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Introduction

• Top-k query: shortlists 
top options from a set 
of alternatives

• E.g. tripadvisor.com
– rate (and browse) hotels 

according to price, 
cleanliness, location, 
service, etc. 

• A user’s criteria: price, 
cleanliness and 
service, with different 
weights

Weights could be captured 

by slide-bars:



Introduction

• Slide-bar locations → numerical weights

• We call q = <0.8, 0.3, 0.5> the query vector
– and its domain query space or preference space

• Linear function ranks hotels (i.e. options)
– score = 0.8·price + 0.3·clean + 0.5·service

– if option r is seen as vector, score = dot product r·q

• Top-k returned (e.g. the top-10)

• Top-k processing is well-studied
– E.g. [Fagin01,Tao07] for processing w/o & w/ index

– Excellent survey [Ilyas08]  



Top-k as sweeping the data space 
[Tsaparas03]

• Assume all query weights are positive

• …and each option attribute is in range [0,1]

• Example for d = 2 (showing: data space)

• Sweeping line normal 
to vector q

• Sweeps from top-corner
(1,1) towards origin

• Order an option is met 
↔ order in ranking! 
– E.g. top-2 = { r1, r2 }

• At current position:
∀ option above (below) the 
line, higher (lower) score than r2



Notes on dim/nality of query domain

• Ranking of depends only on orientation of 
sweeping line (or hyper-plane, in higher dim.)

– query vector <0.8,0.3,0.5> same effect as <8,3,5>

•  we can normalize q so that sum of weights is 
1 (without affecting at all the top-k semantics)

– e.g. in 2-D we can rewrite scoring function as

S(r) = α·x1 + (1-α)·x2

• This reduces dim/nality of query domain by 1 

– Geom. operations in query domain become faster

• We’ll ignore this in the following for simplicity
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Relationship to Convex Hull

• Convex Hull: The smallest convex polytope 
that includes a set of points (options)

• Fact: The top-1 option for 
any query vector is 
on the hull! 

– [Dantzig63]: LP text
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[Börzsönyi01, Papadias03]: Skyline

• Dominance: option r1 dominates r2 iff it has 
higher values in all dimensions [ignore ties]

•  S(r1) > S(r2) ∀ q

• Skyline: all opts. that 
aren’t dominated

• Includes top-1 ∀ q

• k-skyband: all opts. 
not dominated by 
k or more others

• Includes top-k ∀ q



[Zhang14]: Global Immutable Region

• Global Immutable Region (GIR)

– The maximal region around query vector q where 

the top-k result remains the same

• Order within result retained

– i.e. S(r1) > S(r2) and S(r2) > S(r3) … S(rk-1) > S(rk) 

– k-1 conditions (O-conditions)

• Non-results cannot overtake rk

– i.e. S(rk) > S(r) for every non-result r

– n-k conditions (NR-conditions)  

• Observation: each condition ↔ a half-space!



[Zhang14]: Global Immutable Region

• Each condition ↔

a half-space!

• Intersect all half-spaces 

• Cost: O(nd/2)

• Problem: Too expensive

• Idea: limit no. of 

NR-conditions!

h
1
-2



[Zhang14]: Global Immutable Region
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• Answer: 
Every query vector in 
shaded area (GIR)

• Applications:

– Result stability
– E.g. volume of GIR equals to 

probability that a random query 

vector returns same result as q

– