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Abstract—The performance of the most clustering algorithms highly relies on the representation of data in the input space or the

Hilbert space of kernel methods. This paper is to obtain an appropriate data representation through feature selection or kernel learning

within the framework of the Local Learning-Based Clustering (LLC) (Wu and Schölkopf 2006) method, which can outperform the global

learning-based ones when dealing with the high-dimensional data lying on manifold. Specifically, we associate a weight to each feature

or kernel and incorporate it into the built-in regularization of the LLC algorithm to take into account the relevance of each feature or

kernel for the clustering. Accordingly, the weights are estimated iteratively in the clustering process. We show that the resulting

weighted regularization with an additional constraint on the weights is equivalent to a known sparse-promoting penalty. Hence, the

weights of those irrelevant features or kernels can be shrunk toward zero. Extensive experiments show the efficacy of the proposed

methods on the benchmark data sets.

Index Terms—High-dimensional data, local learning-based clustering, feature selection, kernel learning, sparse weighting.
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1 INTRODUCTION

IT is common to perform high-dimensional data clustering
in a variety of pattern recognition and data mining

problems in which the high-dimensional data are repre-
sented by a large number of features. However, the
discrimination among patterns is often impeded by the
abundance of features. For instance, it is quite common to
have thousands of gene expression coefficients as features
for a single sample in genomic data analysis, but only a
small fraction is capable of discriminating among different
tissue classes. Those irrelevant features involved in the
prediction may seriously degrade the performance of an
inference machine [13]. Therefore, it is desirable to develop
an effective feature selection algorithm toward identifying
those features relevant to the inference task in hand.

On the other hand, the kernel methods have been widely
applied to a variety of learning problems in the past
decades, where the data are implicitly mapped into a
nonlinear high-dimensional space by kernel function [30]. It
is known that the performance of these methods will
heavily hinge on the choice of kernel. Unfortunately, the
most suitable kernel for a particular task is often unknown
in advance. Moreover, exhaustive search on a user-defined
pool of kernels will be quite time-consuming when the size
of the pool becomes large [29]. Hence, it is crucial to learn
an appropriate kernel efficiently to make the performance

of the employed kernel-based inference method robust or
even improved.

This paper attempts to obtain an appropriate data
representation for clustering in the input space or the
Hilbert space (also interchangeably called feature space
hereinafter) of kernel methods. Accordingly, two issues, i.e.,
feature selection and kernel learning, are considered. In fact,
either of these two issues have been extensively studied in
the context of supervised learning, but are comparatively
less explored in the clustering problem. A major reason is
that feature selection or kernel learning in unsupervised
learning becomes more challenging without the presence of
ground-truth class labels that could guide the search for
relevant representations. Most recently, some research
works regarding these two issues have been done in the
unsupervised case, e.g., see [43], [12], [13], [25], [34]. A
predominant strategy among these approaches, which have
achieved prominent improved clustering performance, is to
first relax the binary hard decision on the relevance of feature
or kernel to a real-valued soft one, i.e., a confidence or
weight, turning the combinatorial search problem into a
continuous learning problem. Then, these approaches apply
the following two iterative steps until convergence: 1) esti-
mating the weights for features or kernels using the
intermediate clustering result, and 2) refeeding the weighted
feature or kernel into the employed clustering algorithm.

Despite the success of such common strategy for both the
feature selection and kernel learning in clustering, there are
still two problems at least not properly addressed. One
problem is on the exploited clustering algorithm which
generates the intermediate clustering result. The feature or
kernel is evaluated by the intermediate clustering result; an
improper intermediate partition may lead to a poor weight-
ing. Some employed clustering algorithms in those methods
may be prone to such failure, especially when dealing with
high-dimensional data lying on manifold. The other problem
is the sparseness of the weights. Sparse weighting, i.e., a big
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gap between the weights for informative and uninformative
representation, as well as vanishing weights for uninforma-
tive ones, is desirable so that the effect of irrelevant features
or kernels can be significantly mitigated. Moreover, it helps
to better understand the problem by focusing on only a few
dominant features or kernels that most contribute to the task.
To the best of our knowledge, few of those methods have
provided a principled and effective regularization on the
sparsity of weights.

In this paper, we shall propose two methods that
perform the feature selection and kernel learning within
the framework of the Local Learning-Based Clustering
(LLC) [3], respectively. The LLC algorithm tries to ensure
that the cluster label of each data point is close to the one
predicted by the local regression model, a current super-
vised learning method, with its neighboring points and
their cluster labels [3]. Essentially, it finds the partition
which is mostly able to embody such local configuration, it
is thereby expected to be good at clustering data sets lying
on manifold, e.g., the high-dimensional sparse data sets.
Furthermore, by utilizing the ridge regression in the
supervised learning to develop an unsupervised clustering
method, LLC has a built-in regularization for the model
complexity. In this paper, we modify such a built-in ridge
regularization in the local regression model to take into
account the relevance of each feature or kernel for
clustering. It is shown that the modified penalty term with
a constraint is equivalent to the existing sparse-promoting
penalty. Hence, it is guaranteed that the resulting weights
for features are sparse and then local configuration may get
refined; a better clustering result can thus be expected.
Moreover, the proposed feature selection method is ex-
tended from the observation space to the feature space,
naturally leading to the problem of learning a convex
combination of kernels for the local learning-based cluster-
ing. The main contributions of our work are two-fold:

1. A novel feature selection method and a kernel
learning method are proposed for local learning-
based clustering, respectively, whereas almost all of
the existing counterparts are developed for global
learning-based clustering.

2. The feature selection and kernel learning for
clustering are addressed in a unified approach
under the same regularization framework.

The remainder of this paper is organized as follows: Related
works are reviewed in Section 2. Section 3 gives an
overview of the LLC algorithm. We present the proposed
feature selection method in Section 4, and then extend it to
learn the combination of kernels in Section 5. Some
discussions are given in Section 6. In Section 7, extensive
experiments are conducted to show the performance of the
proposed methods on several benchmark data sets. Finally,
we draw a conclusion in Section 8.

2 RELATED WORKS

This section overviews the literature on the unsupervised
feature selection and kernel learning only. The reviews of
supervised feature selection and kernel learning can be
found in [5] and [27], respectively.

The approaches to unsupervised feature selection for
clustering can be generally categorized as the filter and

wrapper ones. The filter approaches [9], [40], [7], [8], [6] leave
out uninformative features before the clustering. They have
demonstrated great computational efficiency because they
do not involve clustering when evaluating the quality of
features. In general, such a method has to determine the
number of selected relevant features. Unfortunately, this
crucial issue has rarely been addressed in the literature,
thus causing difficulty in practical applications [13]. In
contrast, the wrapper approaches [10], [11], [12], [13] first
construct a candidate of feature subset on which its
goodness is then assessed by investigating the performance
of a specific clustering. These two steps are repeated until
convergence. In general, the wrapper approaches outper-
form the filter ones, but is more time-consuming because of
the exhaustive search in the space of feature subsets. In the
literature, some wrapper approaches, e.g., [10], [11], have
utilized the greedy search (i.e., a nonexhaustive one),
which, however, cannot guarantee to select all relevant
features. This shortcoming, as well as the issue of determin-
ing the number of selected relevant features in the filter
approaches, can be alleviated by assigning each feature a
nonnegative weight [12], [13] rather than a binary indicator
to indicate its relevance to the clustering. Further, the
combinatorial explosion of the search space can be avoided
as well by casting the feature selection as an estimation
problem. Our approach also follows this strategy. Based on
recent progress on spectral clustering, the algorithm in [13]
tries to optimize the cluster coherence measured by the sum
of squared eigenvalues of an affinity matrix, which is
constructed by aggregating weak affinity matrices built
with weighted feature vectors. The solutions to the
clustering and feature weighting are obtained by an
efficient iterative algorithm based on eigendecomposition.
Nevertheless, the clustering algorithm in [13] is essentially
the kernel k-means with a linear kernel, which is a global
learning method; thus it is difficult to deal with the data
that lie on nonlinear manifold. In [12], feature weights are
estimated by modifying the M-step of the EM algorithm
through the Bayesian inference mechanism when there are
only two clusters. It is noteworthy that, in addition to
incorporating feature selection, there are several approaches
to learning parameterized similarity functions in the
spectral clustering for improving the clustering perfor-
mance [1], [28]. Despite the success in their application
domain, it is often nontrivial to interpret the physical
meaning of the parameters specified in these methods, e.g.,
the parameter associated with a feature having a negative
weight in [1], [28]. Also, the parameters specified for the
RBF kernel functions may increase the difficulty for the
optimization.

