
Geometric Top-k Processing: 
Updates since MDM'16

[Advanced Seminar]

MDM 2019

Singapore Management University

Kyriakos Mouratidis



Introduction

• Top-k query: shortlists 
top options from a set 
of alternatives

• E.g. tripadvisor.com
– rate (and browse) hotels 

according to price, 
cleanliness, location, 
service, etc. 

• A user’s criteria: price, 
cleanliness and 
service, with different 
weights

Weights could be captured 

by slide-bars:



Introduction

• Slide-bar locations → numerical weights

• We call q = <0.8, 0.3, 0.5> the query vector
– and its domain query space or preference space

• Linear function ranks hotels (i.e. options)
– score = 0.8·price + 0.3·clean + 0.5·service

– if option r is seen as vector, score = dot product r·q

• Top-k returned (e.g. the top-10)

• Top-k processing is well-studied
– E.g. [Fagin01,Tao07] for processing w/o & w/ index

– Excellent survey [Ilyas08]  



Top-k as sweeping the data space 
[Tsaparas03]

• Assume all query weights are positive

• …and each option attribute is in range [0,1]

• Example for d = 2 (showing: data space)

• Sweeping line normal 
to vector q

• Sweeps from top-corner
(1,1) towards origin

• Order an option is met 
↔ order in ranking! 
– E.g. top-2 = { r1, r2 }

• At current position:
∀ option above (below) the 
line, higher (lower) score than r2



Notes on dim/nality of query domain

• Ranking of depends only on orientation of 
sweeping line (or hyper-plane, in higher dim.)

– query vector <0.8,0.3,0.5> same effect as <8,3,5>

•  we can normalize q so that sum of weights is 
1 (without affecting at all the top-k semantics)

– e.g. in 2-D we can rewrite scoring function as

S(r) = α·x1 + (1-α)·x2

• This reduces dim/nality of query domain by 1 

– Geom. operations in query domain become faster

• We’ll ignore this in the following for simplicity



x1

r3

r2
r1

r4

r5
r6

r7

r8

r9

r10

r11

r12
r13 r14

x2

r15

Relationship to Convex Hull

• Convex Hull: The smallest convex polytope 
that includes a set of points (options)

• Fact: The top-1 option for 
any query vector is 
on the hull! 

– [Dantzig63]: LP text



x1

r3

r2
r1

r4

r5
r6

r7

r8

r9

r10

r11

r12
r13 r14

x2

r15
x1

r3

r2
r1

r4

r5
r6

r7

r8

r9

r10

r11

r12
r13 r14

x2

r15
x1

r2
r1

x2

[Börzsönyi01, Papadias03]: Skyline

• Dominance: option r1 dominates r2 iff it has 
higher values in all dimensions [ignore ties]

•  S(r1) > S(r2) ∀ q

• Skyline: all opts. that 
aren’t dominated

• Includes top-1 ∀ q

• k-skyband: all opts. 
not dominated by 
k or more others

• Includes top-k ∀ q



[Zhang14]: Global Immutable Region

• Global Immutable Region (GIR)

– The maximal region around query vector q where 

the top-k result remains the same

• Order within result retained

– i.e. S(r1) > S(r2) and S(r2) > S(r3) … S(rk-1) > S(rk) 

– k-1 conditions (O-conditions)

• Non-results cannot overtake rk

– i.e. S(rk) > S(r) for every non-result r

– n-k conditions (NR-conditions)  

• Observation: each condition ↔ a half-space!



[Zhang14]: Global Immutable Region

• Each condition ↔

a half-space!

• Intersect all half-spaces 

• Cost: O(nd/2)

• Problem: Too expensive

• Idea: limit no. of 

NR-conditions!

h
1
-2



[Zhang14]: Global Immutable Region

10

• Answer: 
Every query vector in 
shaded area (GIR)

• Applications:

– Result stability
– E.g. volume of GIR equals to 

probability that a random query 

vector returns same result as q

– Result caching 

– Weight readjustment



[Asudeh18]: Result stability

• Given a total ranking of the dataset w.r.t. q

• They use GIR volume as a measure of stability

• Allowing q to move in a region R in pref. space

• They report total rankings in decreasing stability 
order (i.e., decreasing GIR volume)

• Their approach relies on sampling (i.e., is 
approximate) with a probabilistic accuracy 
analysis



[Mouratidis15]: MaxRank

• MaxRank query: given a focal option p, find:

1. The highest rank p may achieve under any 
possible user preference, and 

2. All the regions in the preference space where that 
rank is attained



[Vlachou10 & 11]: Reverse top-k query

• Bichromatic (main focus): Given a focal option
p, a set of options, and a set of top-k queries, 
identify the queries that have p in their result 

– Algebraic bounds based on MBRs

• Monochromatic: 
Given a focal option p and a set of options, find 
all regions in pref. space where p is in the 
top-k result 

– Solution only for 2-D

13



[Vlachou10 & 11]: Reverse top-k query

• Monochromatic RTOP-k in 2-D

• S(r) = α·x1 + (1-α)·x2

• Every intersection of

scoreline of p ↔ 

reordering

• Plane sweep algo. 

