.700�0.06 0.779�0.08 0.745�0.08 0.595�0.08 0.786�0.05 0.810�0.05 0.808�0.08 0.809�0.08 -0.1%
Voting 0.448�0.02 0.476�0.01 0.452�0.01 0.473�0.01 0.473�0.00 0.475�0.00 0.462�0.07 0.458�0.08 0.489�0.00 2.7%
Soybean 0.805�0.15 0.771�0.10 0.849�0.12 0.847�0.13 0.856�0.06 0.885�0.11 0.892�0.11 0.902�0.10 0.897�0.11 -0.6%

Averaged Rank 7.00 6.25 6.75 6.50 6.75 3.50 3.50 3.25 1.50

CA Solar 0.482�0.05 0.442�0.05 0.400�0.06 0.462�0.05 0.400�0.04 0.483�0.07 0.483�0.07 0.498�0.06 0.540�0.05 8.3%
Zoo 0.676�0.13 0.623�0.10 0.703�0.12 0.647�0.13 0.554�0.09 0.669�0.10 0.758�0.08 0.778�0.09 0.760�0.10 -2.4%
Voting 0.861�0.01 0.869�0.01 0.852�0.00 0.868�0.00 0.875�0.00 0.867�0.00 0.864�0.04 0.872�0.05 0.876�0.00 0.1%
Soybean 0.791�0.17 0.773�0.14 0.837�0.17 0.811�0.17 0.874�0.10 0.821�0.17 0.874�0.14 0.876�0.13 0.849�0.16 -3.1%

Averaged Rank 6.50 7.00 6.75 6.25 5.25 5.50 4.00 1.75 2.00

The column of ‘D’ reports the improvements achieved by HD-NDW in comparison with the best-performing counterparts on different data sets.

TABLE 6
Wilcoxon Signed-Rank Test on the Performance of HD-NDW

versus DLC and HD-NDW versus UNTIE

Index HD-NDW versus DLC HD-NDW versus UNTIE

ARI + +
NMI + +
CA + +

The symbol “+” indicates that HD-NDW is significantly different from a cer-
tain counterpart for the two-tailed Wilcoxon signed-rank test at confidence
interval 99 percent (i.e., a = 0.01).

Fig. 4. Bonferroni-Dunn (BD) test on the performance of (a) methods
proposed in recent five years, and (b) all the compared methods. Critical
Difference (CD) for the two-tailed BD tests in (a) at confidence interval
95 percent (a = 0.05) and 90 percent (a = 0.1) are 2.05 and 1.86, respec-
tively. CD for the two-tailed BD tests in (b) at confidence interval 95 per-
cent (a = 0.05) and 90 percent (a = 0.1) are 3.58 and 3.28, respectively.
The counterparts rank outside the CD intervals are believed to be signifi-
cantly different from HD-NDW.
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representation-based methods, we first use them to learn
intra-attribute distances, and then encode the data values
using the learned distances for representation. Since the dis-
tances learned by DLC satisfy distðoa; obÞ þ distðob; ocÞ ¼
distðoa; ocÞ for a < b < c or a > b > c, we directly encode
the possible values by o1 ¼ 0, o2 ¼ distðo1; o2Þ, o3 ¼
distðo1; o3Þ, and so on, which will not twist the distances
learned by DLC. For the distances learned by HD-NDW, we
encode a possible value using the distances between it and
all the intra-attribute possible values to preserve the infor-
mation of the learned distances. For example, for an attri-
bute with possible values {oa, ob, oc}, the value ob is encoded
into a vector ½distðoa; obÞ; distðob; obÞ; distðoc; obÞ�> by the HD-
NDW learned distance metric. Note that the HD-NDW dis-
tance here is the one defined by HD multiplied by the corre-
sponding distance weight learned by HD-NDW.

It can be observed that the true clusters in the HD-NDW-
represented data set are obviously more separable in com-
parison with UNTIE and DLC. The reason should be that
Assistant is a mixed categorical data set that is composed of
nominal and ordinal attributes. For this kind of data, UNTIE
is unable to take into account the order information embed-
ded in ordinal attributes, while DLC is unsuitable for learn-
ing distances of nominal attributes.

