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Background and Motivation QD

* Vehicular transportation is an important aspect of the daily
lives of many people and is also essential to many
businesses as well as society as a whole.

* Routing is a core functionality in vehicular transportation.
= Given an (s, d) pair, identify a “best” path from s to d.

* As part of the continued society-wide digitization, more
and more trajectory data is becoming available.

* Learning to Route studies how to best utilize trajectory
data to enhance routing quality.
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Learn Accurate Travel Costs S

* Employ spatio-temporal data to derive accurate travel
costs, e.g., travel time and fuel consumption.

* A core challenge is to capture travel cost uncertainty.

= Google Maps offers three types of travel times:
optimistic, pessimistic and best-guess.
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Travel Time Distributions S

* Qur goal is to push the resolution of traffic uncertainty
modeling further by providing travel time distributions.
= Considering two paths P, and P, from home to airport.

Travel
Py 0.3 0.6 0.1

P, 0.6 0.2 0.2

= Which path should a self-driving taxi take in order to delivery a
passenger to airport within 60 mins?

» Probability(P, < 60)=09 = p
« Probability(P, < 60) = 0.8 1

= Google’s approach:
+ Both paths have the same optimistic (40) and pessimistic (70) travel time.

« Traditional, deterministic approach: using expected travel time:
+ P; has 53 and P, has 51, so P, is chosen, which is a bad decision. 7



Uncertain Graph Models QD

» Weights are distributions but not deterministic values
anymore.

Uncertain Graph Models

Edge-Centric Model: Path-Centric Model:
Weights are assigned to Weights are assigned to
edges. paths.



Edge-Centric Model S

Edge weights, classic way, graph theory.
= Split trajectories into small pieces that fit edges.
= Use the small pieces to assign edges with
travel time distributions.

Example: P=<e;, e;>

= [rajectory 1:10s,20s

= [rajectory 2: 15s,25s
Cost | Prob [N Cost | Prob

10 0.5 e; 20 0.5

15 0.5 25 0.5

€5

Challenge: data sparseness.
= Even big trajectory data is skewed, which cannot cover all edges.

Solution: stochastic weight completion.

= Propagate distributions from edges with trajectories to edges
without trajectories.



Weight Completion Architecture

* Autoencoder + Graph Convolutional Neural Network.
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J. Hu, C. Guo, B. Yang, and C. S. Jensen. Stochastic Weight Completion for
Road Networks using Graph Convolutional Networks. ICDE 2019, 1274-1285.
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Classic Convolution vs. Graph Convolution QD

* Classic convolution filter 2x2.

[5. 10) [10, 15) [15, 20)

SI?U? 7 e1

NHEE es
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« Classic convolution W

= None of the adjacent rows in W is spatially adjacent.
+ Thus, spatial correlations are not captured.

* Graph convolution
=« Considers its neighbors’ features by using adjacency matrix A.
= WO=5 (A WD w)

= E.g.: when convoluting the features of e,, graph convolution
considers the features of e;, ,, and ez
11



Empirical Studies

« Setup:
« Highway tollgates network (24 edges) and a road network (172
edges).
= Equi-width histograms with 8 buckets, 96 intervals per day.

 MKLR: Mean KL-Divergence Ratio

« KL-divergence measures the distance between two distributions.

(2

= How much we can reduce the KL-divergence compared to a naive

baseline just using histograms obtained from all historical data.

rm GP RF LSM CNN DR GCWC A-GCWC
0.5 1.00 09 1.08 055 085 048 0.48
0.6 1.00 097 1.07 059 0.68 0.50 0.49
0.7 1.00 098 126 058 0.55 0.50 0.49
0.8 1.00 099 135 0.66 0.61 0.49 0.49
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Path-Centric Model

- Example: P=<e;, e;>

= Trajectory 1:10s,20s

= Trajectory 2: 15s,25s

€5

10
15 0.5

-
Q

Cost | Prob m
0.5

€s 20
25 0.5

« The distribution of a path is computed by summing the
distributions of edges while assuming they are indepdennt.

<€e;, €5~ P
Cost_|Pron [l Cost_|Prob
10,20 0.25 0.25
15,20 0.25 @ 050 >
10,25 0.25 40 0.25
15,25 0.25

Joint distribution

Independence

<e;, e5> P
Cost _|Prob_Jif Cost | Prob__
10,20 0.5 30 0.5
15,25 0.5 40 0.5
Path weight

Dependence



Path-Centric Model QD

» Better capture cost dependency

« Path weights: weights are assigned to paths, which maintain the
dependency among the edges in the paths.

« Challenge: more than one combination to compute the
cost distribution of a path.

