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Lip event detection is of crucial importance to the better understanding of visual speech perceptually between 

humans and computers. In this paper, we address an efficient lip event detection approach using oriented 

histograms of regional optical flow (OH-ROF) and low rank affinity pursuit. First, we align the extracted lip 

region sequences to reduce the impact of irrelevant motion caused by the moving cameras. Then, an optical 

flow field is calculated from these sequentially stabilized images and an efficient descriptor, namely OH- 

ROF, is presented to discriminatively code the visual appearance of each motion frame, whereby each lip 

motion clip can be represented by a sequence of OH-ROF vectors as its signature. Subsequently, we detect 

the visual silence event based on the small flow magnitude, and further propose a low rank affinity pursuit 

method to determine the visual speech event that incorporates the lip-dynamic states of mouth opening and 

closing. As a result, various kind of lip motion events can be appropriately estimated. The proposed approach 

neither requires any training set on the labeled videos nor learns the lip motion priors of each visual event 

in an unconstrained video. Experiments show a promising result in comparison with the state-of-the-art 

counterparts. 

© 2015 Elsevier Inc. All rights reserved. 
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. Introduction 

In general, the visual information of lip motion, which is com-

letely independent of background noise and tightly correlated with

he acoustical signals, is much helpful for speech recognition, par-

iculary in the noisy environment. In recent years, lip event analysis

n videos has been extensively studied because of its attractable ap-

lications including lipreading [1] , visual speaker identification [2,3] ,

udio–visual speech recognition (AVSR) [4] , human computer/robot

nteraction, facial expression analysis [5,6] and so forth. Among these

pplications, one of the key issues is to precisely detect the lip mo-

ion events so that the corresponding lip-dynamic states can be well

btained for further speaking analysis and lip behavior investiga-

ion. For instance, the sequential variations of the lip motion appear-

nces can be regarded as the visual counterpart of voice activities,

nd lip event detection can therefore be utilized to overcome the

oor performance of voice activity detection when the background

oise is noticeable. In addition, the detection of the visual speech
∗ Corresponding author. 
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ften plays a key role in the speech recognition, while the detection of

ip-dynamic states about the mouth opening and closing is of cru-

ial importance to the facial appearance analysis. Nevertheless, to the

est of our knowledge, it is still a non-trivial task to perform a reli-

ble lip motion event detection due to its elastic shape, non-rigid mo-

ion, and large variations caused by the intra-personal lip appearance

hanges, surrounding clutters, uncontrollable lighting condition, and

o forth. 

In the past years, a few specific techniques have been developed to

ealize lip event detection, which can be roughly grouped into three

ategories: shape-based approaches, motion-based approaches and 

odel-based approaches. 

The shape-based approaches generally assume that the variations

f lip shape are mainly found within the speaking interval and the

tationary lips are overwhelmingly found in the non-speaking in-

erval. Along this line, Sodoyer et al. [7] first conducted a compre-

ensive analysis of lip shape parameters about spontaneous speech

orpus, and then smoothed the visual information in terms of the in-

erolabial width and height of the lip regions. Accordingly, the visual

ifferences between the natural silence and non-silence sections of

 given speaker can be well characterized. Later, paper [8] extends

his work to adapt the difficult case of convolutive mixtures even

f the recording sources are highly non-stationary. In particular, the
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experiments conducted in these two approaches are especially de-

signed on the make-up lip video databases, through which the shape

parameters can be well obtained. Furthermore, Aoki et al. [9] first ex-

tracted the lip shapes of the target speaker by an elastic bunch graph

matching method, and subsequently measured the lip aspect ratio to

prevent the wrong voice activity detection. However, this approach is

specially utilized to handle the infrared image sequence. Therefore,

the aforementioned three approaches are unsuitable for lip event de-

tection in real conditions, e.g., lips without make-up or image se-

quences captured under natural environment. Recently, Talea et al.

[10] first made a series of mouth area subtractions and then employed

a smoothing filtering to detect the syllable event. Nevertheless, it is

very difficult to extract the lip shape parameters with great reliabil-

ity when the mouth image incorporates very low resolution and the

poor contrast between the lip and surrounding skin pixels. In addi-

tion, these shape-based approaches are somewhat sensitive to the

poor lighting conditions. 

The motion-based approaches suppose that the appearances of

the consecutive mouth regions are different when the human lip

moves in speaking. From this viewpoint, Yau et al. [11] computed the

motion history images (MHIs) of lip motions and utilized the Zernike

moment features to detect the starting and ending frames of isolated

utterances, in which the magnitude of Zernike moments correspond-

ing to the uttering frames is much greater than the one of the frames

within the period of pause or silence. However, it is found that this

approach is quite sensitive to the illumination changes. To resist this

attack, Libal et al. [12] calculated the accumulated intensity differ-

ence in a bar mask and compared it to a running average histogram,

through which the motion states of lip opening/closing can be deter-

mined by investigating the significant changes of such comparisons.

In this approach, they defined a speaking period provided that the

states of mouth are opened and closed semi-regularly during speech.

Nevertheless, this condition is obviously too strong because it does

not consider any uncertainty in observations. Later, Siatras et al. [13]

found that the increased average value and standard deviation of the

mouth region pixels with low intensities can be well utilized as the

visually distinctive cues to depict visual speech from those that de-

pict visual silence. Such an approach does not require a complex fea-

ture extraction procedure, e.g., the geometric features within the lip

shapes. However, their performances would be instable when there

exist poor lighting conditions or insufficient mouth information. Fur-

thermore, Karlsson et al. [14] have utilized the recently developed

optical flow differential invariants to exploit the divergence of the

flow field at a coarse scale, whereby the lip-dynamic states corre-

sponding to the mouth opening and closing can be determined. This

lip event detection approach has an advantage of fast computation

and has shown to perform well on the XM2VTS database. However,

this type of approach might be prone to suffer from the tiny move-

ments of the muscles around the lips. Recently, Shaikh et al. [15] have

utilized the pair-wise pixel comparison of consecutive images to seg-

ment the isolated utterances temporally. Nevertheless, this approach

incorporating the pair-wise pixel comparing is very sensitive to the

irrelevant motion caused by unstable camera. Until most recently,

Taeyup et al. [16] first calculated a phase space plot over the joint

histogram of a Gaussian blurred image pair (closed lip vs. open lip)

and then extracted the chaos inspired similarity measure for visual

speech/silence detection. This approach has found to be adaptive to

the illumination changes, but which often degrades its performance

when the located lip sequences are unstable. 

