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Background and Motivation
• Vehicular transportation is an important aspect of the daily 

lives of many people and is also essential to many 
businesses as well as society as a whole. 

• Routing is a core functionality in vehicular transportation. 
 Given an (s, d) pair, identify a “best” path from s to d. 

• As part of the continued society-wide digitization, more 
and more trajectory data is becoming available. 

• Learning to Route studies how to best utilize trajectory 
data to enhance routing quality. 
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Outline
• Motivation
• Learn accurate travel costs
• Learn routing preferences
• Data-intensive routing
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Learn Accurate Travel Costs
• Employ spatio-temporal data to derive accurate travel 

costs, e.g., travel time and fuel consumption. 
• A core challenge is to capture travel cost uncertainty. 

 Google Maps offers three types of travel times:
optimistic, pessimistic and best-guess.
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Travel Time Distributions
• Our goal is to push the resolution of traffic uncertainty 

modeling further by providing travel time distributions. 
 Considering two paths 𝑃𝑃1 and 𝑃𝑃2 from home to airport.

 Which path should a self-driving taxi take in order to delivery a 
passenger to airport  within 60 mins? 
 Probability(𝑃𝑃1 ≤ 60) = 0.9 
 Probability(𝑃𝑃2 ≤ 60) = 0.8 

 Google’s approach: 
 Both paths have the same optimistic (40) and pessimistic (70) travel time.

 Traditional, deterministic approach: using expected travel time: 
 𝑃𝑃1 has 53 and 𝑃𝑃2 has 51, so 𝑃𝑃2 is chosen, which is a bad decision.  7

Travel 
Time [40, 50) [50, 60) [60, 70]

𝑃𝑃1 0.3 0.6 0.1

𝑃𝑃2 0.6 0.2 0.2

𝑃𝑃1



Uncertain Graph Models
• Weights are distributions but not deterministic values 

anymore.
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Uncertain Graph Models

Edge-Centric Model:
Weights are assigned to 
edges. 

Path-Centric Model: 
Weights are assigned to 
paths.



Edge-Centric Model
• Edge weights, classic way, graph theory.

 Split trajectories into small pieces that fit edges. 
 Use the small pieces to assign edges with 

travel time distributions.
• Example: P=<e5, e6>

 Trajectory 1: 10 s, 20 s
 Trajectory 2: 15 s, 25 s

• Challenge: data sparseness.
 Even big trajectory data is skewed, which cannot cover all edges.

• Solution: stochastic weight completion.
 Propagate distributions from edges with trajectories to edges 

without trajectories. 9
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Weight Completion Architecture
• Autoencoder + Graph Convolutional Neural Network.
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J. Hu, C. Guo, B. Yang, and C. S. Jensen. Stochastic Weight Completion for 
Road Networks using Graph Convolutional Networks. ICDE 2019, 1274-1285. 



Classic Convolution vs. Graph Convolution 

• Classic convolution filter 2×2.

• Classic convolution
 None of the adjacent rows in W is spatially adjacent.

 Thus, spatial correlations are not captured.

• Graph convolution
 Considers its neighbors’ features by using adjacency matrix A. 
 W(l)=δ (A W(l-1) w)
 E.g.: when convoluting the features of e1, graph convolution

considers the features of e3, e4, and e5. 
11



Empirical Studies
• Setup:

 Highway tollgates network (24 edges) and a road network (172 
edges). 

 Equi-width histograms with 8 buckets, 96 intervals per day. 
• MKLR: Mean KL-Divergence Ratio 

 KL-divergence measures the distance between two distributions. 
 How much we can reduce the KL-divergence compared to a naïve 

baseline just using histograms obtained from all historical data. 
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rm GP RF LSM CNN DR GCWC A-GCWC
0.5 1.00 0.96 1.08 0.55 0.85 0.48 0.48
0.6 1.00 0.97 1.07 0.59 0.68 0.50 0.49
0.7 1.00 0.98 1.26 0.58 0.55 0.50 0.49
0.8 1.00 0.99 1.35 0.66 0.61 0.49 0.49



Path-Centric Model
• Example: P=<e5, e6>

 Trajectory 1: 10 s, 20 s
 Trajectory 2: 15 s, 25 s

• The distribution of a path is computed by summing the 
distributions of edges while assuming they are indepdennt. 
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Path-Centric Model
• Better capture cost dependency

 Path weights: weights are assigned to paths, which maintain the 
dependency among the edges in the paths. 