(SH
- More accurate More efficient
e e, The blue path <e,, e, , e;, e,, €5>:
Edge-centric.e,0e, 0e; O e, O g
O e Q@ Path-centrici[<e,, e,> O <e,, e,, e5> |
€4 €5 S <eq e,>0e;0<egy 5>

Edge weights: e, 0e, 0 <e,; e 5>
€4, €y, €3, €4, €5, €4

. . Dai, Yang, Guo, Jensen, Hu. Path Cost Distribution Estimation Using
Path weights: Trajectory Data. PVLDB 10(3): 85-96 (2016).

< S < S < > Yang, Dai, Guo, Jensen, Hu. PACE: A PAth-CEntric Paradigm For
€1, €27, <€y, €67, <€3, 84, €5 Stochastic Path Finding. The VLDB Journal 27(2): 153-178 (2018).
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Empirical Studies S

« Setup
= 180 Million GPS records from Denmark.

-  Edge-Centric
\
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A forward-looking paradigm that promises higher efficiency and accuracy.
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Outline
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Routing Preferences QO

* Professional and local drivers often follow paths that are
neither fastest nor shortest.
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 Itis of interest to know why

drivers chose such paths. —
= Educate new drivers;
= Provide personalized navigation;
= Teach self-driving cars to make
good routing decisions.

Bster U

d

Vegar Y

Green: fastest path.
Red: shortest path.
Blue: a driver’s actual path.
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(2

Modeling Routing Preferences oS

Consider two categories of features that may affect a
driver’s routing decisions.

Travel costs
= Travel time (TT), distance (Dl), fuel consumption (FC).

Road conditions
« Highways, residential roads, toll roads;

Routing preference
= 2D vector, e.g., V=(TT, Highways)

20



. -
Learning Preferences S

» Given a routing preference V, we are able to identify a
corresponding path P,,.
« V=(TT, Highways): a fastest path that uses highways if possible.

 If V reflects accurately a driver’s actual routing preference,
P, should be the same, or very similar, to the path P used
by the driver.

(DI, Residential)

— ¢

(TT, toll Roads )

21



Speed up the learning S

* When having n travel costs and m road conditions.
= Naive method: check all n*m possible preference vectors.

« Coordinate descent: check only n+m possible preference
vectors.

= On the first dimension, identify the best travel cost.

+ Is the fastest path, the shortest path, or the most fuel efficient path is
the most similar to P?

+ For example, if the shortest path is the most similar to P, Dl is chosen.

= On the second dimension, identify the best road condition.

+ To see whether the shortest path can be further improved when
considering different road conditions.

« Checking each preference vector calls for a shortest path
finding.
« Dijkstra’s algorithm is slow.

= Label-constrained contraction hierarchies.
+ Road conditions are treated as labels.
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Empirical Studies oS

« Setup:
= 180 Million GPS records from Denmark.

= /5% data for learning routing preferences. 25% data for testing the
accuracy of the learned routing preferences.

Accuracy Efficiency
Naive + Dijkstra’s alg
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Trajectory-base Routing QO

« How to best utilize trajectories from experienced,
professional drivers, to recommend routes to new drivers,

or self-driving cars?
* Reuse professional drivers’ paths

= lrivialcase: Dto C

+ Reuse the path <D, X, Z, C>in
the black trajectory.

» Data sparseness challenge!
+ GtoB?

« Solution
= Graph clustering.
= Semi-supervised preference learning.

= = = Road network
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Overview oS

« Cluster vertices into regions and transfer a road network to a region graph.
« Learn a routing preference from T-edges.

« Transfer the preferences from T-edges to similar B-edges.

« Use the transferred preferences to infer paths for B-edges.

T-edges == == B-edges

Guo, Yang, Hu, and Jensen. Learning to Route with Sparse Trajectory Sets. ICDE 2018, 1073-1084.



Routing on the Region Graph S

« Given arbitrary (s, d) in the original road network,
= |dentify nearest source and destination region.
= Route in the region graph.
« Reconstruct paths using the original road network.

Routing H — F5:

His in Ry

FisinR,

Region graph routing: R; — R; — R,
R;— Rgis recoveredas H - C

Rs; — R,is recoveredas Z-F,
ReturnH-C -Z-F,

S ol



Empirical studies

* Accuracy
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Data Driven Decision Making QD

 From 4V big data to 3T big knowledge that helps decision
making.
- 3T big knowledge

= Thorough (volume and variety).
+ Conquer the data sparseness challenges.
+ Cover all edges/paths, all time periods, all (s, d) pairs.
= Timely (velocity).
+ Handle high-speed streaming data, e.g., 100 Hz accelerometer data.
+ Different applications have different requirements.
= Trustworthy (veracity)
+ Capture traffic uncertainty at high resolution.
+ Make reliable decisions under uncertainty.
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