The model-based approaches empirically learn a reference model

to characterize the lip activities such that the corresponding event

states can be identified. Following this idea, Luthon et al. [17] uti-

lized a spatiotemporal neighborhood of each pixel associated with

the Markov Random Field (MRF) to label the motion states of mouth

opening and closing. Under natural lighting conditions, this pio-

neer work is able to detect the mouth states without any particular
ake-up. Nevertheless, such an approach exploiting the horizontal

nd vertical spatial gradients, is somewhat sensitive to the image

oise and the changes of lighting conditions. To handle this prob-

em, the active shape model (ASM) [18] and active appearance model

AAM) [19] employ a set of landmark points to describe the lip move-

ents, and these points are controlled within a few previously de-

ived modes in the training set. Nevertheless, inevitably, such kind of

ystems is generally required to label a group of landmark points and

o perform a training process to determine the corresponding model

arameters. Moreover, it is very difficult to apply these two models

n very low-resolution image sequences. Differently, Liu et al. [20]

rst applied principal component analysis (PCA) to extract the visual

eatures on the detected mouth region, and then modeled the dis-

ribution of speech and non-speech events using two different Gaus-

ian mixture models (GMMs). Accordingly, the corresponding voice

ctivities can be well detected. In general, the desired parameters

f these two models are estimated from the feature vectors derived

rom the training data. The decision of the speech/non-speech event

s taken by evaluating the likelihood of each frame conditioned on

oth model distributions. Even though the mouth appearances dur-

ng the speaking and non-speaking intervals exhibit the different dis-

ributions, there always exist the overlap between two models and

he reliable decision boundaries may not be well determined for ro-

ust event detection. Later, Aubrey et al. [21] computed the optical

ows within the successive mouth regions in a training dataset and

odeled the temporal variation of these motion vectors via a hidden

arkov model (HMM). Accordingly, each frame of the new motion

ata can be classified as either speech or non-speech periods by com-

aring the probability generated by this model to a threshold value.

hat is, the frames below the threshold are assigned as non-speech

vent and the frames above the threshold are designated as speech

vent. Furthermore, Navarathna et al. [22] first divided the incoming

peech utterance into a number of fixed-length frames and then em-

edded the extracted lip region features into the GMM visual speech

lassifier, through which the corresponding score list of each frame

tate can be obtained. Recently, Tiawongsombat et al. [23] have em-

loyed the mouth image energy as a visual cue and proposed a bi-

evel HMM embracing both the lip moving states and speaking states

o assist voice activity detection in human robot interaction. Among

hese model-based approaches, it is found that the related model pa-

ameters and the threshold value should be sufficiently learned from

he training dataset, which, from the practical viewpoint, limits their

pplication domains. 

In general, the successful achievement of reliable lip motion event

etection lies in a closer investigation of the physical process within

he corresponding lip motion activities. Meanwhile, the robust lip

vent detection algorithms should be capable of adapting to vari-

us illumination conditions. In this paper, we present an efficient lip

vent detection approach by using oriented histograms of regional

ptical flow and low rank affinity pursuit. Without learning priors,

he proposed approach aims not only to distinguish frames depicting

isual speech from those depicting visual silence, but also to inves-

igate the lip-dynamic states of mouth opening and closing. Exper-

ments have shown that the proposed approach performs favorably

ompared to the state-of-the-art methods. 

The remaining part of this paper is structured as follows: Section 2

riefly introduces the optical flow framework. Section 3 describes the

ipeline and procedures of the proposed framework, and Section 4

hows the experimental results, together with the discussions.

inally, we draw a conclusion in Section 5 . 

. Overview of optical flow 

Lip event analysis is a challenging research topic due to its com-

lexity and variation of mouth appearances. As a visual descrip-

or, optical flow is able to describe the distribution of the apparent
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Fig. 1. (a) The image sequence alignment scheme. (b) Optical flow field estimated from 

the misaligned lip image pairs. (c) Optical flow field estimated from the aligned lip 

image pairs. 
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elocities of brightness patterns in a sequence, and there has been

ignificant interest in exploiting the motion vector that derives from

he optical flow to characterize the lip movements. The main mer-

ts are three-fold: 1) This motion descriptor is able to well describe

he lip activity even if the extracted mouth regions are of low-

esolutions; 2) The visual features exploited in optical flow need not

xtract the lip shapes or require any prior knowledge about the lip

tructure; 3) The optical flow vector has found to be robust against

he complex lighting conditions because the lighting changes are

mooth between the neighboring frames. 

In the past, different kinds of optical flow methods have been ex-

loited in the literature [24–26] . In this paper, we utilize the Lucas–

anade technique to compute the optical flow vectors [26] , which

as found to be more robust under noisy environment. Let us con-

ider a group of consecutive image sequence f ( x , y , t ), where ( x , y )

enotes the pixel position within an M × N rectangular image region,

nd t represents the time notation. Many different optical flow esti-

ation methods are based on the assumption that the intensity val-

es of an image object in subsequent frame do not change over time,

.e. f (x + u, y + v , t + 1) = f (x, y, t) , where the displacement field u

nd v are the horizontal and vertical components of the optical flow

eld to be estimated from the image pair at time t and t + 1 , respec-

ively. For small displacements, the linearized version of the inten-

ity value constancy assumption yields the famous first-order optical

ow constraint: f x u + f y v + f t = 0 , where subscripts denote the par-

ial derivatives. 

