A Parareal Algorithm for Optimal Control Problems

Felix Kwok

Hong Kong Baptist University

Joint work with M.J. Gander (Geneva) and J. Salomon (Paris-Dauphine)

Gene Golub Memorial Day
February 25, 2017
Outline

Parareal

Parareal for Control

Numerical Experiments

Conclusion
Parallel Solvers for Numerical PDEs

- **Goal:** Solve large, sparse (non)linear systems arising from discretized PDEs
- Exploit parallel architectures
- Use iterative methods/preconditioners in which each step has components that can be done in parallel
Domain Decomposition in Space

- Decompose domain into subdomains
Domain Decomposition in Space

- Decompose domain into subdomains
- Iterate until convergence:
 1. Solve problem in each subdomain in parallel
Domain Decomposition in Space

- Decompose domain into subdomains
- Iterate until convergence:
 1. Solve problem in each subdomain in parallel
 2. Exchange interface data
Domain Decomposition in Space

- Decompose domain into subdomains
- Iterate until convergence:
 1. Solve problem in each subdomain in parallel
 2. Exchange interface data
Domain Decomposition in Space

- Decompose domain into subdomains
- Iterate until convergence:
 1. Solve problem in each subdomain in parallel
 2. Exchange interface data
Domain Decomposition in Space

- Decompose domain into subdomains
- Iterate until convergence:
 1. Solve problem in each subdomain in parallel
 2. Exchange interface data
- Essentially a block Jacobi method/preconditioner
Parallelization in Time?

- Solve systems of ODEs \((\mathbf{y}' = f(t, \mathbf{y}))\) or discretized PDEs \((\frac{\partial \mathbf{y}}{\partial t} = \mathcal{L} \mathbf{y} + \mathbf{f})\)

- Block triangular system

\[
\begin{bmatrix}
A & -I & A \\
-I & A & \\
& \ddots & \ddots \\
& & -I & A
\end{bmatrix}
\begin{pmatrix}
y_1 \\
y_2 \\
\vdots \\
y_N
\end{pmatrix}
=
\begin{pmatrix}
f_1 \\
f_2 \\
\vdots \\
f_N
\end{pmatrix}
\]

- Is it possible to do useful computation at future time steps, before earlier time steps are known?
The purpose of this Note is to propose a time discretization of a partial differential evolution equation that allows for parallel implementations. The method, based on an Euler scheme, combines coarse resolutions and independent fine resolutions in time in the same spirit as standard spatial approximations. The resulting parallel implementation is done in the non standard time direction. Its main goal concerns real time problems, hence the proposed terminology of “parareal” algorithm. © 2001 Académie des sciences/Éditions scientifiques et médicales Elsevier SAS
Unkown: $Y_n \approx y(t_n)$

Fine/coarse propagators: $P^{\delta t}(t_{n+1}; t_n, y_n)$, $P^{\Delta t}(t_{n+1}; t_n, y_n)$

For $k = 1, 2, \ldots$:

1. Solve fine problems in parallel:

 \[y_{n+1}^k(t_{n+1}) = P^{\delta t}(t_{n+1}; t_n, Y_n^k) \]

2. Correct initial conditions using coarse propagator:

 \[Y_{n+1}^{k+1} = y_{n+1}^k(t_{n+1}) + P^{\Delta t}(t_{n+1}; t_n, Y_{n+1}^{k+1}) - P^{\Delta t}(t_{n+1}; t_n, Y_n^k) \]

Initial guesses for Y_0^0 obtained by coarse propagation
Example: Brusselator

- Model equation:
 \[
 \frac{dx}{dt} = A + x^2 y - (B + 1)x \\
 \frac{dy}{dt} = Bx - x^2 y
 \]

- Parameters: \(A = 1, \ B = 3, \ x(0) = 0, \ y(0) = 1 \)
- Use 4th order Runge-Kutta with 32 coarse steps and 320 fine steps
Example: Brusselator

- Method is exact in the first k intervals after k iterations
- Parallel speedup $\leq N/K$, where $K = \#$iters to convergence
Example: Brusselator

- Method is exact in the first k intervals after k iterations
- Parallel speedup $\leq \frac{N}{K}$, where $K = \#$iters to convergence
Example: Brusselator