• Challenge: more than one combination to compute the 
cost distribution of a path. 
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Dai, Yang, Guo, Jensen, Hu. Path Cost Distribution Estimation Using 
Trajectory Data. PVLDB 10(3): 85-96 (2016).
Yang, Dai, Guo, Jensen, Hu. PACE: A PAth-CEntric Paradigm For 
Stochastic Path Finding. The VLDB Journal 27(2): 153-178 (2018).

e1 e5

e2 e4

e6

Path weights:
<e1, e2>, <e4, e6>, <e3, e4 , e6>

Edge weights:
e1, e2, e3, e4, e5, e6

The blue path <e1, e2 , e3 , e4 , e6 >:
Edge-centric: e1 ʘ e2 ʘ e3 ʘ e4 ʘ e6
Path-centric: <e1, e2> ʘ <e3, e4, e6>

<e1, e2> ʘ e3 ʘ <e4, e6>
e1 ʘ e2 ʘ <e3, e4, e6>

e3 More efficientMore accurate



• Setup
 180 Million GPS records from Denmark. 

Empirical Studies
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Accuracy Efficiency

Edge-Centric

Path-Centric

Edge-Centric

Path-Centric

A forward-looking paradigm that promises higher efficiency and accuracy. 



Outline
• Motivation
• Learn accurate travel costs
• Learn routing preferences
• Data-intensive routing
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Routing Preferences
• Professional and local drivers often follow paths that are 

neither fastest nor shortest. 

• It is of interest to know why 
drivers chose such paths.
 Educate new drivers; 
 Provide personalized navigation;
 Teach self-driving cars to make 

good routing decisions. 
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Green: fastest path.
Red: shortest path.  
Blue: a driver’s actual path.



Modeling Routing Preferences
• Consider two categories of features that may affect a 

driver’s routing decisions.
• Travel costs

 Travel time (TT), distance (DI), fuel consumption (FC). 
• Road conditions

 Highways, residential roads, toll roads;  
• Routing preference 

 2D vector, e.g., V=(TT, Highways)
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Learning Preferences
• Given a routing preference V, we are able to identify a 

corresponding path PV. 
 V=(TT, Highways): a fastest path that uses highways if possible. 

• If V reflects accurately a driver’s actual routing preference, 
PV should be the same, or very similar, to the path P used 
by the driver. 
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(TT, Highways)

(DI, Residential)

(TT, toll Roads )



Speed up the learning
• When having n travel costs and m road conditions.

 Naïve method: check all n*m possible preference vectors. 
• Coordinate descent: check only n+m possible preference 

vectors.
 On the first dimension, identify the best travel cost.

 Is the fastest path, the shortest path, or the most fuel efficient path is 
the most similar to P? 

 For example, if the shortest path is the most similar to P, DI is chosen.
 On the second dimension, identify the best road condition. 

 To see whether the shortest path can be further improved when 
considering different road conditions. 

• Checking each preference vector calls for a shortest path 
finding. 
 Dijkstra’s algorithm is slow. 
 Label-constrained contraction hierarchies. 

 Road conditions are treated as labels. 
22



Empirical Studies
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Accuracy Efficiency
Naïve + Dijkstra’s alg

Coordinate descent +
Contraction Hierarchies

• Setup: 
 180 Million GPS records from Denmark. 
 75% data for learning routing preferences. 25% data for testing the 

accuracy of the learned routing preferences. 



Outline
• Motivation
• Learn accurate travel costs
• Learn routing preferences
• Data-intensive routing
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Trajectory-base Routing
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Road network Historical Trajectories
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• Reuse professional drivers’ paths

 Trivial case: D to C
 Reuse the path <D, X, Z, C> in 

the black trajectory. 
 Data sparseness challenge!

 G to B? 

• Solution
 Graph clustering. 
 Semi-supervised preference learning.

• How to best utilize trajectories from experienced, 
professional drivers, to recommend routes to new drivers, 
or self-driving cars? 



Overview
• Cluster vertices into regions and transfer a road network to a region graph. 
• Learn a routing preference from T-edges. 
• Transfer the preferences from T-edges to similar B-edges. 
• Use the transferred preferences to infer paths for B-edges. 
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Guo, Yang, Hu, and Jensen. Learning to Route with Sparse Trajectory Sets. ICDE 2018, 1073-1084.



• Given arbitrary (s, d) in the original road network, 
 Identify nearest source and destination region. 
 Route in the region graph. 
 Reconstruct paths using the original road network.

Routing on the Region Graph
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Routing H – F2:
1. H is in R3
2. F is in R4
3. Region graph routing: R3 – R5 – R4
4. R3 – R5 is recovered as H – C 
5. R5 – R4 is recovered as Z – F2
6. Return H – C – Z – F2



Empirical studies
• Accuracy

• Efficiency
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Data Driven Decision Making
• From 4V big data to 3T big knowledge that helps decision 

making. 
• 3T big knowledge

 Thorough (volume and variety).
 Conquer the data sparseness challenges.
 Cover all edges/paths, all time periods, all (s, d) pairs.  

 Timely (velocity).
 Handle high-speed streaming data, e.g., 100 Hz accelerometer data. 
 Different applications have different requirements.  

 Trustworthy (veracity)
 Capture traffic uncertainty at high resolution.
 Make reliable decisions under uncertainty.
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Thank you!
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