In general, if the spatial gradient of the image is sufficiently large

nd its direction varies sufficiently within the neighborhood, the flow

onstraint is well-conditioned and the reliable flow value can be es-

imated. Nevertheless, if the spatial gradient is close to zero or its

irection is nearly a constant, the flow constraint is not sufficient to

niquely compute the two unknowns: u and v . To tackle this issue,

t is effective to assume that the unknown optic flow vector is a con-

tant within its neighborhood of size ρ , and it is possible to determine

he two constants u and v from a weighted least square fit: 

 LK (u, v ) = K ρ ∗
(
( f x u + f y v + f t ) 

2 
)
. (1)

Specifically, the standard deviation ρ of the Gaussian function

erves as an integration scale over the main contribution of the

omputed least square fit. Accordingly, the minimum (u, v ) of E LK 

atisfies the conditions ∂ u E LK = 0 and ∂ v E LK = 0 , which gives the

ollowing linear system: 

K ρ ∗ ( f 2 x ) K ρ ∗ ( f x f y ) 
K ρ ∗ ( f x f y ) K ρ ∗ ( f 2 y ) 

)(
u 

v 

)
= 

(
−K ρ ∗ ( f x f t ) 
−K ρ ∗ ( f y f t ) 

)
. (2) 

According to this framework, the lip motion during a speaking in-

erval often produces a more radical increase in the velocity of pixels

han it does during a non-speaking interval. 

. The proposed approach 

In this section, we present the proposed lip event detection ap-

roach in detail. First, we introduce a sequence stabilization scheme

o reduce the impact of irrelevant motions, and then present an ori-

nted histograms of regional optical flow to characterize the visual

ppearance of each lip motion frame. Finally, we show the details of

he implemented algorithm. 

.1. Image sequence stabilization 

In general, the optical flow field is calculated from the spa-

iotemporal gradients of the stabilized image sequence, whereby the

otion vectors derived from these raw flows can be utilized to char-

cterize the target motions. Along this way, all above derivations are

ased on the assumption that the videos are captured by static cam-

ras, and this assumption would greatly simplify the lip event detec-

ion problem because the mere presence of lip movement provides a
trong cue for the motion analysis. However, it is an inherent problem

hat the relative position of the camera with respect to the speaker is

eldom fixed in most image acquisition processes. For instance, the

ideo clips are recorded by a hand-held camera. Under such circum-

tances, the estimated optical flow may appear drastically different

ven under moderate change in the position or pose with respect to

he camera settings. Therefore, it is imperative to align the image se-

uence and reduce the impact of the irrelevant motion caused by the

oving cameras, featuring on reliable flow calculation. 

For image sequence alignment, it is reasonable to assume that the

isalignment is restricted to the image plane. Under such restric-

ion, the misalignment problem within two adjacent frames can be

onsidered as a domain deformation. More precisely, if f ( x , y , t ) and

f (x, y, t + 1 ) represent two misaligned images at time t and t + 1 , re-

pectively, there exists an invertible transformation τ such that: 

f (x, y, t + 1) = ( f ◦ τ )(x, y, t) = f (τ (x, y, t)) (3)

here f ( τ ( x , y , t )) denotes the t th frame after the transformation pa-

ameterized by vector τ . From the practical viewpoint, this kind of

isalignment problem can be modeled as a finite dimensional trans-

ormation that shares a parametric representation. Specifically, the

opular 2D parametric transform [27] of an affine group is always

tilized to model the translation, rotation and planar deformation of

he background sequence. Within this framework, the lip sequence

lignment problem can be intuitively formulated as follows: suppose

hat f 1 , f 2 , . . . , f k represent k input lip images, but misaligned with

ach other. Then, there exist a group of domain transformation pa-

ameters { τ 1 , τ 2 , . . . , τ k } to compensate camera motion, whereby

he transformed lip image sequence { f 1 ◦τ 1 , f 2 ◦τ 2 , . . . , f k ◦τ k } is well-

ligned at the pixel level. 

From the practical viewpoint, it is imperative to specify a reference

rame for image sequence alignment, and it is reasonable to take the

iddle frame of the motion clip into consideration. For reliable flow

alculation, as shown in Fig. 1 , we select to align the extracted lip re-

ion sequences by the following two steps: 1) we utilize the 2D para-

etric transforms [27] to model the translation, rotation and planar

eformation between the neighboring frames of the extracted lip re-

ion sequences; 2) we select the robust multiresolution method [28]

o compensate for the background motion caused by moving cam-

ras, in which the middle frame f k 
2 

is chosen as the reference frame.

hat is, as shown in Fig. 1 (a), each frame f j is aligned to the middle

rame f k 
2 

before the optical flow computation. 

Typical optical flow estimations between the misaligned and

ligned lip image pairs (i.e., mouth opening process) are shown in
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Fig. 2. The pipeline of the proposed OH-ROF visual descriptor. 
Fig. 1 (b) and Fig. 1 (c), respectively. It can be clearly observed that al-

most all the flow orientations obtained from the misaligned lip im-

age pair point to the top directions. Under such circumstances, the

irrelevant pixel motions will affect the interested lip motion flow ev-

idently. As a result, it is very difficult to precisely determine the de-

sired lip event states within this kind of flows, e.g., mouth opening

process. In contrast, the optical flows estimated from the aligned lip

image pair are able to mark the moving directions of lip pixels per-

ceptually. Within this example, the upper parts of the lip pixels move

towards the upward direction, while the lower parts of the lip pixels

move towards the downward direction. Therefore, the optical flows

estimated from these stabilized image sequences can be well utilized

for the subsequent lip motion event detection. 

3.2. Oriented histograms of regional optical flow 

For lip motion analysis, the motion vector derived from the opti-

cal flow is a natural feature to characterize the lip movements. How-

ever, as the optical flows are very susceptible to the background noise,

scale changes and the directionality of movement, the raw optical

flows incorporating the less discrimination power may fail to dis-

tinguish the similar motion events. Recently, some researchers have

found that the oriented histograms of the optical flow sequence along

the temporal axis are able to represent the motion event discrimina-

tively, and this type of descriptor is able to improve the motion analy-

sis performance significantly [29] . This is reasonable because the dy-

namical patterns of oriented histograms of the optical flow field are

able to well characterize the motion appearance distribution globally,

which would be less sensitive to the background noise. 