For kernel learning in clustering, some heuristic ap-
proaches [24], [28] directly learn the kernel parameters of
some specific kernels. Although some improvement can
often be achieved, an extension of the learning method to
other kernel functions is usually nontrivial [42]. In contrast,
a more effective framework, termed the multiple kernel
learning [26], learns a linear combination of base kernels
with the different weights, which will be estimated
simultaneously in the inference process, e.g., see [34], [41],
[25]. Our proposed method, which will be described later,
also belongs to this framework. In [34], the algorithm tries
to find a maximum margin hyperplane to cluster data
(restricted to the binary-class case), accompanied by
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learning a mixture of Laplacian matrices. The method in
[41] extends the kernel discriminant analysis technique to
clustering and learns a combination of kernel matrices
jointly. In [34], [41], no penalty is imposed on the kernel
weights; thus the sparsity may not be guaranteed. In [25],
clustering is phrased as a nonnegative matrix factorization
problem of a fused kernel matrices, and the sparseness of
kernel weights is controlled by a heuristic entropy penalty
which, however, favors a uniform weighting.

An important application of the multiple kernel learning
is to fuse the information from heterogeneous sources as
follows [26]: Associate each source with a kernel function,
and then combine the set of prototype kernels generated
from these sources to perform the inference. In this respect,
the multiview clustering is also a related work whose goal is
to learn a consensus result from multiple representations
[39], [46]. However, it implicitly treats all the sources
equally, regardless of the clustering performance with each
source. In contrast, our proposed method is able to
determine the weight for each source automatically accord-
ing to its capability of discrimination; thus it will be more
robust from the practical viewpoint.

3 OVERVIEW OF THE LOCAL LEARNING-BASED

CLUSTERING ALGORITHM

Given n data points X ¼ fxigni¼1ðxi 2 IRdÞ, the data set will

be partitioned into C clusters. The clustering result can be

represented by a cluster assignment indicator matrix P ¼
½pic� 2 f0; 1gn�C such that pic ¼ 1 if xi belongs to the

cth cluster, and pic ¼ 0 otherwise. The scaled cluster assign-

ment indicator matrix used in this paper is defined as

Y ¼ PðPTPÞ�
1
2 ¼ ½y1;y2; . . . ;yC �;

where yc ¼ ½y1c; . . . ; ync�T 2 IRnð1 � c � CÞ is the cth column
of Y 2 IRn�C . yic ¼ pic=

ffiffiffiffiffi
nc
p

can be regarded as the con-
fidence that xi is assigned to the cth cluster, where nc is the
size of the cth cluster. It is easy to verify that

YTY ¼ I; ð1Þ

where I 2 IRn�n is an identity matrix.
The starting point of the LLC [3] is that the cluster

assignments in the neighborhood of each point should be as
smooth as possible. Specifically, it assumes that the cluster
indicator value at each point should be well estimated by a
regression model trained locally with its neighbors and their
cluster indicator values. Suppose there exists an arbitrary Y

at first; for each xi, the model is built with the training data
fðxj; yjcÞgxj2N i

ð1 � c � C; 1 � i; j � nÞ, where N i denotes
the set of neighboring1 points of xi, but xi is excluded.
The output of the local model is of the following form:

fci ðxÞ ¼ xT ��ci ; 8x 2 IRd; ð2Þ

where ��ci 2 IRd is the local regression coefficient vector, fci ð:Þ
denotes the local model learned with the training data
fðxj; yjcÞgxj2N i

. Here, the bias term is ignored for simplicity

provided that one of the features is always 1. In [3], the
model is obtained by solving the following l2 norm
regularized least square problem:

min
f��cig

XC
c¼1

Xn
i¼1

X
xj2N i

�
�
yjc � xTj ��

c
i

�2 þ
����ci��2

24 35; ð3Þ

where � is a trade-off parameter. Let f�̂�cig be the solution to
the linear ridge regression problem (3), the predicted cluster
assignment for the test data xi can then be calculated by

byic ¼ fci ðxiÞ ¼ xTi �̂�
c
i ¼ ��Ti yci ; ð4Þ

where

��Ti ¼ �xTi
�
�XiX

T
i þ I

��1
Xi; ð5Þ

Xi ¼ ½xi1 ;xi2 ; . . . ;xini � with xik being the kth neighbor of xi,
yci ¼ ½yi1c; yi2c; . . . ; yini c�

T , and ni is the size of N i.
After all of the local predictors have been constructed,

the LLC combines them together so that an optimal cluster
indicator matrix Y is found via minimizing the following
overall prediction error:

XC
c¼1

Xn
i¼1

ðyic � byicÞ2
¼
XC
c¼1

kyc �Ayck2

¼ trace½YT ðI�AÞTðI�AÞY�
¼ traceðYTMYÞ;

ð6Þ

where M ¼ ðI�AÞTðI�AÞ, A is an n� n sparse matrix,
whose ði; jÞth entry aij is the corresponding element in ��i by
(5) if xj 2 N i and 0 otherwise.

As in the spectral clustering [14], [15], Y is relaxed into
the continuous domain while keeping the property of (1) for
the problem (6). The LLC then solves the following tractable
continuous optimization problem:

min
Y2IRn�C

traceðYTMYÞ

s:t: YTY ¼ I:
ð7Þ

A solution to Y is given by the first C eigenvectors of the
matrix M corresponding to the first C smallest eigenvalues.
Similarly to [14], [15], the final partition result is obtained by
discretizing Y via the method in [15] or by the k-means as
in [14]. Promising results have been reported in [3].

4 FEATURE SELECTION FOR

LOCAL LEARNING-BASED CLUSTERING

In this section, we will integrate the feature selection into
the LLC. It should be noted that the key ingredient of the
LLC is to learn the local regression model, which is trained
only with the points in each neighborhood. However, there
may be too few data points in its neighborhood to learn a
good predictor. This can be even more difficult for a high-
dimensional data set. Furthermore, it may lead to non-
smooth predictions for points from overlapping zones of
adjacent neighborhoods as the result of independently
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training the local regression model in each neighborhood.
Last but not least, the l2 norm penalty in ridge regression is
known to be less robust to the irrelevant features. In order
to overcome these limitations, a more effective training
method which can reduce the complexity of the local
regression model in each neighborhood and enforce
smoothness among the local regressors is required. Inspired
by recent works on multitask learning [16], [47] which
extract a shared representation for a group of related
training tasks, demonstrating an improved performance
compared to learning each task independently, we propose
to select a small subset of features that is good for all the
local models.