14

r1

r3

r4

p

r5

r2

α

S(r)

Order: 3 4 3 4

0.2 0.4 0.60 1
0

1



[Tang17]: k-Shortlist Preference Regions

• Monochromatic RTOP-k for d ≥ 2

• aka: k-Shortlist Preference Regions (kSPR):

– All regions in preference space where a given focal 
option p belongs to the top-k result

15



��

��

0

0

�

1

1

� �

�

��

��

0

0

�

1

1

� �

�

[Tang17]: kSPR Example

16

• Preference space

• Order of p

• kSPR result for k = 3:

– The shaded wedges

– Every query vector in 

shaded area ranks p
among the top-3 

options



[Tang17]: Fast pruning

17

• Dominees

– ignore

• Dominators

– simply increment k*

• Incomparable

– How to deal with them? 

Data Space

Dominators

Dominees

x1

r2

r6

r4

x2

r3

p
r5

r7
r8

r1



[Tang17]: kSPR

• Consider a single 
incomparable opt. r

• Score of r higher than 
p iff query vector is 
inside a half-space

– Inequality S(r) > S(p) 

maps into half-space 

in query space

Query Space



h1q2

h2

h3

h7
h6

h4

h5
q1

h1q2 3

4

4

5

3

2

1
3

4

2

3
4

3

4

h2

h3

h7

h6

h4

h5

q1

[Tang17]: Fundamentals

• Idea: map each incomp. option to a h/s

19

• Set of h/s including 
cell = set of options 
scoring higher than p

• Count in each cell = 
no. of options that 
score higher than p

• kSPR result for k=4: 
cells with count ≤ 3

Half-space Arrangement

h1q2 3

4

4

5

3

2

1
3

4

2

3
4

3

4

h2

h3

h7

h6

h4

h5

q1



[Tang17]: Cell Tree

• Insert h/s one by one into a binary tree to maintain 

the arrangement

• Insertion of h1 (root split into 2 leaves)

• Insertion of h2 (each leaf split into two)

��

��

ℎ�

:  S �� > S(�)

ℎ�
�: S �� < S(�)

��

��

ℎ�
�, ℎ�




ℎ�
�, ℎ�

� ℎ�

, ℎ�




ℎ�

, ℎ�

�

ℎ�

ℎ�

��

��

��

��



[Tang17]: Cell Tree (3 h/s, k = 2)

• Assume 3 h/s as shown below:

• Cell Tree looks like:

ℎ�

ℎ�ℎ�

��

��

��

��

��

��

����

�

����

ℎ�
�

ℎ�



ℎ�
� ℎ�




{ℎ�
�}

{ℎ�

}

��

ℎ�
�

��

ℎ�





ℎ�

ℎ�

ℎ�

ℎ�

ℎ�

ℎ�

�

��

��

0                                                    1

0
  

  
  
  

  
  
  

  
  
  

  
  
  

  
  
  

  
  
  

  
  
  

  
  
  

  
1

��

��

����

[Tang17]: Cell Representation (implicit)

22

• Cell computation takes 
O(nd/2)

• Implicit representation 
by defining halfspaces:

{h1
−,h2

−,h3
−,h4

+,h5
−,h6

+}

• …even better, just the 
bounding ones:
{h2

−,h6
+}

• Trouble: how to detect 
infeasible cells?



[Tang17]: Case Study

kSPR (k=3) on real NBA data for Dwight Howard

��: points

��: rebounds

��: points

��: rebounds

Season: 2014-15 Season: 2015-16



Uncertain Preferences

• Literature assumes q is given and exact, but…

• …whether manually input or mined, it could only 

be taken as a mere indication

• If only approximate prefs., instead of exact q, use 

a region R in pref. space to allow for inaccuracies

• [Ciaccia&Martinenghi17]: 

identify all possible top-1 options (k = 1)

• [Mouratidis&Tang18]: 

identify all possible top-k options (k ≥ 1)



[Mouratidis&Tang18]: Uncertain Top-k

• Given: 

approx. preferences ↔ region R in pref. space

• UTK1: report all options that may be among the 

top-k when q ∈ R

• UTK2: report specific top-k set for any q ∈ R



UTK: Example

w1

0.05 0.45

0.05

0.25

p2, p4

p1, p4

p1, p2

p1, p6

w2
Region R

UTK output for k = 2

(in preference space)
Dataset



r-dominance; r-skyband

27

• Consider options r1 and r2

• ∀q in R, S(r1) > S(r2) : r1 r-dominates r2

• r-skyband: options r-dominated by <k others

• Good filtering, but still superset of UTK options 

w1

w
2

R

w1

w
2

R



UTK1 – Refinement (RSA)

28

• ∀ remaining candidate r determine if there is position 

in R where r is in top-k

• Progressively consider competitors and recursively 
partition R by focusing only on promising regions

• Use r-dominance relationships to prioritize 

competitors during verification of r

w1

w
2

R

1

21

1
2

1



UTK1 – Drill optimization

• When a promising partition is examined, we first 
perform a regular top-k query for a drill vector, 
i.e., a vector inside the partition 

