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Abstract

Gene Golub was interested in both matrix computations and statistics. In
this Golub memorial lecture I will consider a problem that involves aspects
of both – the Hadamard maximal determinant problem.

The problem is to find the maximal determinant of an n×n matrix whose
elements are in [−1, 1]. A matrix achieving the maximum is known as a D-
optimal design and has applications in the design of experiments. Hadamard
proved an upper bound nn/2 on the determinant, but his upper bound is
not achievable for every positive integer n. For example, if n = 3 then
Hadamard’s upper bound is 3

√
3 ≈ 5.2, but the best that can be achieved

is 4.
A Hadamard matrix is an n×n matrix that achieves Hadamard’s bound.

The Hadamard conjecture is that a Hadamard matrix exists whenever n is a
multiple of four. I will consider how close to Hadamard’s bound we can get
when n is not the order of a Hadamard matrix, and outline a recent proof that
Hadamard’s bound is within a constant factor of the best possible, provided
n is close (in a sense that will be made precise) to the order of a Hadamard
matrix. In particular, if the Hadamard conjecture is true, then the constant
factor is at most (πe/2)3/2. This is joint work with Judy-anne Osborn and
Warren Smith.