To this end, we introduce a binary feature selection
vector �� ¼ ½�1; �2; . . . ; �d�; �l 2 f0; 1g to the local discriminant
function as follows:

fci ðxÞ ¼ xTdiagð
ffiffiffi
��
p
Þ��ci þ bci ¼

Xd
l¼1

xl
ffiffiffiffi
�l
p �

��ci
�
l
þ bci ; ð8Þ

where diagð ffiffiffi��p Þ 2 IRd�d is a diagonal matrix with
ffiffiffi
��
p 2 IRd

on the diagonal, ð��ciÞl is the lth element of ��ci 2 IRd, and

bci 2 IR is the bias term. In (8), the entries of ��ci can be turned

on and off depending on the corresponding entries of the

switch variable �� . To avoid a combinatorial search for ��

later, we relax the constraint �l 2 f0; 1g to �l � 0 and further

restrict its scale by
Pd

l¼1 �l ¼ 1.2 Consequently, the local

discriminant function will be solved by

min
f��ci ;bcig;

Pd

l¼1
�l¼1;�l�0

XC
c¼1

Xn
i¼1

" X
xj2N i

�
�
yjc � xTj diagð

ffiffiffi
��
p
Þ��ci � bci

�2

þ ��ci
T ��ci

#
;

ð9Þ

or equivalently, the following problem:

min
fwc

i ;b
c
ig;
Pd

l¼1
�l¼1;�l�0

XC
c¼1

Xn
i¼1

" X
xj2N i

�
�
yjc � xTj wc

i � bci
�2

þwcT
i diagð���1Þwc

i

#
;

ð10Þ

which is obtained by applying a change of variables
diagð ffiffiffi��p Þ��ci ! wc

i . The local model is now tantamount to
being of the following form:

fci ðxÞ ¼ xTwc
i þ bci ; ð11Þ

and the regression coefficient wc
i is now regularized with a

weighted l2 norm: wcT
i diagð���1Þwc

i ¼
P

l
ðwc

i Þ
2
l

�l
, i.e., the

second term in the square bracket of (10). Thus, a small

value for �l, which is expected to be associated with an

irrelevant feature, will result in a large penalization on ðwc
iÞl

by this weighted norm. Furthermore, in the extreme case of

�l ¼ 0, we will prove later that it leads to ðwc
iÞl ¼ 0 8i; c.3

That is, the lth feature will be completely eliminated from

the prediction; thus an improved clustering result can be

expected. Subsequently, to perform the feature selection

together with the LLC, we develop an alternating update

algorithm to estimate the clustering captured in Y and the

feature weight �� as follows:

4.1 Update Y As Given ��

First, the nearest neighbors N i should be refound according

to the ��-weighted square euclidean distance, i.e.,

d� ðx1;x2Þ ¼ kx1 � x2k2
� ¼

Xd
l¼1

�l
�
x
ðlÞ
1 � x

ðlÞ
2

�2
: ð12Þ

With the fixed feature weight �� , the analytic solution for

problem (10) can then be easily obtained by setting the

derivatives to zero. That is,

wc
i ¼ �

�
�Xi�iX

T
i þ diagð���1Þ

��1
Xi�iy

c
i ; ð13Þ

bci ¼
1

ni
eTi
�
yci �XT

i wc
i

�
; ð14Þ

where ei ¼ ½11 � � � 1�T 2 IRni , �i ¼ Ii � 1
ni

eiei
T is a centering

projection matrix, satisfying �i�i ¼ �i. Ii is an ni � ni unit

matrix.
For high-dimensional data, the computation of the matrix

inversion in (13) will be quite time-consuming because the

time complexity is Oðd3Þ. Fortunately, by applying the

Woodbury’s matrix inversion lemma, we can get

wc
i ¼ �diagð��ÞXi�i�
Ii �

�
��1Ii þ�iX

T
i diagð��ÞXi�i

��1
�iX

T
i diagð��ÞXi�i

�
yci ;

ð15Þ

in which the time complexity of the matrix inversion in (15)

is only Oðn3
i Þ. In general, we often have ni � d; thus the

computational cost can be considerably reduced. Besides,

from (15), it can be seen that ðwc
iÞlð8i; cÞ goes to 0 as the

feature weight �l vanishes.
Subsequently, the predicted cluster assignment confi-

dence for xi will be obtained as follows:

byic ¼ xTi wc
i þ bci ¼ ��Ti yci ; ð16Þ

with

��Ti ¼ � k�i �
1

ni
eTi K�

i

� 	
�i

�
Ii � ð��1Ii þ�iK

�
i�iÞ�1�iK

�
i�i

�
þ 1

ni
eTi ;

ð17Þ

where k�i ¼ xTi diagð��ÞXi and K�
i ¼ XT

i diagð��ÞXi.
As in the LLC, we construct the key matrix M by (17)

and (6). To solve the same optimization problem in (7), the

columns of Y are simply set at the first C eigenvectors of M

corresponding to the smallest C eigenvalues.

ZENG AND CHEUNG: FEATURE SELECTION AND KERNEL LEARNING FOR LOCAL LEARNING-BASED CLUSTERING 1535

2. As will be seen later, such a simplex constraint is crucial for enforcing
the sparsity of �� . Moreover, we simply set

Pd
l¼1 �l ¼ 1 rather thanPd

l¼1 �l ¼ �, where � is a tunable constant, in order to reduce the number
of free parameters.

3. In this paper, we will use the convention that z
0 ¼ 0 if z ¼ 0 and 1

otherwise.



4.2 Update �� As Given Y

With the fixed Y and neighborhood determined at each
point, a reasonable �� is the one that can lead to a better local
regression model which is characterized by a lower
objective value at the minimum of (10). We will apply this
criterion to reestimate �� . We remove the bias term by
plugging (14) into (10), and we then have

min
fwc

ig
F
�
wc
i ; ��
�
¼
XC
c¼1

Xn
i¼1

�
�
���iyic � ðXi�iÞTwc

i

��2

þwcT
i diagð���1Þwc

i

�
:

ð18Þ

Subsequently, the estimation of �� is reformulated as follows:

min
��
Pð��Þ; s:t:

Xd
l¼1

�l ¼ 1; �l � 0; 8l; ð19Þ

where Pð��Þ ¼ F ðfwc	
i g; ��Þ with fwc	

i g ¼ arg minfwc
igF ðfw

c
ig;

��Þ given in (15). Hence, the Lagrange of (19) is

Lð��; �; ""Þ ¼ Pð��Þ þ �
Xd
l¼1

�l � 1

 !
�
Xd
l¼1

"l�l; ð20Þ

where the scalar � � 0 and the vector "" � 0 are Lagrangian
multipliers. The derivative of L with respect to �l,
(l ¼ 1; . . . ; d) is computed as

@L
@�l
¼ @P
@�l
þ �� "l; ð21Þ

where

@P
@�l
¼ @F ðfw

c
ig; �Þ

@�l






wc
i
¼wc	

i

þ
X
i;c

@ðwc	
i Þl

@�l

@F ðfwc
ig; �Þ

@ðwc
iÞl






wc
i
¼wc	

i|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
0

¼ �
PC

c¼1

Pn
i¼1ðwc	

i Þ
2
l

�2
l

:

ð22Þ

Thus, at the optimality, we have

�2
l ¼

PC
c¼1

Pn
i¼1ðwc	

i Þ
2
l

�� "l
; 8l; ð23Þ

� � 0; "l � 0; �l � 0; 8l; ð24Þ

Xd
l

�l ¼ 1; ð25Þ

"l�l ¼ 0; 8l: ð26Þ

By using the Karush-Kuhn-Tucker (KKT) condition [31], i.e.,

(26), it is easy to verify the following two cases:

. Case 1:
PC

c¼1

Pn
i¼1ðwc	

i Þ
2
l ¼ 0) �l ¼ 0;

. Case 2:
PC

c¼1

Pn
i¼1ðwc	

i Þ
2
l 6¼ 0) "l ¼ 0 and

�l ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXC
c¼1

Xn
i¼1

�
wc	
i

�2

l

vuut , ffiffiffi
�
p

:

Together with (25), it follows that the optimal solution of
�� can be calculated in a closed form:

�l ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPC
c¼1

Pn
i¼1ðwc	

i Þ
2
l

q
Pd

m¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPC
c¼1

Pn
i¼1ðwc	

i Þ
2
m

q : ð27Þ

The intuitive interpretation of (27) is as follows: The
lth feature weight �l is determined by the magnitude of the
lth element in the regression coefficients for all of the clusters
which are locally solved at each point. If this element in the
regression coefficients has neglectable magnitude for all the
clusters at each point, it is likely to indicate that the
corresponding feature is unimportant when predicting the
confidence of which cluster this point belongs to.