Inspired by the recent success of histogram of features in the vi-

sual recognition community [29] , we select the oriented histograms

of optical flow to characterize the lip motion activities. First, we refer

to Section 3.1 and align the lip image sequence to reduce the impact

of the irrelevant motion caused by the unstable cameras. Next, we

substitute frame f (x, y, t + 1) in Eq. (1) with ( f ◦τ )( x , y , t ) at a time t ,

and estimate optical flow fields of the aligned image sequence via the

Lucas–Kanade algorithm. Mathematically, the magnitude W ( x ; y ) and

the orientation θ (x ; y ) ∈ (−π
2 , 

π
2 ) of the optical flows located at pixel

( x , y ) are computed by: 

 (x, y ) = 

√ 

u (x, y ) 2 + v (x, y ) 2 , (4)

θ (x, y ) = arctan ( v (x, y ) / u (x, y ) ) . (5)

The motion vector of optical flow is computed at every frame of

the video clip, and each flow vector is represented as its primary an-

gle ranging from the horizontal axis. As shown in [29] , the orienta-

tions of optical flow can be mapped into several angle bins for statis-

tical histogram computation: { −π
2 

< θ ≤ −π
2 

+ 

π
B 
, b = 1 

−π
2 

+ 

(b−1) π
B 

< θ ≤ −π
2 

+ 

b 
B 
, 1 < b < B 

π
2 

− π
B 

< θ < 

π
2 
, b = B 

(6)

where 1 ≤ b ≤ B is the index of the bin and B is the total number of

bins. As a result, the raw histogram of optical flow can be computed

as follows: 

h = 

1 

MN 

M ∑ 

x =1 

N ∑ 

y =1 

δ[ A (θ (x, y )) − b] , (7)

δ[ ϕ(x )] = 

{
1 , ϕ(x ) = 0 

0 , otherwise 
(8)

where the function A ( ·) maps the angle θ ( x , y ) to its corresponding

histogram bin value, and the Dirac delta function δ[ ϕ( ·)] is utilized to

mark the special bin number particularly. 
As the spatially weighted optical histogram not only considers the

imes of each motion vector appearing in a certain region, but also

akes the local characteristics of motion vector into account [29] . For

he appearance with almost no temporal motion, the spatial weights

end to zero, whereas these weights are very large within the big

otion appearance. Therefore, the utilization of each flow vector

eighted according to its magnitude is an effective way to model the

otion appearances. Accordingly, the weighted histogram can be for-

ulated as: 

ˆ 
 = C q 

M ∑ 

x =1 

N ∑ 

y =1 

δ[ A (θ (x, y )) − b] · W (x, y ) , (9)

here C q is a constant for histogram normalization. 

Evidently, the histogram is inherently a global statistical measure.

evertheless, the direct utilization of such oriented histogram will

ot perform a better representation of the lip motions. The main rea-

on lies that the optical flows within the lip region appearance are

hanging over time and the flow orientations of different parts will

utually affect the probability distribution of the histograms. Un-

er such circumstances, the oriented histograms of such flow vectors

re often similar even the lip moving directions are different. Conse-

uently, this type of descriptor would result in a detection failure. 

Empirical studies have found that the variations of optical flow

ectors within the lip motion appearance are often symmetric be-

ause the lip structure is physically symmetric. To avoid the mutual

nterference within the statistical histogram, it is reasonable to inves-

igate the orientations of optical flow vectors locally. To address this

ssue, we select to divide the interested mouth region into four sep-

rable regions, and propose an oriented histogram of regional optical

ow (OH-ROF) to characterize the lip motion appearance. Given a lo-

ated mouth image of size M × N , the separated four regions R u , R d ,

 l , R r , can be mathematically formulated as follows: 

 u (x, y ) = 

{
y − N 

M 

x ≥ 0 , 

y + 

N 
M 

x −N > 0 

s.t. 0 < x < M, 
N 

2 

< y ≤ N. (10)

 d (x, y ) = 

{
y − N 

M 

x ≤ 0 , 

y + 

N 
M 

x −N < 0 

s.t. 0 ≤ x < M, 0 ≤ y < 

N 

2 

(11)

 l (x, y ) = 

{
y − N 

M 

x > 0 , 

y + 

N 
M 

x −N ≤ 0 

s.t. 0 ≤ x < 

M 

2 

, 0 < y ≤ N (12)

 r (x, y ) = 

{
y − N 

M 

x < 0 , 

y + 

N 
M 

x −N ≥0 

s.t. 
M 

2 

< x ≤ M, 
N 

2 

< y ≤ N (13)

here ( x , y ) denotes the pixel position within the M × N rectangular

ip region. Fig. 2 illustrates the procedures of the proposed regional

istogram representation in terms of the four bins, and each OH-ROF
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ector is binned according to its primary angle between the horizon-

al axis and the vector. According to these region selections, the OH-

OF vectors provide us with four regional histograms at each time

nstant t : 
 

 

 

 

 

 

 

ˆ h 

t 
u = 

ˆ h 

t (R u (x, y )) = [ h 

t 
u, 1 , h 

t 
u, 2 , . . . , h 

t 
u,B ] 

ˆ h 

t 
d 

= 

ˆ h 

t (R d (x, y )) = [ h 

t 
d, 1 

, h 

t 
d, 2 

, . . . , h 

t 
d,B 

] 

ˆ h 

t 
l 

= 

ˆ h 

t (R d (x, y )) = [ h 

t 
l, 1 

, h 

t 
l, 2 

, . . . , h 

t 
l,B 

] 

ˆ h 

t 
r = 

ˆ h 

t (R d (x, y )) = [ h 

t 
r, 1 , h 

t 
r, 2 , . . . , h 

t 
r,B ] 

. (14) 

It can be clearly observed that each OH-ROF vector is independent

f the other ones, and these OH-ROF vectors can be efficiently uti-

ized to code the visual appearance of each lip motion frame locally.

ince the histogram with a total of B bins is essentially represented

s a probability mass function, which should satisfy the following

onstraint: 
 B 

i =1 
ˆ h 

t 
s,i = 1 , ̂  h 

t 
s,i ≥ 0 , s = { u, d, l, r} . (15)

This constraint can also be considered as the normalization op-

ration, and it can make the derived histogram representation scale-

nvariant. Consequently, the sequential combination of these OH-ROF

ectors is able to characterize the lip motions discriminatively, mean-

hile the temporal evolution of such a combined vector can be uti-

ized for further lip event analysis. 