6.2.3 Visualization of Cluster Discrimination

Averaged ICD computed based on the true cluster labels of a
data set can intuitively indicate the discrimination ability of a
distance metric. According to [19], averaged ICD between
two clusters Cl and Ct with nl and nt data objects, respec-
tively, is computed by

P
xi2Cl

P
xj2Ct

distðxi;xjÞ=ðnlntÞ.
When l ¼ t, it computes the averaged intra-attribute distance;
otherwise, it computes the averaged inter-attribute distance.
Since different distance metrics may have different scales,
computing the multiple relationship between the averaged
intra- and inter-cluster distances is a feasible solution [22] to
fairly compare the discrimination ability of different metrics.
Therefore, we pre-process the ICD matrix of each distance
metric by dividing all the values in the matrix by the

minimum value in this matrix. Then we visualize the pre-
processed ICD matrices as gray scale maps in Fig. 6. ICD
matrix of a better distance metric should be darker on the
main diagonal and lighter on the other locations, which indi-
cates smaller averaged intra-cluster distances and larger aver-
aged inter-cluster distances, respectively. From Fig. 6, it is
clear that HD-NDW has better cluster discrimination ability
than UNTIE and DLC.

6.3 Effectiveness Evaluation of HD

In Fig. 7, we visualize the intra-attribute distances produced
by different distance measures to intuitively compare them.
JDM is not compared in Fig. 7 because it directly measures
object-cluster distance and does not produce intra-attribute
distances. The produced distances are first normalized into
the interval [0,1] using min-max scaling, and then the nor-
malized distances are visualized by converting them into
corresponding gray scale pixels. A lighter pixel represents a
larger distance between two possible values, and a pure
black pixel represents a distance value of 0. In Fig. 7, the
pixel located at the mth column and hth row of a gray scale
map represents the distance between themth and hth possi-
ble values of the corresponding attribute. In general, two
possible values with larger order difference should have
larger distance, and thus the pixels should be darker on the
main diagonal, and lighter towards the upper right and
lower left corners in the gray scale maps.

It can be observed that Hamming distance is completely
incapable in distinguishing the distances between different
possible values. Although CBDM and CMS exploits more
context information for distance measurement, they cannot
reveal the order relationship among possible values of ordi-
nal attributes. Obviously, the distances produced by LSM,
EBDM, DLC, HD, and HD-NDW are consistent with the
order relationship among possible values of the two ordinal
attributes. Since the distances produced by HD-NDW is the
weighted version of the distances produced by HD, gray
scale maps of HD and HD-NDW are different in Fig. 7, but
they both reflect the order relationship.

Fig. 8 compares clustering performance of different dis-
tance measures and illustrates that even not weighted by
NDW, distance measured using HD is still very competent.
More detailed observations are provided below:

� HD outperforms the other counterparts on mixed
data sets because it is the only one that can measure
intra-attribute distances of nominal and ordinal
attributes in a homogeneous way. HD outperforms
the other counterparts on ordinal data sets because it
preserves the order relationship among ordered pos-
sible values.

Fig. 5. t-SNE visualization of the representations produced by UNTIE,
DLC, and HD-NDW on Assistant data set. The three types of markers
indicate data objects belonging to different true clusters.

Fig. 6. Gray scale maps of the ICD matrices produced by UNTIE, DLC,
and HD-NDW on Assistant data set. Darker on the main diagonal and
lighter on the other locations indicate a better distance metric.

Fig. 7. Gray scale maps of the intra-attribute distance matrices of the two
ordinal attributes of Assistant data set produced by various distance
metrics.
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� On Zoo, Voting, Cancer, and Lym data sets, perfor-
mance of HD is competitive but cannot be obviously
better than the others. This may be because that the
above-mentioned four data sets are composed of
more nominal attributes, which weakens the advan-
tages of HD accordingly.

� ARI performance of CBDM is exactly 0 on Lenses,
Nursery, and Car data sets because these data sets
are composed of independent attributes and CBDM
fails in measuring distances for such data sets.

6.4 Effectiveness Evaluation of NDW

Clustering performance of the original version of HD-NDW
and the version without NDW (abbreviated as non-NDW)
is demonstrated in Fig. 9. By comparing them, effectiveness
of the NDWmechanism can be empirically proved.

It can be observed that HD-NDW performs better than
the non-NDW version on all the data sets, which indicates
that the NDW mechanism does optimize the distance
weights during the clustering of HD-NDW to obtain better
clustering results. It can also be observed that HD-NDW
does not outperform non-NDW a lot on Lenses, Voting and
Soybean data sets. This may be because most attributes of
these three data sets have only two possible values, and for
such attributes, there is only one intra-attribute distance to
be weighted during clustering, which makes NDW

degrades into a conventional attribute weighting mecha-
nism, and thus obscures the merits of NDW.