4.3 The Complete Algorithm

The complete local learning-based clustering algorithm
with feature selection (denoted as LLC-fs) is described in
Algorithm 1. The loop stops when the relative variation of
the trace value in (7) between two consecutive iterations
gets below a threshold (we set it at 10�2 in this paper),
indicating the partitioning has almost stabilized. After the
convergence, Y is discretized to obtain the final clustering
result with the k-means as in [14].

Algorithm 1. Feature selection for local learning-based
clustering algorithm.

input: X ¼ fxigni¼1, size of the neighborhood k, trade-off

parameter �

output: Y; ��

1 Initialize �l ¼ 1
d , for l ¼ 1; . . . ; d;

2 while not converge do

3 Find k-mutual neighbors for fxigni¼1, using the metric

defined in (12);
4 Construct the matrix M in (6) with ��i given in (17),

and then solve the problem (7) to obtain Y;

5 Compute wc	
i ; 8i; c by (15) and update �� using (27);

6 end

5 MULTIPLE KERNEL LEARNING FOR

LOCAL LEARNING-BASED CLUSTERING

To deal with some complex data sets, the LLC algorithm
can be kernelized as in [3] by replacing the linear ridge
regression with the kernel ridge regression. Under such
circumstances, selecting a suitable kernel function will
become a crucial issue. In this section, we extend the
method presented in Section 4 to learn a proper linear
combination of several precomputed kernel matrices under
the multiple kernel learning framework [26].

In the kernel methods, the symmetric positive semide-

finite kernel function K : X � X ! IR implicitly maps the

original input space into a high-dimensional (possibly

infinite) Reproducing Kernel Hilbert Space (RKHS) H, which

is equipped with the inner product < �; � >H via a nonlinear

mapping � : X ! H, i.e., Kðx; zÞ ¼ < �ðxÞ; �ðzÞ >H . Sup-

pose there are altogether L different kernel functions

fKðlÞgLl¼1 available for the clustering task in hand. Accord-

ingly, there are L different associated feature spaces,
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denoted as fHðlÞgLl¼1. In general, we do not know which

feature space should be used. An intuitive way is to use

them all by concatenating all feature spaces into an

augmented Hilbert space: eH ¼LL
l¼1HðlÞ, and associate each

feature space a relevance weight �lð
PL

l¼1 �l ¼ 1; �l � 0; 8lÞ, or

equivalently the importance factor for kernel function KðlÞ.
Later, we will show that performing the LLC in such feature

space is equivalent to employing a combined kernel

function: K� ðx; zÞ ¼
PL

l¼1 �lKðlÞðx; zÞ for the LLC. A zero

weight �l will correspond to blend out the feature space

associated with the corresponding kernel analogous to the

feature selection in Section 4. Our task is to learn the

coefficients f�lgLl¼1, which can lead to a more accurate and

robust performance. Again, an alternating algorithm that

iteratively performs clustering and estimates the kernel

weight is developed.

5.1 Update Y As Given ��

First of all, given a �� , the nearest neighbors N i for the LLC
algorithm will be refound by the ��-weighted squared
euclidean distance in eH, i.e.,

d� ðx1;x2Þ ¼ k�ðx1Þ � �ðx2Þk2
�

¼ K� ðx1;x1Þ þ K� ðx2;x2Þ � 2K� ðx1;x2Þ:
ð28Þ

Then, the local discriminant function in eH can be written
as follows:

fci ð�ðxÞÞ ¼ �ðxÞ
Twc

i þ bci ; ð29Þ

where �ðxÞ ¼ ½�1ðxÞ�2ðxÞ � � ��LðxÞ�T 2 IRD, �lðxÞ 2 IRDl is

the sample mapped by the lth kernel function. D and Dl are

the dimensionalities of eH and HðlÞ, respectively, withPL
l¼1 Dl ¼ D. The regression coefficient wc

i 2 IRD and the

bias bci 2 IR are estimated via solving the following

weighted l2 norm regularized least square problem:

min
fwc

i ;b
c
ig

XC
c¼1

Xn
i¼1

X
xj2N i

�
�
yjc � �ðxjÞTwc

i � bci
�2 þwcT

i ��1
� wc

i

24 35;
ð30Þ

where �� is a diagonal matrix with the vector

ð�1; . . . ; �1|fflfflfflfflffl{zfflfflfflfflffl}
D1

; . . . ; �L; . . . ; �L|fflfflfflfflfflffl{zfflfflfflfflfflffl}
DL

ÞT

in the diagonal, and
PL

l¼1 �l ¼ 1; �l � 0 8l. Removing the
bias term by plugging its optimal solution

bci ¼
1

ni
eTi
�
yci � �ðXiÞTwc

i

�
ð31Þ

into (30), we can reformulate the problem (30) as follows:

min
fwc

ig

XC
c¼1

Xn
i¼1

�
�
���iy

c
i � ð�ðXiÞ�iÞTwc

i

��2 þwcT
i ��1

� wc
i

�
: ð32Þ

Let

		ci ¼ ð�ðXiÞ�iÞTwc
i ��iy

c
i ; ð33Þ

we then have the Lagrangian of problem (32)

Lðf		ci ;wc
i ; 



c
igÞ ¼

XC
c¼1

Xn
i¼1

�
�k		cik

2 þwcT
i ��1

� wc
i

�
�
XC
c¼1

Xn
i¼1



cTi
�
ð�ðXiÞ�iÞTwc

i ��iy
c
i � 		ci

�
;

ð34Þ

where 

cis are the vectors of Lagrangian dual variables, and



ci 2 IRni . Taking the derivatives of L with respect to 		ci and

wc
i and setting them equal to zero, we obtain

		ci ¼ �


ci
2�
;wc

i ¼
���ðXiÞ�i



c
i

2
: ð35Þ

Finally, we obtain the dual problem

max
f

cig

XC
c¼1

Xn
i¼1

� 1

4�


cTi 



c
i

� 1

4


cTi �i�ðXiÞT���ðXiÞ�i



c
i þ 

cTi �iy

c
i

¼ max
f

cig

XC
c¼1

Xn
i¼1

� 1

4�


cTi 



c
i �

1

4


cTi �iK

�
i�i



c
i þ 

cTi �iy

c
i ;

ð36Þ

which follows from

�ðXiÞT���ðXiÞ ¼
XL
l¼1

�l�lðXiÞT�lðXiÞ ¼
XL
l¼1

�lK
ðlÞ
i ¼ K�

i ;

ð37Þ

where K
ðlÞ
i ;K

�
i 2 IRni�ni are the base and combined kernel

matrices over fxjjxj 2 N ig, respectively, i.e., K
ðlÞ
i ¼

½KðlÞðxu;xvÞ� and K�
i ¼ ½K� ðxu;xvÞ�, for xu;xv 2 N i. For the

fixed �� constrained on the simplex, the convex combination

of the positive semidefinite kernel matrices: K�
i ¼PL

l¼1 �lK
ðlÞ
i is still a positive semidefinite kernel matrix.

Therefore, the problem in (36) is a concave one whose

unique optimal solution can be obtained analytically, i.e.,



c	i ¼ 2�ðIi þ ��iK
�
i�iÞ�1�iy

c
i : ð38Þ

Together with (31), (35), and (38), the predicted indicator

value at point xi for the cth (c ¼ 1; . . . ; C) cluster can then be

calculated by (29), i.e.,

byic ¼ fci ð�ðxiÞÞ ¼ �ðxiÞTwc
i þ bci ¼ ��Ti yci ; ð39Þ

with

��Ti ¼ � k�i �
1

ni
eTi K�

i

� 	
�i

h
Ii � ð��1Iþ�iK

�
i�iÞ�1�iK

�
i�i

i
þ 1

ni
eTi ;

ð40Þ

where k�i 2 IRni denotes the vector ½K�ðxi;xjÞ�T for xj 2 N i.

