Information Systems

T
School of]X(SM| l
SINGAPORE MANAGEMENT
UNIVERSITY

Geometric Top-k Processing:
Updates since MDM'16

[Advanced Seminar]

Kyriakos Mouratidis

Singapore Management University

MDM 2019

Introduction
-

* Top-kquery: shortlists yygights could be captured
tOp Optlons from a set by slide-bars:

of alternatives

« E.g. tripadvisor.com

— rate (and browse) hotels | Price Clean Service
according to price,
cleanliness, location,
service, etc.

« A user’ s criteria: price,
cleanliness and
service, with different
weights

Slide-bar locations — numerical weights
We call g = <0.8, 0.3, 0.5> the query vector
—and its domain query space or preference space

Linear function ranks hotels (i.e. options)

— score = 0.8-price + 0.3-clean + 0.5-service

— If option r is seen as vector, score = dot product r-g
Top-k returned (e.g. the top-10)

Top-k processing is well-studied
— E.g. [Fagin01,Tao07] for processing w/o & w/ index
— Excellent survey [llyas08]

Top-k as sweeping the data space

‘TsagarasOS‘

Assume all query weights are positive
...and each option attribute is in range [0,1]
Example for d = 2 (showing: data space)

Sweeping line normal X2
fo vector q

Sweeps from top-corner
(1,1) towards origin °
Order an option is met
<> order in ranking!

— E.g.top-2={ry, 1, } r3
At current position:

Y option above (below) the
line, higher (lower) score thanr,

Ranking of depends only on orientation of
sweeping line (or hyper-plane, in higher dim.)
— query vector <0.8,0.3,0.5> same effect as <8,3,5>
— we can normalize g so that sum of weights is
1 (without affecting at all the top-k semantics)
—e.g. in 2-D we can rewrite scoring function as

S(r) = a-xq + (1-a)-X,
This reduces dim/nality of query domain by 1
— Geom. operations in query domain become faster

We'll ignore this in the following for simplicity

Relationship to Convex Hulli
- /7]

« Convex Hull: The smallest convex polytope
that includes a set of points (options)

» Fact: The top-1 option for
any query vectoris 17
on the hull!

— [Dantzig63]: LP text

[BorzsonyiO1, Papadias03]: Skyline
-]
- Dominance: option r; dominates r, iff it has

higher values in all dimensions [ignore ties]
« = 5(rq) >S(r,) V q

» Skyline: all opts. that (i N
aren’t dominated ¢ —
* Includes top-1 vV q 1o Ol T
» k-skyband: all opts. e
not dominated by) . o
k or more others . ra‘L
» Includes top-k V g & ¥

[Zhang14]: Global Immutable Region
- /7]

» Global Immutable Region (GIR)

— The maximal region around query vector g where
the top-k result remains the same

* Order within result retained
—i.e. S(ry) > S(r,) and S(r,) > S(ry) ... S(r4) > S(r)
— k-1 conditions (O-conditions)

* Non-results cannot overtake r,

—i.e. S(r,) > S(r) for every non-result r
— n-k conditions (NR-conditions)

« Observation: each condition < a half-space!

[Zhang14]: Global Immutable Region
- /7]

A

» Each condition < W,
a half-space!

* Intersect all half-spaces
« Cost: O(n%?)
* Problem: Too expensive

e |dea: limit no. of
NR-conditions!

[Zhang14]: Global Immutable Region

* Answer:
Every query vector Iin
shaded area (GIR) ’

 Applications:
— Result stability

— E.g. volume of GIR equals to
probability that a random query
vector returns same result as g

— Result caching
— Weight readjustment

>

Given a total ranking of the dataset w.r.t. q
They use GIR volume as a measure of stability

Allowing q to move in a region R in pref. space

They report total rankings in decreasing stability
order (i.e., decreasing GIR volume)

Their approach relies on sampling (i.e., is
approximate) with a probabilistic accuracy
analysis

[Mouratidis15]: MaxRank
- /7]

 MaxRank query: given a focal option p, find:

1. The highest rank p may achieve under any
possible user preference, and

2. All the regions in the preference space where that
rank is attained

[VIachou10 & 11]: Reverse top-k query
I
» Bichromatic (main focus): Given a focal option

P, a set of options, and a set of top-k queries,

identify the queries that have p in their result

— Algebraic bounds based on MBRs

 Monochromatic:
Given a focal option p and a set of options, find
all regions in pref. space where p is in the
top-k result