.3. Lip motion event detection 

Given a video clip, OH-ROF is calculated between every two neigh-

oring frames. As a result, this video clip can be represented by a

equence of OH-ROF descriptors as its signature. Empirical studies

ave found that the lip motion events can be concretely divided into

wo patterns: visual silence and speech, in which the lip-dynamic

tates of speech event can be further comprised of mouth opening

nd mouth closing. In silent motions, the magnitudes of the optical

ows are generally very small, whereas these variations are evidently

uite stronger in speech. Therefore, we first select to detect the silent

rames and then label the speaking (i.e., opening mouth and closing

outh) frames. Finally, the lip motion events corresponding to visual

ilence and speech can be well determined. 

.3.1. Silence detection via small flow magnitude 

Intuitively, the magnitude of lip pixel flows almost becomes zero

hen the lip is not moving (i.e., non-speaking period), whereas it has

ome positive value during the speaking. Therefore, it is natural to

etect the silent frames via the optical flow of small magnitudes. Let

 ( x , y ) be the binary mask of small flows at pixels ( x , y ), the mask

orresponding to the flow vector of very small magnitude can be ob-

ained as follows: 

 (x, y ) = 

{
1 , if W (x, y ) ≤ ε
0 , otherwise, 

(16)

here ε is a pre-determined threshold utilized for small magnitude

etermination. If the pixels associated with the very small flow mag-

itudes almost fill up the whole lip region, this frame can be consid-

red as the silent frame. According to this issue, let ρ ∈ [0.9, 1] be

he tuning parameter to regularize the proportion of the whole re-

ion pixels. The silent frames and non-silent frames can be further

etermined as follows: 

v ent = 

⎧ ⎨ 

⎩ 

Silence, if 
M ∑ 

i =1 

N ∑ 

j=1 

G (x, y ) ≥ ρ(M × N) , 

speech, otherwise. 

(17) 

.3.2. Speech state detection via low rank affinity pursuit 

After the visual silence detection, the remaining frames with sig-

ificant flow appearances can be considered as the speaking states.
ince OH-ROF vectors are defined and extracted at each frame level,

he actual video representation is a time series of histogram descrip-

ors. Therefore, the further lip-dynamic state detection incorporating

he mouth opening and closing can be converted to compare these

ime series equivalently. 

In general, the frame descriptors within the same motion event

hould either share the similar subspace representation that can be

rouped together or be highly repetitive. Inspired by this finding, we

ropose to further detect the lip-dynamic states of non-silent motion

vent (i.e., mouth opening and closing) by representing the motion

equence as a sequence of subspace clustering based motion subsets

nstead, in which the frame descriptors within each motion subsets

lways share the similar low-dimensional subspace representation.

ntuitively, the problem of assigning the similar descriptors to its cor-

esponding subspace naturally leads to a challenging problem of sub-

pace clustering, whose goal is to find a multi-subspace representa-

ion that best fits the collected data appropriately. 

In this paper, we present a low rank affinity pursuit method to de-

ect the similar motion frames within the speaking events. First, we

tilize the low rank minimization technique to reduce the effect of

oisy motion flows. Then, we construct a local subspace of each flow

ector and create an affinity matrix of the whole speaking sequence.

inally, the different lip motion states can be labeled by grouping to-

ether all the descriptors sharing the similar subspace representa-

ion, meanwhile the labels with respected to the outliers are filtered

teratively to make the motion subsets consecutively and meaning-

ully. The details are presented as follows: 

1: Low rank minimization: Given a noise corrupted motion matrix

 = A + E, where A is an unknown low-rank motion matrix and E is

 sparse matrix that represents the noisy components [30] . Conse-

uently, the problem of finding a low rank approximation of D can be

ormulated as: 

in 

A,E 
rank (A ) + λ‖ 

E ‖ 0 s.t. D = A + E (18)

here the parameter λ is a positive value utilized to balance the ef-

ects of the two parts. Since this formulation is a highly non-convex

ptimization problem (i.e., known as NP-hard problem), a common

ractice is to obtain a tractable optimization by relaxing Eq. (18) as: 

in 

A,E 
‖ 

A ‖ ∗ + λ‖ 

E ‖ 1 s.t. D = A + E (19)

here ‖·‖ ∗ denotes the nuclear norm, i.e., the sum of the singular val-

es, and ‖·‖ 1 represents the sum of the absolute values of matrix en-

ries. Recently, there have been great progresses on recovering a low

ank matrix from the corrupted data and some efficient approaches

re available. For computational efficiency, we utilize the accelerated

roximal gradient (APG) [31] method to give a solution of Eq. (19) in

ur implementation. 

2: Local subspace and affinity matrix estimation: For each frame

haracterized by an OH-ROF descriptor ˆ h i , we compute its k nearest

eighbors using their Bhattacharya distance as a similarity metric: 

 ( ̂ h 

i , ̂  h 

j ) = 

B ∑ 

b=1 

√ 

ˆ h 

i 
b 
ˆ h 

j 

b 
. (20)

Next, we construct a local subspace W i to the current frame based

n its k nearest neighbors, which can be achieved by traditional SVD

32] . In this phase, the rank estimation of the local subspace is re-

uired in order to truncate the SVD result, which can be accomplished

y a Model Selection technique inspired by the work of Kanatani [33] .