6.5 Convergence Evaluation

We plot the convergence curves of HD-NDW on each data
set in Fig. 10. Specifically, after each iteration of Step 1 in
Algorithm 1, ‘No. of Iteration’ is added by 1, and the current
‘Error’ (i.e., the current value of objective function) is plot-
ted. When Step 1 converges and Step 2 is triggered, the cur-
rent ‘Error’ is marked by a circle. When the whole
algorithm converges, the current ‘Error’ is marked by a box.

It can be seen that HD-NDW converges within 6 - 22 iter-
ations on different data sets, which is very fast for learning
a large number (i.e.,

Pd
r v

rðvr � 1Þ=2) of intra-attribute dis-
tance weights. Moreover, the convergence curves are mono-
tonically decreasing, and ‘Error’ decreases sharply after
updating the distance weights, which clearly illustrates the
effectiveness of HD-NDW.

In our experiments, since the true number k
 of the clus-
ters is utilized, partition learned by Step 1 is relatively rea-
sonable, which offers useful information for learning W in
Step 2. This would be the reason why Step 2 is always trig-
gered 2 - 3 times for different data sets.

6.6 Computational Efficiency Evaluation

We randomly generate synthetic categorical data sets to eval-
uate the computational efficiency of different clusteringmeth-
ods in terms of four data factors: (1) number of data objects
(n), (2) number of attributes (d), (3) number of possible values
per attribute (V ), and number of clusters (k). Synthetic data
sets are generated by increasing the value of one factor and
fixing the other three factors at the default values. The default
values are set at n ¼ 10k, d ¼ 10, V ¼ 3, and k ¼ 2. The value
ranges for increasing each factor are set at n ¼ f10k; 20k;
. . . ; 100kg, d ¼ f10; 20; . . . ; 100g, V ¼ f3; 10; 20; . . . ; 90g, and
k ¼ f2; 4; . . . ; 20g. As HD-NDW is proposed for mixed cate-
gorical data clustering, we let it treat each generated data set
as comprising d=2 nominal and d=2 ordinal attributes in this

Fig. 8. Clustering performance of various distance measures on mixed, ordinal, and nominal data sets, where a better measure yields a higher value.

Fig. 9. Clustering performance of HD-NDW and its version without NDW
(non-NDW for short) on mixed, ordinal, and nominal data sets. A higher
value indicates a better clustering performance.
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experiment. Since the data representation learning of SBC,
CDE, UNTIE, and the distance computation of HD-NDW are
necessarily processed for clustering, their execution time is
counted in for comparison. We plot the execution time of dif-
ferent methods in terms of the four data factors in Fig. 11. It
can be observed that the computation cost of HD-NDW has
approximately linear relation with n and k, which are consis-
tent with the time complexity analysis in Sections 4.3 and 5.3.

In comparison with the state-of-the-art methods (i.e.,
UNTIE and DLC), it can be observed that the trends and
values of the computation cost of HD-NDW and DLC are
almost the same in terms of n and k. Furthermore, HD-
NDW has lower computation cost than UNTIE in terms of
n. The computation cost of HD-NDW and DLC has higher
increasing rate than UNTIE over k, because HD-NDW and
DLC connect the distance learning with the target clustering
task, and thus have better clustering performance in general
as shown in Table 4. Since k is usually a very small value

from the practical point of view, kwill not have a big impact
on the efficiency of HD-NDW. Moreover, although the com-
putation cost of HD-NDW has higher increasing rate over d
and V , the computations (e.g., the computation of each
value in D, and the computation of each value in W ) that
are related to these two factors are independent and can be
easily parallelized for acceleration.

In summary, HD-NDW does not bring much extra com-
putation cost in comparison with the state-of-the-art meth-
ods, and its computation cost has a linear relation with n,
which is generally the most concerned factor in terms of the
computational efficiency of a clustering method.

7 CONCLUSION

In this paper, we have proposed HD intra-attribute distance
definition and NDW distance weighting mechanism, both
of which are utilized to present HD-NDW clustering algo-
rithm for data clustering with nominal and ordinal attrib-
utes. HD is formed based on the intrinsic connection of
ordinal and nominal attributes, and can therefore define
their intra-attribute distances in a homogeneous way. In the
clustering process of HD-NDW, NDW novelly quantifies
and iteratively updates the weights of intra-attribute distan-
ces defined by HD according to the present data partition,
thereby ensuring an effective learning of the importance of
intra-attribute distances for searching optimal clustering
results. It turns out that HD-NDW is capable of clustering
categorical data composed of any combination of nominal
and ordinal attributes. Extensive experimental results have
demonstrated that HD-NDW always converges quickly and
has superior clustering performance in comparison with the
existing counterparts.
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