— Solution only for 2-D

[Vlachou10 & 11]: Reverse top-k query

Monochromatic RTOP-k in 2-D
S(r) = a-xy + (1-a)-X,

Every intersection of s(r),
scoreline of p <« 1

: rs
reordering /4 "
r4

Plane sweep algo. ~~ _~ -
p
Is

>

/ ro
0 >
0 0.2 0.4 0.6 T

[Tang17]: k-Shortlist Preference Regions
- /7]

« Monochromatic RTOP-k ford 2 2

« aka: k-Shortlist Preference Regions (kSPR):

— All regions in preference space where a given focal
option p belongs to the top-k result

[Tang17]: kSPR Example

» Preference space
* Orderofp

« kSPR result for k = 3:

— The shaded wedges

— Every query vector Iin
shaded area ranks p
among the top-3
options

[Tang17]: Fast pruning
[

A

« Dominees X2 rq
. [
—ignore r® |
e Dominators Dominators
o
— simply increment k* re Fa
* Incomparable °p .
. 2
— How to deal with them? | °
Dominees ®
® 6
r7
'rg X1

Data Space

[Tang17]: kSPR
- 00000/

A

- Consider a single W,
incomparable opt. r

S(r) < S(p)
» Score of r higher than "

p iff query vector is
inside a half-space

— Inequality S(r) > S(p)
maps into half-space
In query space

W1
Query Space

Idea: map each incomp. option to a h/s

Set of h/s including Qs
cell = set of options
scoring higher than p

Count in each cell =
no. of options that
score higher than p

kSPR result for k=4:
cells with count £ 3

>

Half-space Arrangerr({ént

[Tang17]: Cell Tree
- 00000/

 Insert h/s one by one into a binary tree to maintain
the arrangement

* Insertion of h; (root split into 2 leaves)

* Insertion of h, (each leaf split into two)

AWZ AWZ
hi:S(r) < S(p) &
N hi, h3 hq
&
C; Ca
~ hi by hi b3
ht: S(ry) > S(p) 2
Wy 1 hy Wy

[Tang17]: Cell Tree (3 h/s, k = 2)

« Assume 3 h/s as shown below:
 Cell Tree looks like:

“WZ h3 / \ hl

Cs
C1
C

/ 4
N

C

AN \ >
h,

[Tang17]: Cell Representation (implicit)

» Cell computation takes F;WZ g S
O(nd/Z)

* Implicit representation
by defining halfspaces:

{h;.hyhs hy* hy hg}
* ...even better, just the
bounding ones:
{h,~, hg}
* Trouble: how to detect
infeasible cells?

[Tang17]: Case Study

kSPR (k=3) on real NBA data for Dwight Howard

Season: 2014-15 Season: 2015-16

w,: rebounds w,: rebounds

wj . points

Uncertain Preferences
]

 Literature assumes q is given and exact, but...

* ...whether manually input or mined, it could only
be taken as a mere indication

* |f only approximate prefs., instead of exact q, use
a region R in pref. space to allow for inaccuracies

+ [Ciaccia&Martinenghi17].
identify all possible top-1 options (k = 1)

* [Mouratidis&Tang18]:
identify all possible top-k options (k =2 1)

[Mouratidis&Tang18]: Uncertain Top-k

« Given:
approx. preferences < region R in pref. space

« UTK,: report all options that may be among the
top-k whenq e R

« UTK,: report specific top-k set forany qe R

UTK: Example

Hotel | Sve. | Cln. | Loc.
Dy 8.3 9.1 7.2
Do 2.4 9.6 8.6
D3 5.4 1.6 4.1
Dy 2.6 6.9 9.4
D5 7.3 3.1 2.4
Dg 7.9 6.4 6.6
D~ 8.6 7.1 4.3

Dataset

0.25

0.05;

\WZ

Region R
P1: P2 /
P2; P4 P Ps
P1; P4
w1
0.05 0.45

UTK output for k=2
(in preference space)

r-dominance; r-skyband
- /7]

» Consider options ry and r,,

« Vqin R, S(ry) > S(r,) : r, r-dominates r,

» r-skyband: options r-dominated by <k others

« Good filtering, but still superset of UTK options

UTK, — Refinement (RSA)

« V remaining candidate r determine if there is position
In R where r is in top-k

* Progressively consider competitors and recursively
partition R by focusing only on promising regions

« Use r-dominance relationships to prioritize

competitors during verification of r

UTK, — Drill optimization
e
* When a promising partition is examined, we first

perform a regular top-k query for a drill vector,

l.e., a vector inside the partition
» If candidate r is in top-K, it is part of UTK, result
* Drill vector must be inside the partition

« We compute it using LP as the vector q* in the
partition that maximizes score of r