 

′ = arg min 

r 

(
λ2 

r+1 ∑ r 
i =1 λ

2 
i 

+ η · r 

)
(21) 

here λi is the i th singular value, and parameter η depends on the

oise level that exists in the local subspace. In general, the higher the

oise level is, the larger the value of η should be, and vice versa. As
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the local subspace is constructed from the low rank minimization se-

quence, the noise level is not very high. Therefore, in this step, the

value of η should not be assigned at a very large value. Accordingly,

we compute an affinity matrix S , in which the affinity S i , j is the in-

verse of the distance between the local subspace W i and W j mea-

sured in terms of their principal subspace angle θ ij : 

S i, j = exp {− sin 

2 (θi j ) } . (22)

3: Motion state labeling: As the frame descriptors within each mo-

tion subsets always share the similar low-dimensional subspace rep-

resentation, the motion frames can be labeled by clustering the affin-

ity matrix S and any clustering technique could be used, e.g., spectral

clustering, and normalized Cuts. 

3.3.3. Outlier filtering 

After the silence detection via the small flow magnitudes and

speaking frame grouping by low rank affinity pursuit, the whole lip

motion sequences can be sequentially labeled into three states: si-

lence, mouth opening, and mouth closing. As the mouth is recorded

to be most probably closed during the visual silence, the combina-

tion of the successive mouth opening and closing separated by the

silent segments can be generally considered as a visual speech in-

terval. Nevertheless, there always exist some outliers within the la-

beled sequence [34] . That is, these outliers differing from the neigh-

boring frames are always of very small length, e.g., one or two. Since

the similar motion frames always appear within the short consec-

utive frames, these outliers with very limited frame length will af-

fect the lip motion event detection significantly. For example, by the

current video capturing device, the frame length of mouth open-

ing process is no less than 4 within a general lip motion event. To

tackle this problem, we further utilize a window function to filter out

these outliers and replace the label of each outlier with the most fre-

quent item amongst its neighbors. The main steps are summarized as

follows: 

1: Outlier detection: We first detect the label set � of outliers whose

local subspace label is not equal to the adjacent ones, i.e., l i 	 = l i −1 or

l i 	 = l i +1 . 

2: Neighboring interval marking: We utilize a window function

w c [ α] to mark the neighbor interval of each outlier: 

w c [ α] = 

{
1 , � (i ) − c ≤ α ≤ � (i ) + c 
0 , otherwise 

(23)

where c is the half size of window function. 

3: Most frequent item filtering: We select the Most Frequent Item

within the marking interval to filter the current outlier until no label

value is changed in label sequence L , i.e. 

l̄ i = arg max 
s 

( Count[ w c (α) ∗ L == s ] ) (24)

where s is the label categories. After these operations, the outliers

with very limited frame length can be filtered appropriately and the

length of each motion event can be restricted to an appropriate value.

As a result, the detected lip event clips would be physically and per-

ceptually meaningful. 

3.4. Parameters analysis and tuning 

In general, the motion descriptors within visual speech inter-

val can be characterized by a mixture of multiple low dimensional

subspaces, and the lip-dynamic states are only comprised of either

mouth opening and closing. Therefore, it is reasonable to set the sub-

space number at 2 for the lip-dynamic state labeling. By a rule of

thumb, the number of the nearest neighbors is set at 6 for the lo-

cal subspace estimation. To reduce the noise impact within the lo-

cal subspace estimation, the rank of the local subspace can be esti-

mated by a Model Selection technique [33] . Nevertheless, the noise
evel is unknown and the rank of very small value will more or less

mpact the realistic motion vectors. To avoid this problem, the rank of

he transformed low-dimensional subspace is empirically assigned

o the maximum value between 3 and the result generated by Model

election technique, whereby the motion semantics of flow vectors

ithin the original lip motion sequence can be well maintained. In

ddition, the spectral clustering algorithm is employed for affinity

atrix clustering. Although there exists a short lip motion event, the

rame length of such a motion clip would be no less than 4 in general

ecordings naturally. Therefore, the half size c of the window func-

ion is fixed to be 3 for outlier label filtering. As suggested in paper

27,29,31] , the number of histogram bin is selected to be 4, while the

arameter ε, ρ and η are empirically set at 0.53, 0.91, and 1, respec-

ively. 

. Experiments 

To evaluate the effectiveness of the proposed lip event detec-

ion approach, 60 video clips capturing under different environments

ere collected for testing. In particular, the mouth regions displayed

n these videos were located using the method in [35] and chosen to

e predominantly frontal. In the past, some lip motion event detec-

ion approaches either extracting the lip shapes or learning a refer-

nce model were able to characterize the lip movements. Neverthe-

ess, it is very difficult to obtain the geometric lip parameters with

reat reliability when the mouth region incorporates the poor con-

rast between the lip and skin. Meanwhile, it is impractical to es-

ablish a training data set and perform a training process to deter-

ine the referential lip models in advance. Therefore, the meaningful

nd fair comparisons with these systems are not presented here. To

alidate the detection performance, we selected four representative

ethods (i.e., AOFE [14] , MHI-ZM [11] , MASF [10] , PWPC [15] ) and

tilized the same parameters as the ones the authors have given to

nvestigate the lip motion events. The main ideas of these competing

lgorithms are summarized as follows: 

AOFE approach: This algorithm utilizes the Affine Optical Flow Es-

imation to exploit the divergence of the flow field at a coarse scale,

hereby the lip-dynamic states corresponding to the mouth opening

nd closing can be determined. 

MHI-ZM method: This approach computes the Motion History Im-

ges and employs the Zernike Moment features to segment the iso-

ated utterances, in which the magnitude of Zernike moments corre-

ponding to the uttering frames is much greater than the one of the

rames within the period of pause or silence. 

MASF approach: This method performs a series of Mouth Area

ubtractions of the consecutive frames and selects a smoothing Fil-

ering to achieve the syllable separation visually. 

PWPC algorithm: This approach utilizes the Pair-Wise Pixel Com-

arison scheme between the consecutive mouth images to achieve an

solated word segmentation visually. 