The above expression happens to be the same as the one in

(17), and the only difference is the way of constructing the

k�i and K�
i . Note that from (37) and (40), the lth kernel will

be excluded from the inference if the coefficient �l vanishes.
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To sum up, we build the matrix M by (6) with ��i defined

in (40) , using the combined kernel K�ðxi;xjÞ ¼PL
l¼1 �lKðlÞðxi;xjÞ. Y is then given by the first C eigenvec-

tors of M corresponding to the smallest C eigenvalues.

5.2 Update �� As Given Y

Subsequently, the L kernel combination coefficients f�lgLl¼1

will be recomputed based on the current estimation of Y.

Unfortunately, the updating of �� in (27) is unable to be

applied here because wc
i 2 IRD spans in space eH of possibly

infinite dimension, and the elements of wc
i cannot be

expressed in an explicit form. Hence, we estimate �� using

the reduced gradient descent method, which has been

widely used for tackling the optimization problems with

equality constraints on the variables (note that �� is defined

on simplex) [38], [32], [33].
With the fixed Y and the neighborhood determined at

each point, an optimal �� is expected to minimize

Pð��Þ; s:t:
XL
l¼1

�l ¼ 1; �l � 0; 8l; ð41Þ

where

Pð��Þ ¼ min
fwc

ig

XC
c¼1

Xn
i¼1h

�k�iyic � ð�ðXiÞ�iÞTwc
ik

2 þwcT
i ��1

� wc
i

i
:

ð42Þ

Then, �� will be solved by the update equation: �� ðnewÞ ¼
�� ðoldÞ � �rrP, where � is the step size and rrP is the reduced

gradient. It is expected that the local regression model

derived from �� ðnewÞ is better than the one derived from
�� ðoldÞ. Nevertheless, since both Y and N i depend on �� as

shown in Section 5.1, they need to be recomputed as shown

in Section 5.1 once �� is updated.
The key issue here is to obtain the derivatives of Pð��Þ in

an analytic form. To this end, we resort to the dual of Pð��Þ
which has been investigated in Section 5.1 and is rewritten

as follows:

Dð��Þ ¼ max
f

cig

XC
c¼1

Xn
i¼1

� 1

4�


cTi 



c
i �

1

4


cTi �iK

�
i�i



c
i þ 

cTi �iy

c
i :

ð43Þ

Note that (32) is convex with respect to wc
i . By the principle

of strong duality, we have Pð��Þ ¼ Dð��Þ. Furthermore, as

f

c	i g (c.f. (38)) maximizes D, according to [36], Dð��Þ is

differentiable if f

c	i gs are unique. Fortunately, this unicity

is guaranteed by the unconstrained concave quadratic

program in (36). Moreover, as proven in Lemma 2 of [37],
Dð��Þ can be differentiated with respect to �� as if f

c	i g did

not depend on �� as in (22). Finally, we have

@P
@�l
¼ @D
@�l
¼ � 1

4

XC
c¼1

Xn
i¼1



c	Ti �iK
ðlÞ
i �i



c	
i

¼ � 1

4

Xn
i¼1

traceð

	Ti �iK
ðlÞ
i �i



	
i Þ;

ð44Þ

where 

	i ¼ ½

1	
i ; . . . ; 

C	i � 2 IRni�C .

Note that the equality and nonnegative constraints over

�� have to be kept inviolate when updating �� along the

descent gradient direction. According to the principle of

reduced gradient descent [38], [32], [33], each element of the

reduced gradient rrP is calculated as follows:

ðrrPÞl

¼

@P
@�l
� @P

@�m
; if l 6¼ m and �l > 0;P

� 6¼m;��>0

�
@P
@�m
� @P

@��



; if l ¼ m;

0; if �l ¼ 0 and @P
@�l
� @P

@�m
> 0;

8>>><>>>:
ð45Þ

where m ¼ arg maxl�l. The first two cases in (45) enforce the

equality by the reduced gradients. If �l is 0, but the reduced

gradient is greater than 0, updating �l along this decent

direction will violate the positivity constraint on �l; hence,

we set the descent direction at 0 for such an element of rrP.
When updating �� by �� ðnewÞ ¼ �� ðoldÞ � �rrP, we first try �

with the maximal admissible step size �max which sets �
 to

zero, where


 ¼ arg min
fljðrrPÞl>0g

�
ðoldÞ
l

ðrrPÞl
; �max ¼

�

ðrrPÞ


: ð46Þ

If Dð�� ðtrialÞÞ � Dð�� ðoldÞÞ, where �� ðtrialÞ ¼ �� ðoldÞ � �maxrrP, ��

will get updated. Otherwise, a one-dimensional line search

for � 2 ½0; �max� is applied. Algorithm 2 describes the steps

to update �� .

Algorithm 2. Update kernel weight vector �� with the

current Y and N i.
1 Compute the reduced gradient rrP by (45);

2 Compute the maximal admissible step size �max by (46);

3 �� ðtrialÞ ¼ �� ðoldÞ � �maxrrP;

4 Compute Dð�� ðtrialÞÞ with f

	i g calculated

from K� ðtrialÞ ¼
PL

l¼1 �
ðtrialÞ
l KðlÞ;

5 if Dð�� ðtrialÞÞ � Dð�� ðoldÞÞ then

6 � ¼ �max;

7 else

8 Perform line search for � 2 ½0; �max� along rrP;

9 end

10 �� ðnewÞ ¼ �� ðoldÞ � �rrP.

5.3 The Complete Algorithm

The complete local learning-based clustering algorithm

with multiple kernel learning (denoted as LLC-mkl) is

presented in Algorithm 3. The loop stops when the relative

variation of the trace value in (7) between two consecutive

iterations gets below a threshold (we set it at 10�4 in this

paper), indicating the partitioning has almost stabilized.

After the convergence, Y is discretized to obtain the final

clustering result with the k-means as in [14].

Algorithm 3. Multiple kernel learning for local learning-
based clustering algorithm.

input: L base kernel matrices KðlÞ’s, size of the

neighborhood k, trade-off parameter �

output: Y; ��

1 Initialize �l ¼ 1
L , for l ¼ 1; . . . ; L;
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2 while not converge do

3 Find k-mutual neighborhoods, using the metric

defined in (28);

4 Construct the matrix M by (6) with ��i given in (40),

and then solve the problem (7) to obtain Y;

5 Update �� with the steps described in Algorithm 2.

6 end

6 DISCUSSION

6.1 Sparse Norm Equivalence

In this section, it will be shown that the weighted l2 norm
regularization associated with the simplex constraint on
these weights is equivalent to a well-known sparse-promot-
ing regularization penalty. In the input space, we address
this equivalence based on the fact that the infimum of the
weighted l2 norm, with the weights defined on the standard
simplex, is equal to a squared special l1 norm regularization.

Theorem 1.

infP
l
�l¼1;�l�0

X
l

kfWlk2

�l
¼
�X

l

kfWlk
	2

;

where we define kfWlk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPC

c¼1

Pn
i¼1ðwc

iÞ
2
l

q
.

Proof. This proof is based on the recent works for multitask
feature learning [16], [47] and kernel learning [48], [49],
and we extend them in the local learning setting. From
the Cauchy-Schwarz inequality, we have that

X
l

kfWlk ¼
X
l

�
1
2

l �
�1

2

l kfWlk �
X
l

�l

 !1
2 X

l

��1
l kfWlk2

 !1
2

�
X
l

��1
l kfWlk2

 !1
2

;

where equality is obtained when
P

l �l ¼ 1 and

kfW�k
��

¼ k
fW
k
�


; 8�; 
;

which is equivalent to requiring

�l ¼ kfWlk=
X
�

kfW�k:

This is satisfied by (27), which always holds in the
original input space. tu
In fact,

P
l kfWlk can be viewed as a combination of the l1

norm regularization on the feature level and the l2 norm
regularization on the cluster level and sample level. In a
simplified case where the regression model is not built
locally, namely, omitting the subscript i, then it will just beX

l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
c

ðwcÞ2l
r

:

It is the so-called Group Lasso regularizer [2], which results
in sparse solution at the feature level, i.e., ðwcÞ� is close to
0; 8c on some dimension �. Hence, according to Theorem 1,
the weighted l2 norm regularization with �� defined on the
simplex should be able to produce at least as sparse as that

of the squared
P

l kfWlk penalty. The case for the feature
space can be proven in a similar way; thus we omit it here.
Consequently, the sparsity of �� follows from (27) in the
input space or Algorithm 2 in the feature space.