- Method is exact in the first k intervals after k iterations
- Parallel speedup $\leq \frac{N}{K}$, where $K = \#$iters to convergence
Example: Brusselator

- Method is exact in the first k intervals after k iterations
- Parallel speedup $\leq N/K$, where $K = \#\text{iters to convergence}$
Example: Brusselator

- Method is exact in the first k intervals after k iterations
- Parallel speedup $\leq N/K$, where $K =$#iters to convergence
Example: Brusselator

- Method is exact in the first k intervals after k iterations
- Parallel speedup $\leq N/K$, where $K = \#$iters to convergence
Example: Brusselator

- Method is exact in the first k intervals after k iterations
- Parallel speedup $\leq N/K$, where $K =$#iters to convergence
Parareal $=$ Inexact Newton (Gander & Vandewalle 2003)

- Define the **residual function**

\[
F(Y) = \begin{pmatrix}
Y_0 - y_{\text{init}} \\
Y_1 - P^{\delta t}(t_1; t_0, Y_0) \\
\vdots \\
Y_N - P^{\delta t}(t_N; t_{N-1}, Y_{N-1})
\end{pmatrix} = 0.
\]

- Newton’s method reads (for $n \geq 1$)

\[
Y^{k+1}_n = P^{\delta t}(t_n; t_{n-1}, Y^k_n) + \frac{\partial P^{\delta t}}{\partial Y}(t_n; t_{n-1}, Y^k_{n-1})(Y^{k+1}_n - Y^k_n).
\]

- Parareal replaces the derivative with a finite difference:

\[
\frac{\partial P^{\delta t}}{\partial Y}(\cdot)(Y^{k+1}_n - Y^k_n) \approx P^{\Delta t}(t_{n+1}; t_n, Y^{k+1}_n) - P^{\Delta t}(t_{n+1}; t_n, Y^k_n).
\]
Derivative Parareal (Gander & Hairer 2014)

- Newton’s method:

\[Y_{n}^{k+1} = P^{\delta t}(t_n; t_{n-1}, Y_n^k) + \frac{\partial P^{\delta t}}{\partial Y}(t_n; t_{n-1}, Y_{n-1}^k)(Y_{n+1}^k - Y_n^k) \]

- Approximate derivatives cheaply using coarse propagator:

\[Y_{n}^{k+1} = P^{\delta t}(t_n; t_{n-1}, Y_n^k) + \frac{\partial P^{\Delta t}}{\partial Y}(t_n; t_{n-1}, Y_{n-1}^k)(Y_{n+1}^k - Y_n^k) \]

- Compare with Parareal:

\[Y_{n+1}^{k+1} = P^{\delta t}(t_n; t_{n-1}, Y_n^k) + P^{\Delta t}(t_{n+1}; t_n, Y_n^{k+1}) - P^{\Delta t}(t_{n+1}; t_n, Y_n^k) \]
Optimal Control Problem

- Optimal control problem: minimize

\[
J[y, u] = \frac{1}{2} \| y(T) - y_{\text{target}} \|^2 + \frac{\alpha}{2} \int_0^T \| u(t) \|^2 \, dt
\]

subject to the (non)-linear ODE constraint

\[
\dot{y}(t) = f(y(t)) + u(t), \quad t \in (0, T).
\]

- Assumptions:
 1. No state or control constraints
 2. Distributed control entering additively

- Includes cases where \(f \) is the discretization of a partial differential operator
Using Lagrange multipliers, we deduce the optimality conditions to be

\[
\begin{align*}
\dot{y}(t) &= f(y(t)) - \frac{1}{\alpha} \lambda(t), \\
y(0) &= y_{\text{init}},
\end{align*}
\]

\[
\begin{align*}
\dot{\lambda}(t) &= -(f'(y(t)))^T \lambda(t), \\
\lambda(T) &= y(T) - y_{\text{target}}.
\end{align*}
\]

Coupled forward-backward problem!
Time-domain decomposition for control

- Divide time horizon \((0, T)\) into “subdomains” \(I_i = (T_{i-1}, T_i)\)
- Subdomain problem on \(I_i\) well defined when \(y(T_{i-1})\) and \(\lambda(T_i)\) are given
- Multiple shooting: solve for intermediate states \(Y_i = y(T_i)\) and \(\Lambda_i = \lambda(T_i)\)
Parareal for Control