In the following sections, we will introduce the experimental

etup and then conduct the experiments on different lip motion clips,

n which the motion states, detection performances, and empirical

omparisons, as well as the related discussions, are included. 

.1. Experimental setup 

In order to determine the ground truth, each motion frame has

een marked as either visual silence or visual speech via care-

ully visual inspection, in which the lip-dynamic states of visual

peech with respect to the mouth opening and closing were fur-

her tagged elaborately. In this paper, we mainly concentrate on

etecting the lip motion event in three cases: 1) Mouth opening

nd closing detection in speech; 2) Speech detection under uni-

orm lighting condition; and 3) Speech detection under mobile

latform. 
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Fig. 3. The lip-dynamic state detection on the VidTIMIT database. 
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Fig. 4. The FDE values obtained from VidTIMIT database. 
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.2. Mouth opening and closing detection in speech 

In this case, 14 sequences were downloaded from the publicly

vailable VidTIMIT database [36] , and seven speakers (file: 2, 8, 13, 19,

5, 37, 42) phonically recited the short sentences (i.e., sa1 and sx408)

uickly and consecutively 1 . Within these continuous speeches, we

xtracted the speaking sequences and mainly concentrated on the

ip-dynamic state detection (i.e., mouth opening and closing) specif-

cally. To the best of our knowledge, few existing algorithms can de-

ect the motion states of mouth opening and closing without extract-

ng the lip shapes and learning the lip model priors, except AOFE

ethod [14] . Therefore, we mainly focus on comparing the proposed

pproach with this method extensively. 

A snapshot of the lip-dynamic state detection result on the Vid-

IMIT database is shown in Fig. 3 . It can be seen that the proposed ap-

roach outperforms the AOFE approach visually. Fig. 4 illustrates the

rame detection errors (FDE), which is defined as the ratio between

he error detected frames and the ground truth, of all the tested se-

uences. It can be seen that the proposed approach has always gener-

ted the smaller frame detection errors. For example, the FDE values

btained by the proposed approach are almost no more than 0.07,

hile those values obtained by the AOFE approach are always larger

han 0.07. It indicates that the proposed approach is able to well de-

ermine the lip-dynamic states of the mouth opening and closing, and

he segments of these states are closer to the ground truth. The main

eason lies that the optical flow vectors of surrounding lips obtained

y the AOFE approach will more or less impact the divergence es-

imation, which may result in a detection failure when the whole

ows are directly utilized for motion event analysis. Comparatively

peaking, the obtained flow vectors within the proposed approach
1 http://conradsanderson.id.au/vidtimit/ . 

i  

p  

v

re weighted according to its magnitude, which is an effective way

o reduce the impact of irrelevant motion vectors, i.e., the unordered

ows around the lips. Meanwhile, the proposed approach incorpo-

ating the regional optical flow is able to degrade the mutual inter-

erence between different flow parts. In addition, the proposed low

ank affinity pursuit method holds a strong ability to reveal the mo-

ion subset sharing the similar low-dimensional subspace represen-

ation, which is robust against noise in unconstrained videos. As a

esult, some ambiguous event decision boundary within this kind of

riented histogram can be well determined. 

.3. Speech detection under uniform lighting condition 

In this case, 30 sequences were collected in an office environment

ith almost uniform lighting conditions. Six speakers phonically ut-

ered the English digits from zero to nine for five times, in which

here existed a short silence between the neighboring utterances. As

he mouth was recorded to be most probably closed during the vi-

ual silence period, the combination of the successive mouth open-

ng and closing can be considered as a short visual speech interval

ppropriately. Specifically, we detected the lip motion event of visual

ilence and speech, and compared the proposed approach with MHI-

M, MASF and PWPC methods. 

A snapshot of the speech detection result is shown in Fig. 5 . It can

e observed that the proposed approach is able to well detect the

isual silence and speech, and most of the segmented video clips are

lose to the ground truth. It indicates that the detection performance

btained by the proposed approach is visually better than the other

hree competing approaches. In addition, the proposed approach can

ot only detect the visual silence and speech, but also reveal the lip-

ynamic states of mouth opening and closing appropriately. 

Further, we utilize the false alarm rate (FAR) and missing alarm

ate (MAR) to measure the detection performances quantitatively,

here FAR is defined as the percentage of the frames which are de-

ected to be speech but silence actually, MAR is defined as the per-

entage of the frames which are detected to be silence but speech

ctually, both relative to the total frames. These two evaluation met-

ics indicate that the less FAR and MAR values would achieve a higher

etection accuracy. 

The FAR and MAR values obtained by the different approaches are

hown in Figs. 6 and 7 , respectively. Table 1 shows the mean values of

AR and MAR, which are, respectively, the average of the correspond-

ng values within all the tested sequences. It can be observed that the

roposed approach has always generated the smallest FAR and MAR

alues in comparison with the other three competing approaches. 

http://conradsanderson.id.au/vidtimit/
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Fig. 5. The speech detection under uniform lighting condition. 
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Fig. 6. The FAR values detected under uniform lighting condition. 
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Fig. 7. The MAR values detected under uniform lighting condition. 

Table 1 

Mean detection errors (FAR and MAR, Office). 

Method MHI-ZM MASF PWPC Our 

FAR 6.23 5.88 5.23 4.12 

MAR 5.43 4.77 4.53 3.87 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2 

Mean detection errors (FAR and MAR, Mobile). 

Method MHI-ZM MASF PWPC Our 

FAR 7.85 7.14 6.34 4.83 

MAR 6.74 6.19 5.73 4.38 
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The MHI-ZM method [11] utilizing an accumulative image differ-

ence technique to detect the changes between consecutive frames is

capable of detecting the visual silence and speech in most cases. Nev-

ertheless, there exist a lot of irrelevant motions around the lips, which

often degrade the event detection performance seriously. Although

the MASF [10] method is able to well extract the mouth areas under

uniform lighting condition, the obtained mouth areas are not stable

enough, which often fail to give a better representation of the real

mouth areas consistently. As a result, the filtered signals of the un-

stable mouth areas may not exactly determine the event boundaries.