6.2 Complexity Analysis

We now analyze the time complexity of the LLC-fs and the
LLC-mkl in each iteration. The complexity for finding
k nearest neighbors is Oðn2Þ. Updating of Y as given �� is
just the LLC algorithm whose complexity is bounded by
Oðn3Þ [3]. In the LLC-fs, the complexity for updating �� is
OðdnCÞ as given Y. In the LLC-mkl, the complexity for
updating �� is of the order Oðk3LnCÞ as given Y. Hence, the
overall complexity for the LLC-fs and the LLC-mkl in each
iteration is Oðn3Þ.

6.3 Relationship between the LLC-fs
and the LLC-mkl

It is not difficult to find that performing the LLC-fs is

equivalent to performing the LLC-mkl with a special kernel

XTdiagð��ÞX ¼
Pd

l¼1 �lK
ðlÞ ¼

Pd
l¼1 �lf lf

T
l , where f l 2 IRn is

the lth column of XT 2 IRn�d, i.e., the lth feature vector of

samples: f l ¼ ðxl1; xl2; . . . ; xlnÞT , l ¼ 1; . . . ; d. Nevertheless,

this way is not desirable because it is quite space consuming

to store d base n� n kernels KðlÞ. In particular, when the

data set has the moderate sample size n but a large

dimensionality d, it is highly likely to cause out-of-memory

error.

7 EXPERIMENTAL RESULTS

In Sections 7.1 and 7.2, we conducted extensive experiments
to demonstrate the effectiveness of the proposed feature
selection and kernel learning for clustering, respectively.

In all of the experiments, we evaluated the performance
with the clustering accuracy (ACC) index [17]. Given a data
point xi, let ci and ti be the obtained cluster label and the
true class label from the data, respectively. The ACC is
defined as

ACC ¼
Pn

i¼1 �ðti;mapðciÞÞ
n

;

where n is the number of the data set and �ðzi; zjÞ is a
Kronecker delta function. mapð�Þ is a permutation mapping
function that maps each cluster index ci to a true class label.
This optimal mapping can be found with the Kuhn-
Munkres algorithm [18]. Furthermore, we simply set the
number of clusters at the number of classes in each data set
for all the algorithms without considering the selection of
the optimal number of clusters, whose studies are, however,
beyond the scope of this paper.

7.1 Experiments on Feature Selection

Ten benchmark data sets were used in the feature selection
experiments, whose characteristics are summarized in
Table 1. On each data set, we investigated the performance
of the proposed LLC-fs in comparison with the existing
LLC algorithm (with linear ridge regression), the baseline
k-means, and spectral clustering. All of these existing
algorithms assume all features are equally important.
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Furthermore, the LLC-fs was compared with the state-of-
the-art unsupervised feature selection method, Q� �
algorithm4 [13], which is also a wrapper approach with
iterative eigendecomposition and feature weight estima-
tion, but is global learning-based.

The LLC algorithm has two parameters: the size of the
mutual neighbors k and the trade-off parameter �. For each
data sets, k and � were chosen from the prespecified
candidate intervals, respectively. We only report the
performance with the best combination of k and � for the
LLC (denoted as LLC-best k�). As a result, the performance
of LLC-best k� reported here might be overoptimistic. For
spectral clustering, we used the self-tuning implementation
(denoted as SelfTunSpec)5 [24]. Again, only the best
performance among all trials we have tried so far was
reported. Q-� and k-means have no parameters. The mean
and the standard deviation of the ACC index over 10 runs
were presented. For the proposed LLC-fs algorithm, it also
has two parameters: k and �. We chose them from the same
candidate intervals as for the LLC algorithm, and then
executed it with each combination 10 times. To demonstrate
the robustness of the LLC-fs with respect to k and � in
comparison with the LLC algorithm, we reported the mean
and the standard deviation of the ACC index for the LLC-fs
with a certain combination, which is usually not the optimal
one leading to the best performance, over 10 runs. The
parameter sensitivity study for the proposed LLC-fs
algorithm will be given at the end of this section.

7.1.1 UCI Data Sets

The first four data sets in Table 1 are from the UCI
repository [19]. The Wisconsin diagnostic breast cancer data
set (wdbc) was used to obtain a binary diagnosis (benign or
malignant) based on the features extracted from cell nuclei
presented in an image. The mfea-fou, mfea-fac, and

mfea-pix data sets are all from the “multiple feature
database” [19]. This database consists of the features of
handwritten numerals (“0-9”) extracted from a collection of
Dutch utility maps. Digits are represented in several sets of
features; we used the data sets with the Fourier coefficients
(mfea-fou), the profile correlations (mfea-fac), and the
pixel averages (mfea-pix). No preprocessing was per-
formed except on the mfea-fac data set, which has many
features of significantly different scales; each feature was
then normalized to zero mean and unit variance.

For these data sets, k and � were chosen from 10 
 40
and ½0:1; 10�, respectively. For simplicity, we only reported
the mean and the standard deviation of the ACC index for
the LLC-fs with the combination k ¼ 30; � ¼ 1 over 10 runs.
The results are summarized in Table 2.

It can be seen that the proposed LLC-fs algorithm almost
outperforms the baseline k-means, spectral clustering, and
the basic LLC algorithm on all data sets except the mfea-

fou, but note that spectral clustering and LLC have used
their best parameters. This indicates that feature selection is
generally capable of enhancing the clustering performance.
Further, although the Q-� algorithm could improve the
performance of the baseline k-means clustering in general,
it is less effective than the LLC-fs algorithm. A plausible
reason is that many features exhibit similar patterns across
all of the handwritten digits; only a few dimensions can
discriminate them among different categories. They are
believed to be sampled from a low-dimensional nonlinear
manifold. Hence, the linear kernel in Q-� algorithm may
not be effective on such data sets. In contrast, LLC-fs
directly refines the configuration about the manifold
structure from which the clustering will be benefited.

7.1.2 Handwritten Digit Data Sets

In this experiment, we focused on the task of clustering on
the USPS ZIP code6 handwritten digits, which are 16� 16
grayscale images. Each image is thus represented by a 256-
dimensional vector. In particular, we considered two
binary-class clustering problems, i.e., digits “4 versus 9”
and “0 versus 8”, which are known difficult to differentiate.

For the USPS data sets, k and � were chosen from 30 
 60
and ½0:1; 10�, respectively. The parameter k was increased
because there are now more than 800 samples per cluster
for both data sets, and there are known heavy overlappings
within each pair. A larger neighborhood may help obtain a
more accurate local prediction. Once again, only the mean
and the standard deviation of the ACC index for the LLC-fs,
with the combination k ¼ 30; � ¼ 1 over 10 runs, are
presented. The results are summarized in Table 2.

From Table 2, it can be seen that LLC-fs significantly
improves the performance of the other methods on both
USPS data sets: USPS49 and USPS08. Actually, the
accuracy of the LLC-fs could achieve around 98 percent
on both data sets, in a completely unsupervised manner. In
contrast, the global approach Q-� performs even worse than
the baseline k-means and spectral clustering on the “4
versus 9” data set that overlaps heavily.