- **Unknowns:** state $Y_n \approx y(t_n)$ and adjoint $\Lambda_n \approx \lambda(t_n)$
- **Fine/coarse propagators:**

 $P^{\delta t}, P^{\Delta t}: (Y_n, \Lambda_{n+1}) \mapsto y(t_{n+1}),$

 $Q^{\delta t}, Q^{\Delta t}: (Y_n, \Lambda_{n+1}) \mapsto \lambda(t_n)$

- **Residual function:**

 $$F(Y, \Lambda) = \begin{pmatrix}
 Y_0 - y_{\text{init}} \\
 Y_1 - P^{\delta t}(t_1; t_0, Y_0, \Lambda_1) \\
 \vdots \\
 Y_N - P^{\delta t}(t_N; t_{N-1}, Y_{N-1}, \Lambda_N) \\
 \Lambda_1 - Q^{\delta t}(t_1; t_2, Y_1, \Lambda_2) \\
 \vdots \\
 \Lambda_{N-1} - Q^{\delta t}(t_{N-1}; t_N, Y_{N-1}, \Lambda_N) \\
 \Lambda_N - y_N + y_{\text{target}}
 \end{pmatrix} = 0$$
Newton’s method:

\[Y_{n+1}^k = P^\delta t(t_n; t_{n-1}, Y_{n-1}^k, \Lambda_n^k) + \frac{\partial P^\delta t}{\partial Y}(Y_{n-1}^{k+1} - Y_{n-1}^k) + \frac{\partial P^\delta t}{\partial \Lambda}(\Lambda_n^{k+1} - \Lambda_n^k) \]

\[\Lambda_{n+1}^k = Q^\delta t(t_n; t_{n+1}, Y_n^k, \Lambda_{n+1}^k) + \frac{\partial Q^\delta t}{\partial Y}(Y_n^{k+1} - Y_n^k) + \frac{\partial Q^\delta t}{\partial \Lambda}(\Lambda_{n+1}^{k+1} - \Lambda_{n+1}^k) \]

- Derivatives expensive to evaluate
- Use parareal approximation
Parareal for Control

- Derivative Parareal:

\[
Y_{n}^{k+1} = P^{\delta t}(t_n; t_{n-1}, Y_{n-1}^{k}, \Lambda_{n}) + \frac{\partial P^{\Delta t}}{\partial Y}(Y_{n-1}^{k+1} - Y_{n-1}^{k}) + \frac{\partial P^{\Delta t}}{\partial \Lambda} (\Lambda_{n}^{k+1} - \Lambda_{n}^{k})
\]

\[
\Lambda_{n}^{k+1} = Q^{\delta t}(t_n; t_{n+1}, Y_{n}^{k}, \Lambda_{n+1}^{k}) + \frac{\partial Q^{\Delta t}}{\partial Y}(Y_{n}^{k+1} - Y_{n}^{k}) + \frac{\partial Q^{\Delta t}}{\partial \Lambda} (\Lambda_{n+1}^{k+1} - \Lambda_{n+1}^{k})
\]

- Still coupled, must solve

\[
\tilde{F}'(Y^{k}, \Lambda^{k}) \begin{pmatrix} Y_{n}^{k+1} - Y_{n}^{k} \\ \Lambda_{n+1}^{k+1} - \Lambda_{n+1}^{k} \end{pmatrix} = - F(Y^{k}, \Lambda^{k})
\]

using an iterative method, e.g., preconditioned GMRES

- \(\tilde{F}' = \) approximation of Jacobian matrix
Unknowns: \(Y_n \approx y(t_n), \Lambda_n \approx \lambda(t_n) \)

For \(k = 1, 2, \ldots \):

1. Solve fine subdomain problems in parallel:

\[
y_n(t_{n+1}) = P^{\delta t}(Y^k_n, \Lambda^k_{n+1}), \quad \lambda_n(t_n) = Q^{\delta t}(Y^k_n, \Lambda^k_{n+1})
\]