PWPC [15] algorithm first utilizes the squared mean difference of

gray-scale intensities of corresponding pixels in accumulative frames

to characterize the lip movements, and then detects the boundaries

of motion event via the step-pulse-shaped representation. Neverthe-

less, this type of approach incorporating the pair-wise pixel compar-
ng is very sensitive to the irrelevant motion caused by an unstable

amera, which often degrades its detection boundaries between the

peech and silence. 

By contrast, the proposed approach is able to detect the motion

vent boundaries appropriately and the event segments are not de-

iated significantly from the ground truth. As shown in Table 1 , the

alues of mean FAR and MAR obtained by the proposed method are

lways lower than the other three competing methods. That is, the

roposed approach has achieved the best detection performances. 

.4. Speech detection under mobile platform 

In this case, 16 sequences were captured by a hand-held mobile

hone under uneven illuminations. Four speakers were asked to re-

eat the “hello” word for four times, in which there existed a short

ilence during each utterance. In this situation, the located mouth se-

uences were somewhat unstable. 

A snapshot of the speech detection result under mobile platform

s shown in Fig. 8 . It can be observed that the MASF approach often

ails to give a better detection of visual silence and speech, in which

he event segments are deviated seriously from the ground truth. The

ain reason lies that the appearance within these mouth sequences

apturing under uneven illumination does not have sufficient con-

rast for precise mouth area extractions, which may lead to an in-

ccurate detection. Furthermore, the MHI-ZM and PWPC approaches

lso degraded their performance to some extent. The main reason lies

hat the extracted lip sequences captured under hand-held mobile

latform are always unstable, thereby the computations of motion

istory image and the comparisons of pair-wise pixels cannot exactly

eveal the lip-dynamic states. As a result, the MHI-ZM method often

ails to provide an accurate Zernike moments for real lip motion anal-

sis, while the PWPC algorithm cannot provide a stable lip pixel com-

arison consecutively. By contrast, it can be found that the proposed

pproach incorporating the sequence alignment is able to well de-

ect the speech event in mobile video visually and the obtained event

egments are closer to the ground truth. 

Further, the FAR and MAR values of the tested sequences are

hown in Figs. 9 and 10 , respectively, meanwhile the mean values

f FAR and MAR obtained by the different approaches are shown

n Table 2 . It can be found that the MASF and MHI-ZM approaches
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Fig. 8. The speech detection under mobile platform. 

Fig. 9. The FAR values detected under mobile platform. 

Fig. 10. The MAR values detected under mobile platform. 
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Fig. 11. The ROC curves obtained by different approaches: (a) Lip-dynamic state detection. (

platform. 
lways generate relatively large detection errors. Although the PWPC

lgorithm is able to detect the desired lip events in some segments,

ome motion frames within the neighboring events cannot often

e detected accurately. As a result, the degraded performances con-

ributed to a big large detection errors. In contrast, the detection er-

ors obtained by the proposed approach are always smaller than the

ther three competing approaches. It implies that the proposed ap-

roach is able to detect the lip motion events precisely, and the de-

ected event intervals can well appropriate the motion event inter-

als. Remarkably, the proposed approach could investigate the lip-

ynamic states about the mouth opening and closing simultaneously.

xperiments have shown the promising results. 

.5. Detection analysis and discussion 

We further consider the lip-dynamic state detection and visual

peech detection as a binary classification problem, in which the

rames of mouth opening and visual speech are marked as the pos-

tive labels. Specifically, this kind of detection performance can be

valuated using the ROC curve [37] , which graphically demonstrates

he changes of true positive rate with respect to the changes of false

ositive rate in the classification. The ROC curves obtained by the

ifferent approaches and tested on the different cases are shown

n Fig. 11 . It can be seen that the proposed approach has achieved

he best detection performances and improved the state-of-the-art
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results significantly. The main reasons are two-fold: 1) The proposed

approach aligns the lip sequences to reduce the impact of irrelevant

motions, whereby the reliable flows can be calculated for lip motion

analysis; 2) The proposed OH-ROF aiming to reduce the mutually im-

pact existing in the global flows is able to characterize the motion

event boundaries discriminatively. 

Moreover, since the proposed approach employs an image se-

quence stabilization to reduce the impact of irrelevant motions

caused by the moving cameras, the more computational load is

inevitably required. Fortunately, the processing time obtained by

the proposed approach is acceptable, e.g., the execution time is

around 3.75 s when testing on a lip motion clip of 80 frames (scale

size 112 × 76) and performing in a Matlab coding platform, while

the AOFE, MHI-ZM, MASF and PWPC approaches cost 2.18 s, 4.17 s,

3.53 s and 3.41 s, respectively. Except for the AOFE method, which

need not a sequence alignment to handle the irrelevant motions,

the computation time obtained by the proposed approach is less

than the MHI-ZM approach, and is also comparable to the MASF and

PWPC methods. Different from the MHI-ZM approach incorporating

the stationary wavelet transform on each motion frame to reduce the

small variations of the mouth movements, the proposed approach is

to reduce the impact of irrelevant motion in the whole motion clip.

Accordingly, the less time is needed. Although the image sequence

stabilization resulted in a bit more execution time, importantly, the

proposed approach has achieved the best detection performance.

Furthermore, it is worth noting that the proposed approach does not

require any training set on labeled videos or learn the lip motion

priors of each visual event in an unconstrained video. With more

powerful coding platform, it is expected that the proposed approach

would be suitable for real time applications. 

5. Conclusion 

In this paper, we have proposed an efficient lip motion event de-

tection approach using the oriented histograms of regional optical

flow and low rank affinity pursuit. Without any training set on labeled

video clips or learning the lip motion priors in unconstrained videos,

the proposed approach aims not only to distinguish the frames that

depict visual speech from those describing visual silence, but also

to investigate the lip-dynamic states of mouth opening and closing

simultaneously. Extensive experiments tested on different kinds of

video sequences have demonstrated the efficiency of the proposed

approach in comparison with the existing counterparts. 
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