To get a better understanding of what features have been
ranked top by our weighting scheme, Fig. 1 shows the top
features in the image domain. First, the sorted ��s in typical
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4. Its MATLAB source code was obtained from the authors of [13].
5. Codes were downloaded from http://www.vision.caltech.edu/lihi/

Demos/SelfTuningClustering.html. 6. http://www-stat-class.stanford.edu/~tibs/ElemStatLearn/data.html.



runs on the two data sets are presented in Figs. 1a and 1b,

respectively. It can be seen that both of the �� vectors are

sparse, and only a few of the feature weights are above a

clear threshold. Next, the 15 top-ranked features are plotted

in Figs. 1c and 1d. It is found that these features have

generally covered the most distinct regions for each digit

pairs, thus resulting in more accurate partitions.

7.1.3 Genomic Data Sets

In this experiment, we studied the clustering on four public
gene expression data sets: colon cancer [22], SRBCT [21],
leukemia [23], and breast cancer [20]. The details of
these data sets and the preprocessing steps on the raw
public data sets are given below:

. colon cancer. This data set consists of 2,000 genes
over 62 samples from two classes of colon-cancer
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TABLE 2
ACC of Various Methods on the Benchmark Data Sets

Fig. 1. Unsupervised feature selection by the LLC-fs with k ¼ 30; � ¼ 1 on the USPS digits. (a) and (b) show the (sorted) �� values on the “4 versus 9”
and “0 versus 8” data sets, respectively. In (c) and (d), the first row plots the class mean images, while the second row shows the top 15 features in
each mean image ranked by the �� weight vector. (a) USPS 4 versus 9, (b) USPS 0 versus 8, (c) USPS 4 versus 9, and (d) USPS 0 versus 8.



patients: 40 normal healthy samples and 22 tumor
samples. We preprocessed the data by carrying out a
base 10 logarithmic transformation.

. SRBCT. This data set contains 63 samples from four
classes of small round blue-cell tumors of childhood
(SRBCT): 23 Ewing family of tumors, 20 rhabdo-
myosarcoma, 12 neuroblastoma, and 8 non-Hodgkin
lymphoma. The expression profiles already prepro-
cessed in [21] were used.

. leukemia. This data set contains 38 samples from
two classes of leukemia: 27 acute lymphoblastic
leukemia (ALL) and 11 acute myeloid leukemia
(AML). The expression values were first thresholded
with a floor of 100 and a ceiling of 16,000. Then, we
filtered out the genes with max=min � 5 or
ðmax�minÞ � 500, where max and min are the
maximum and minimum expression values of a gene.
Subsequently, 3,051 genes were kept. After a base 10
logarithmic transform, each gene was standardized
to zero mean and unit variance across samples.

. breast cancer. This data set contains the gene
expression levels of 49 tumor samples for 7,129 human
genes. The response variable describes the status of
the estrogen receptor (ER): 25 samples are ER+, and
24 samples are ER-. The five conflicting samples were
excluded from the analysis. We first thresholded the
raw data with a floor of 100 and a ceiling of 16,000, and
filtered out the genes with max=min � 10 or
ðmax�minÞ � 1;000. Subsequently, 3,303 genes were
kept. After a base 10 logarithmic transform, each gene

was standardized to zero mean and unit variance
across samples.

For these genomic data, the size k of the mutual nearest
neighbors should be neither too small (otherwise it would
be less accurate with the deficient local training sets of high
dimensionality) nor too large because of a limited number
of samples. We here chose k from 20 
 40 for all the data,
except the leukemia data set that has only 38 samples, for
which we set it at an element of the set: f20; 25; 30g. � was
still selected in ½0:1; 10�. To save space, we reported the
results of LLC-fs in Table 2 with the combination k ¼
30; � ¼ 1 only over 10 runs.

It can be seen from Table 2 that the superiority of the
LLC-fs over the compared algorithms is remarkable on
these high-dimensional data sets with scarce samples. The
typical feature weighting results in the 10 runs are also
plotted in Fig. 2. For each data set, �� is sparse and only a
few of them have significant magnitudes, while most
feature weights are close to zero. This can explain the
reason why the LLC-fs significantly improves the perfor-
mance of the LLC on these data.

7.1.4 Sensitivity Studies of Parameter k and �

The effects of parameter k and � in the LLC-fs algorithm are
presented in Fig. 3, where the value of a parameter varies
while the other one is fixed. From Figs. 3a and 3b, it can be
seen that for all of these four UCI data sets, which have
approximately 200 samples per cluster on average, the LLC-
fs can typically achieve the promising results when k and �

1542 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 33, NO. 8, AUGUST 2011

Fig. 2. The feature weight vectors �s learned by LLS-fs with k ¼ 30; � ¼ 1 on the genomic data sets. (a) Colon cancer, (b) SRBCT, (c) leukemia, and
(d) breast cancer.



are chosen from 15 
 30 and ½0:1; 10�, respectively. In Figs. 3c

and 3d, on these two USPS data sets which have more than

800 samples per cluster and are of high dimensionality, the

performance of LLC-fs does not vary much when k and � are

chosen from 30 
 60 and ½0:1; 10�, respectively. Fig. 3e

justifies the setting of k on these genomic data sets. That is,

the performance is stable and satisfactory when k is neither

too large nor too small. From Fig. 3f, it is observed that a large

value of � would generally lead to better performance on

genomic data sets. A plausible reason is that the weighted

l2 norm penalty is large in (10) because there are many

irrelevant features. In general, a large trade-off parameter �

can balance the model fitting error and the penalty.

7.2 Experiments on Kernel Learning

Two sets of experiments were conducted in this section. In
the first experiment, we show that the proposed LLC-mkl
algorithm outperforms the basic LLC algorithm, in which
the local prediction is performed with kernel ridge
regression. In the second experiment, we apply the LLC-
mkl algorithm, which could provide an easy and prin-
cipled way to combine the spatial features of different
types, e.g., intensity and edge maps, to perform unsuper-
vised face detection.

For comparison, the counterpart unsupervised multiple
kernel learning algorithm based on NMF [25] (denoted as
NMF-mkl) was conducted. We also compared with the self-
tuning spectral clustering [24] (denoted as SelfTunSpec),
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Fig. 3. The parameter sensitivity studies for LLC-fs on the UCI data sets, USPS data sets, and genomic data sets, respectively, where the values on
each line represent the average ACC over 10 independent runs. In (a), (c), and (e), the neighborhood size k varies with � ¼ 1, while (b), (d), and
(f) show that the trade-off parameter � varies with k ¼ 30. (a) and (b) UCI data sets, (c) and (d) USPS data sets, and (e) and (f) genomic data sets.



which tries to build a single best kernel for clustering.
Besides, the spectral clustering with multiple views [39]
(denoted as Spec-mv) was implemented as well, which
generalizes the normalized cut from a single view to
multiple views, and each view is represented by normal-
ized adjacency matrix computed with some kernel func-
tion. The sensitivity of the proposed LLC-mkl algorithm
with respect to k and � will be presented at the end of this
section.

7.2.1 Document Data Sets

The characteristics of the benchmark document data sets
used in this experiment are summarized in Table 3.

. CSTR. This is the data set of the abstracts of technical
reports published in the Department of Computer
Science at a university between 1991 and 2002. The
data set contains 476 abstracts, which are divided
into four research areas: Natural Language Proces-
sing, Robotics/Vision, Systems, and Theory.

. WebACE. This data set is from the WebACE project,
and it contains 2,340 documents consisting of news
articles from Reuters news service with 20 different
topics in October 1997.

. tr11 and tr31. Both of the data sets are from the
CLUTO toolkit [45]; they contain 414 and 927 articles
categorized into 9 and 7 topics, respectively.

To preprocess the CSTR and WebACE data sets, we
removed the stop words using a standard stop list, all
HTML tags were skipped, and all header fields except
subject and organization in the posted articles were ignored.
Then, the original data sets were represented by the Bag-of-
Words model. The data sets associated with the CLUTO
toolkit had already been preprocessed. For all data sets, we
only used the top 1,000 words by mutual information with
the class labels.