2. Solve \(\tilde{F}'(Y^k, \Lambda^k) \begin{pmatrix} \Delta Y \\ \Delta \Lambda \end{pmatrix} = -F(Y^k, \Lambda^k) \) by GMRES:

 - Calculate \(P_Y, P_{\Lambda}, Q_Y, Q_{\Lambda} \) with coarse propagator on each subdomain
 - Matrix multiplication = in parallel
 - Preconditioning = backward/forward sweep

3. Update: \(Y^{k+1} = Y^k + \Delta Y, \Lambda^{k+1} = \Lambda^k + \Delta \Lambda \)
Parallel Speedup

- Assume cost of solving problem \propto # time steps
- Global fine problem (no parareal): $C_1 T/\delta t$
- Parareal with N subdomains:
 - Fine propagation: $C_1 T/(N\delta t)$ (parallel)
 - Coarse propagation: $C_1 T/(N\Delta t)$ (parallel)
 - Preconditioning: $2T/\Delta t$ (sequential)
- If K parareal iterations are needed for convergence, then

\[
\text{Speedup} = \frac{C_1 T/\delta t}{K(C_1 T/(N\delta t) + C_1 T/(N\Delta t) + 2T/\Delta t)}
\]
Parallel Speedup

- Assume cost of solving problem $\propto \# \text{ time steps}$
- Global fine problem (no parareal): $C_1 T/\delta t$
- Parareal with N subdomains:
 - Fine propagation: $C_1 T/(N\delta t)$ (parallel)
 - Coarse propagation: $C_1 T/(N\Delta t)$ (parallel)
 - Preconditioning: $2T/\Delta t$ (sequential)
- If K parareal iterations are needed for convergence, then

$$\text{Speedup} = \frac{N}{K} \left(1 + \frac{\delta t}{\Delta t} (1 + 2N/C_1) \right)^{-1}$$
Convergence of Parareal for Control

- Method works for linear as well as nonlinear problems
- Convergence results for linear problems via eigenvalue analysis
- Results for implicit Euler:
 - Contraction factor: $\rho \leq C(\Delta t - \delta t)$
 - For dissipative problems, C can be chosen independent of σ
 - For very large α (heavy penalization against large control values), C can grow like $\log(\alpha)$ when the number of subdomains becomes large
Outline

Parareal

Parareal for Control

Numerical Experiments

Conclusion
Scalar example

- Minimize

\[J[y, u] = \frac{1}{2} |y(1) - y_{\text{target}}|^2 + \frac{1}{2} \int_0^1 u^2(t) \, dt \]

with \(y_{\text{target}} = 1 \), subject to

\[\frac{\partial y}{\partial t} = \sin(y) + u, \quad t \in (0, 1) \]

\[y(0) = 1 \]

- Backward Euler, \(\delta t = 10^{-6} \)
Scalar example - $N = 10, \ r = \delta t / \Delta t = 0.01$

Iteration #1

Graphs showing error in y and λ as a function of time t.
Scalar example - $N = 10$, $r = \frac{\delta t}{\Delta t} = 0.01$

Iteration #2

![Graph showing error in y and λ over time for iteration #2.](image)
Scalar example - $N = 10$, $r = \delta t / \Delta t = 0.01$
Scalar example - $N = 10$, $r = \delta t/\Delta t = 0.01$

Iteration #4

![Graphs showing error in y and error in \lambda over time](image)
Scalar example - $N = 10$, $r = \delta t/\Delta t = 0.01$
Scalar example - $N = 10$, $r = \delta t / \Delta t = 0.01$

Iteration #6

```plaintext
10^0
10^{-5}
10^{-10}
```

```
Error in y
```

```
Error in λ
```

```
t
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
```

```
10^0
10^{-5}
10^{-10}
```

```
Error in y
```

```
Error in λ
```

```
t
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
```
Scalar example

\[N = 10 \text{ subdomains, varying } r = \delta t / \Delta t \]
Scalar example

$\delta t / \Delta t = 0.01$, varying # subdomains
Vector example

- Minimize

$$J[y, u] = \frac{1}{2} |y(1) - y_{\text{target}}|^2 + \frac{1}{2} \int_0^1 |u(t)|^2 \, dt$$

with $y_{\text{target}} = (100, 20)^T$, subject to the Lotka-Volterra equation

$$\dot{y}_1 = ay_1 - by_1 y_2, \quad \dot{y}_2 = cy_1 y_2 - dy_2$$

with initial conditions $y(0) = (20, 10)^T$

- Backward Euler, $\delta t = 10^{-5}$
Vector example - \(N = 10, \ r = \frac{\delta t}{\Delta t} = 0.01 \)
Vector example - $N = 10$, $r = \delta t / \Delta t = 0.01$
Vector example - $N = 10$, $r = \frac{\delta t}{\Delta t} = 0.01$
Vector example - $N = 10$, $r = \delta t / \Delta t = 0.01$
Vector example

