Lower Bounds for the Hadamard Maximal Determinant Problem

Richard P. Brent
Australian National University
Canberra, Australia

Abstract

Gene Golub was interested in both matrix computations and statistics. In this Golub memorial lecture I will consider a problem that involves aspects of both - the Hadamard maximal determinant problem.

The problem is to find the maximal determinant of an $n \times n$ matrix whose elements are in $[-1,1]$. A matrix achieving the maximum is known as a D optimal design and has applications in the design of experiments. Hadamard proved an upper bound $n^{n / 2}$ on the determinant, but his upper bound is not achievable for every positive integer n. For example, if $n=3$ then Hadamard's upper bound is $3 \sqrt{3} \approx 5.2$, but the best that can be achieved is 4 .

A Hadamard matrix is an $n \times n$ matrix that achieves Hadamard's bound. The Hadamard conjecture is that a Hadamard matrix exists whenever n is a multiple of four. I will consider how close to Hadamard's bound we can get when n is not the order of a Hadamard matrix, and outline a recent proof that Hadamard's bound is within a constant factor of the best possible, provided n is close (in a sense that will be made precise) to the order of a Hadamard matrix. In particular, if the Hadamard conjecture is true, then the constant factor is at most $(\pi e / 2)^{3 / 2}$. This is joint work with Judy-anne Osborn and Warren Smith.