We applied the LLC-mkl with 10 precomputed base
kernels altogether, i.e., seven RBF kernels Kðxi;xjÞ ¼
expð�kxi � xjk2=2�2Þ, with � ¼ const 	D, where D is the
maximum distance between samples and const varies in the
prespecified range of f0:01; 0:05; 0:1; 1; 10; 50; 100g, two
polynomial kernels Kðxi;xjÞ ¼ ð1þ xTi xjÞd with degree
d ¼ f2; 4g, and a cosine kernel Kðxi;xjÞ ¼ xTi xj=ðkxik �
kxjkÞ. All of the kernels have been normalized through
the formula: Kðxi;xjÞ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Kðxi;xiÞKðxj;xjÞ

p
. Besides, we also

implemented the case where, each time a single candidate
kernel KðlÞ ðl ¼ 1; . . . ; 10Þwas adopted in the LLC algorithm,
the best (denoted as LLC-bkernel) and the worst (denoted
as LLC-wkernel) performance out of the 10 kernels were
reported. The NMF-mkl was applied on the same 10 base
kernels. The adjacency matrix in SelfTunSpec [24] was built
by its local scaling method [24] on the data set. As for Spec-
mv [39], the combination weights are unknown a priori and
it does not involve the reestimation for them. Without loss
of generality, we therefore applied the uniform weighting
for the 10 kernels. For the NMF-mkl, SelfTunSpec, and
Spec-mv, we reported the best accuracy only among the
extensive trials of their free parameters. For the LLC-mkl,
the mean and standard deviation of ACC with k ¼ 30; � ¼
10 over 10 runs were reported. The results are summarized
in Table 4.

From Table 4, it can be seen that there is a big gap
between the best and the worst performance of the LLC
with the different choices of kernel. On the tr11 and tr31

data sets, the performance of the LLC-mkl is close to that of
the LLC with the best kernel, but the LLC-mkl is apparently
more desirable from the practical viewpoint, where we
often do not know which kernel is the best a priori. On the
CSTR and WebACE data sets, the LLC-mkl even outperforms
the LLC with the best kernel. In fact, by combining multiple
kernels and exploiting the complementary information
revealed from the different kernels, the LLC-mkl indeed
improves the robustness and accuracy of the LLC. More-
over, the text data are believed to lie on a low-dimensional
manifold because it is impossible for them to fill in the
entire high-dimensional space [4]. We can also observe that
the performance of LLC-mkl, which utilizes the manifold
information, is consistently superior to that of NMF-mkl,
which does not utilize such information. From Table 4, we
can find that the LLC-mkl and NMF-mkl both outperform
the selfTunSpec, which tries to construct a single “best”
kernel in this experiment. Moreover, the performance of the
Spec-mv is generally inferior to that of the LLC-mkl because
it cannot update the combination weights. The algorithm
with equal weights for all the adjacency matrices may tend
to be affected by the improper kernel functions adopted.
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TABLE 4
Accuracies of Various Methods on the Document Data Sets

TABLE 3
Characteristics of the Document Data Sets



7.2.2 Unsupervised Face Detection

This experiment was conducted on the MIT CBCL Face
data set, which consists of 31,022 cropped face and
nonface images in total. We randomly selected a subset
of 1,000 face images and 1,000 nonface images, rescaled
each image to 15� 15 pixels, and then processed with the
histogram equalization.

Based on the fragment idea of [35], [44], it is rational to
assume that the different local regions in an image have
different relevance in determining whether the image
contains a face or not. Therefore, we divided each image
into nine nonoverlapping patches of size 5� 5. Each patch
is considered as a different source which contains the
different spatial information. Note that we only used
nonoverlapping patches for simplicity, but it is quite
straightforward to apply the proposed method to use
arbitrary, possibly overlapping patches. In addition to these
intensity patches, we also computed the edge maps, i.e., the
Sobel filter responses on each raw image for both the
horizontal and vertical orientations. Similar to the original
images, each edge map image was divided into nine
patches. Therefore, there are 27 patches in total for each
image: nine patches from the original image, nine patches
from the horizontal edge maps, and nine patches from the
vertical edge maps. In order to combine these fragments in
a principled way, KðlÞ ð1 � l � 27Þ is defined as the cosine
kernel restricted to the lth patch between each pair of
images, and then the combination of KðlÞs which can lead to

a more accurate unsupervised partition on these images is
learned by LLC-mkl.

The obtained weight maps indicating the weights for
different patches are shown in Fig. 4c. It can be seen that the
weights for edge map patches generally dominate the
weighting solution in this task, while the intensity patches
seem to be less discriminative than the former. To confirm
the rationality of this weighting result, we ran the LLC
algorithm with the uniformly combined cosine kernels
computed from the nine raw intensity patches (denoted as
LLC-pix) and the 18 edge map ones (denoted as LLC-tex),
respectively. The results based on these two types of
features are listed in Table 5. It can be found that such a
weighting result is reasonable because the edge map
features lead to higher accuracy in comparison with the
intensity features (0.9740 versus 0.9660). Besides, we also
conducted the experiment where these 27 cosine kernels
were uniformly combined and then applied to the LLC
algorithm (denoted as LLC-uniWei). Although it outper-
forms the case where the intensity or edge map features are
used alone (i.e., LLC-pix and LLC-tex), its performance is
still worse than that of the nontrivial weighting solution
obtained by the LLC-mkl, which has automatically assigned
weight on each patch (see Fig. 4c). A reasonable explanation
is that the uniform weighting cannot make full use of the
complementary information among these kernels. This is
further confirmed by the experiment with the Spec-mv,
where 27 adjacency matrices were formed on each patch by
the Gaussian kernel function with local scaling [24] and
equal weights were associated with these matrices for
general purpose. It is observed from Table 5 that the
performance of such multiview spectral clustering falls
behind that of the LLC-mkl. Moreover, the LLC-mkl again
yields a more accurate partition than the NMF-mkl with the
same 27 cosine kernels, as well as the SpecTunSpec
performed on the data of 675 dimensions by simply
stacking up the 27 patches into a “big” vector.

7.2.3 Sensitivity Studies of Parameter k and �

The effects of these two parameters, i.e., k and �, on the
performance of LLC-mkl are presented in Fig. 5. From Figs. 5a
and 5b, it can be observed that, for the document data sets
where there are no more than 300 samples per class on
average, the proposed LLC-mkl algorithm with k 2 30 
 50
and � 2 ½0:01; 10� could produce considerably accurate
results and the corresponding performance does not vary
much. From Figs. 5c and 5d, for the face data set in which
there are 1,000 samples per class, the neighborhood size k and
the trade-off parameter� chosen from 60 
 100 and the range
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Fig. 4. (a) A sample face image and its edge map in horizontal and
vertical orientations, (b) a sample nonface image and its edge map in
horizontal and vertical orientations, and (c) weight maps obtained by the
LLC-mkl with k ¼ 60; � ¼ 10, where the patches with the lighter
intensities have larger weight values.

TABLE 5
Confusion Matrices and Accuracies of Various Methods for the Unsupervised Face Detection



of ½1; 10�, respectively, could result in considerably accurate

and stable performance.

8 CONCLUSION

In this paper, a novel feature selection method and a kernel

learning method have been proposed for the local learning-

based clustering. These two algorithms have been devel-

oped in a unified approach under the same regularization

framework. The resulting feature weights or kernel combi-

nation coefficients are sparse. Experimental results have

demonstrated that the proposed feature selection and

kernel learning methods are able to improve the robustness

and accuracy of the basic local learning clustering.

Furthermore, on the data sets with manifold structure,

e.g., the high-dimensional sparse data sets, the performance

of the proposed methods generally outperforms that of their

global learning-based counterparts which ignore the mani-

fold information.

A common limitation of both proposed algorithms is that

each algorithm is not optimizing the same objective

function in the iterative estimation of Y and �� . Currently,

we have just found the convergence empirically without a

theoretical guarantee. The future work will focus on solving

the feature selection/kernel learning problem and the

clustering problem with a unified objective function.
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