\(N = 10 \) subdomains, varying \(r = \frac{\delta t}{\Delta t} \)
\(\delta t / \Delta t = 0.01 \), varying \# subdomains
Vector example

Minimize

\[J[y, u] = \frac{1}{2} |y(20) - y_{\text{target}}|^2 + \frac{1}{2} \int_0^{20} |u(t)|^2 \, dt \]

with \(y_{\text{target}} = (100, 20)^T \), subject to the Lotka-Volterra equation

\[\dot{y}_1 = ay_1 - by_1 y_2, \quad \dot{y}_2 = cy_1 y_2 - dy_2 \]

with initial conditions \(y(0) = (20, 10)^T \)

Backward Euler, \(\delta t = 20 \cdot 10^{-5} \)
Vector example - $N = 10$, $r = \delta t / \Delta t = 0.01$
Vector example - \(N = 10, \ r = \delta t / \Delta t = 0.01 \)
Vector example - $N = 10$, $r = \frac{\delta t}{\Delta t} = 0.01$
Vector example - $N = 10$, $r = \delta t / \Delta t = 0.01$
Vector example - $N = 10$, $r = \frac{\delta t}{\Delta t} = 0.01$

Iteration #5
Vector example - $N = 10$, $r = \delta t / \Delta t = 0.01$
Vector example - $N = 10$, $r = \frac{\delta t}{\Delta t} = 0.01$
Vector example

\[N = 10 \text{ subdomains, varying } r = \frac{\delta t}{\Delta t} \]
Vector example

$\delta t / \Delta t = 0.01$, varying # subdomains
PDE example

- Minimize

\[J[y, u] = \frac{1}{2} \| y(x, 1) - y_{\text{target}}(x) \|^2 + \frac{0.1}{2} \int_0^1 u^2(t) \, dt \]

with \(y_{\text{target}}(x) = x(1 - x) \), subject to the minimal surface PDE

\[
\frac{\partial y}{\partial t} = \frac{\partial}{\partial x} \left(\frac{y_x}{\sqrt{1 + |y_x|^2}} \right) + u, \quad (x, t) \in (0, 1)^2
\]

\[y(x, 0) = 0, \quad y(0, t) = y(1, t) = 0 \]

- Centered difference in space with \(h = 1/100 \)

- Backward Euler, \(\delta t = 10^{-4} \)
PDE example

Optimal $y(x, t)$
$N = 10$ subdomains, varying $r = \delta t / \Delta t$
Parareal
Parareal for Control
Numerical Experiments
Conclusion

PDE example

\[\delta t / \Delta t = 0.01, \text{ varying } \# \text{ subdomains} \]
Outline

Parareal

Parareal for Control

Numerical Experiments

Conclusion
Conclusion

- Parareal for control problems involving nonlinear ODE/PDEs
- Derivatives easier to approximate than finite difference \[\Rightarrow \] derivative parareal variant
- Contraction factor proportional to coarse step sizes
- Ongoing work:
 - Control entering nonlinearly, or only over part of the domain
 - Spatial coarsening in the PDE case
 - Control constraints
Other approaches

DD on control problem:

- Heinkenschloss (JCAM 2005): block symmetric Gauss-Seidel preconditioning
- Maday, Salomon and Turinici (SINUM 2007): Quantum control, method of intermediate targets
- Maday, Riahi & Salomon (2013): Intermediate targets for parabolic problems

Related:

- Apply parareal to forward and backward solves in shooting method (Mathew, Sarkis & Shaerer 2010, Ulbrich 2015)
- Multigrid methods (Hackbusch 1984, Borzì 2003)
Thank you!