• If candidate r is in top-k, it is part of UTK1 result

• Drill vector must be inside the partition

• We compute it using LP as the vector q* in the 
partition that maximizes score of r



UTK2 – Refinement (JAA)

30

• Choose a candidate p as anchor and produce 
a single partitioning of R for all candidates, 
i.e., determine the rank of p anywhere in R

• If its rank is different than k in some partitions, 
choose a different anchor p’ for them

• …anchor choice: make sure it’s the k-th
somewhere in the partition at hand



UTK2: Refinement Example

31

• Let k=2

• Choose an option as anchor

• Determine its rank in R

• equal-to, less-than, and greater-than partitions 

• E.g., for ρ1 (less-than) choose different anchor

ρ1: 1

ρ2: 2
ρ3: 3

ρ4: 4

ρ2: 2
ρ3: 3

ρ4: 4
2

3

3

1

2 3

2

3
4



Case Study

32

UTK (k=3) on NBA data for 2016-17 (2D and 3D)

0

8

16

24

32

0 4 8 12 16

P
o
in

ts

Rebounds

Russell Westbrook

Hassan Whiteside

Anthony Davis

Andre Drummond

0.2 0.3

0.5

0.6

Russell Westbrook

James Harden

LeBron James

Russell Westbrook

James Harden

DeMarcus Cousins

Russell Westbrook

James Harden

Anthony Davis

� 

�!

R

2D: (rebounds, points)

k = 3 and R = [0:64, 0:74]
Data Space

3D: (rebounds, points, assists)

R = [0:64, 0:72] × [0:72, 0:74]
Preference Space



Related in spirit

• [Ciaccia&Martinenghi18]:
– Assuming data indexed by sorted lists…

– they compute the r-skyband…

– following the threshold algorithm paradigm

– aiming to reduce random/sorted accesses to lists 

• [Qian15]:
– Learn approx. user preferences (i.e., a region R)…

– by iterative pairwise comparisons 

33



[Qian15]: Iterative pairwise comparisons

• 1st probe: r1 vs. r2 (user chooses r1)
• 2nd probe: r3 vs. r4 (user chooses r4)

34

��

��

0  1

0
  

  
  
  

  
  
  

  
  
  

  
  
  

  
  
  

  
  
  

  
  
1

ℎ1:  S �� > S(��)
��

��

ℎ�

0
  

  
  
  

  
  
  

  
  
  

  
  
  

  
  
  

  
  
  

  
  
1

0  1



[Liu16]: Why-not RTOP-k

• Given a focal option p, and…

• a set of query vectors Q (for which p is not in 
top-k set)

• Compute the minimum perturbation to

– (attribute values of) p, or

– the query vectors and value k, or

– all of the above (focal option, vector set, value k)

– s.t. p is among the top-k for every vector in Q

35



[Liu16]: Why-not RTOP-k

• Exact solution for 1st problem; improving p

• Key idea:

– Let pi-k be the current k-th opt. for query vector qi

– To be in top-k for qi, the updated p must outscore 

pi-k for qi ↔ qi ⋅ p ≥ qi ⋅ pi-k

– This inequality defines a half-space hi in data 

space! 

– The new p must be in the intersection of the half-

spaces hi defined for each qi in Q

36



[Yang16]: Influence optimization

• Problem: improve p so that it is top-1 for at 
least m query vectors in set Q

• Key idea:

– Let pi be the current k-th opt. for query vector qi

– To be top-1 for qi, the updated p must outscore pi

for qi ↔ qi ⋅ p ≥ qi ⋅ pi

– This inequality defines a half-space hi in data 

space! 

– The new p must be in the intersection of at least m

half-spaces hi defined by vectors qi in Q
37



[Yang&Cai17]: Improvement strategies

• Similar objective to prev. problem

• Given focal opt. p and a set of query vectors Q

• Compute the minimum perturbation 
(improvement) to values of p so that it appears 
in top-k set for at least m vectors in Q

• Problem is hard; heuristic solutions proposed 

38



[Tang19]: Top Ranking Region (TopRR)

• Input: dataset & a region R in pref. space 
(representing our target clientele)

• Query: where should we build a new option p
s.t. it is in top-k set for any query vector in R?

• Challenge: dealing with a continuous region in 
pref. space (R) and a continuous region in 
data space (the output)

• Key idea: beat continuity by reducing it to a 
finite number of critical points, while retaining 
exactness! 39



TopRR: Example

TopRR output for k = 3

(in data space)
Dataset

#1

#2

%�

%�

%�

%�

%�

oR

%�



Top-k in High-D?

• Unless the data exhibit strong correlation, top-k 
is meaningless in more than 5-6 dimensions!

• As d grows, the highest score across the 
dataset approaches the lowest score!

• I.e. ranking by score no longer offers 

distinguishability ↔ looses its usefulness

• Behaviour very similar to nearest neighbor 
query, known to suffer from the dimensionality 
curse [Beyer99]

41



Top-k in High-D?

• IND data

• …of fixed cardinality n = 100K 

• …we vary data dimensionality

42



Thank you! 

43