» Choose a candidate p as anchor and produce
a single partitioning of R for all candidates,
l.e., determine the rank of p anywhere in R

o |f its rank is different than kin some partitions,
choose a different anchor p’ for them

e ...anchor choice: make sure it's the k-th
somewhere in the partition at hand

UTK,: Refinement Example

I
o | et k=2

« Choose an option as anchor

* Determine its rank in R

» equal-to, less-than, and greater-than partitions
» E.g., for p, (less-than) choose different anchor

Case Study

UTK (k=3) on NBA data for 2016-17 (2D and 3D)

32

24

16

2D: (rebounds, points)

k=3andR =[0:64, 0:74]
Data Space

Points

Rebounds

Russell Westbrook

Anthony Davis

ndre Drummond

8 12

16

0.6

0.5

R

3D: (rebounds, points, assists)
R =[0:64, 0:72] x [0:72, 0:74]
Preference Space

A
Wp

7/_/\

Russell Westbrook
< James Harden
Anthony Davis

Russell Westbrook
James Harden
LeBron James

Russell Westbrook
James Harden
DeMarcus Cousins | W,

0.2

0.3

32

Related in spirit
- 00000/

- [Ciaccia&Martinenghi18]:
— Assuming data indexed by sorted lists...
—they compute the r-skyband...
— following the threshold algorithm paradigm
— aiming to reduce random/sorted accesses to lists

 [Qian15]:
— Learn approx. user preferences (i.e., a region R)...
— by iterative pairwise comparisons

[Qian15]: Iterative pairwise comparisons

 1stprobe: r, vs. r, (user chooses r,)
 2"d probe: r; vs. r, (user chooses r,)

hy: S(ry) > S(ry)

[Liu16]: Why-not RTOP-k

« Given a focal option p, and...

* a set of query vectors Q (for which p is not in
top-k set)

« Compute the minimum perturbation to
— (attribute values of) p, or
— the query vectors and value k, or
— all of the above (focal option, vector set, value k)
—s.t. p is among the top-k for every vector in Q

[Liu16]: Why-not RTOP-K
e

« Exact solution for 18t problem; improving p

« Key idea:
— Let p; be the current k-th opt. for query vector q;
— To be in top-k for q;, the updated p must outscore
Pikforg, < di- P29 Pk
— This inequality defines a half-space h, in data
space!

— The new p must be in the intersection of the half-
spaces h; defined for each g; in Q

[Yang16]: Influence optimization
- 00000/

* Problem: improve p so that it is top-1 for at
least m query vectors in set Q

« Key idea:
— Let p; be the current k-th opt. for query vector g;
— To be top-1 for q;, the updated p must outscore p;
forqq < di-p2q; P
— This inequality defines a half-space h, in data
space!

— The new p must be in the intersection of at least m
half-spaces h; defined by vectors q; in Q

[Yang&Cai17]: Improvement strategies
- /7]

« Similar objective to prev. problem
 Given focal opt. p and a set of query vectors Q

« Compute the minimum perturbation
(improvement) to values of p so that it appears
in top-K set for at least m vectors in Q

* Problem is hard; heuristic solutions proposed

TopRR

 Input: dataset & a region R in pref. space
(representing our target clientele)

« Query: where should we build a new option p
s.t. it is in top-k set for any query vector in R?

» Challenge: dealing with a continuous region in
pref. space (R) and a continuous region in
data space (the output)

« Key idea: beat continuity by reducing it to a
finite number of critical points, while retaining
exactness!

TopRR: Example

Laptop | Speed | Battery
P 0.9 0.4
Do 0.7 0.9
Ps 0.6 0.2
P4 0.3 0.8
Ps 0.2 0.3
Ps 0.1 0.1
Dataset TopRR output for k=3

(in data space)

Unless the data exhibit strong correlation, top-k
IS meaningless in more than 5-6 dimensions!

As d grows, the highest score across the
dataset approaches the lowest score!

l.e. ranking by score no longer offers
distinguishability <> looses its usefulness

Behaviour very similar to nearest neighbor
qguery, known to suffer from the dimensionality
curse [Beyer99]

Top-k in High-D?
-]

IND data
» ...0f fixed cardinality n = 100K
* ...we vary data dimensionality

[0 -& MaxScore/MinScore o 10°F -4 MaxScore/MinScore
5 2000 {5 |
g
3 3 |
= 1500} =
° © 107
S 1000} S |
7] 7
& x|
=7 = 10‘.-

03456 7 A S5 4567 6 9101112131215161718 1550
d d

Thank you!
[

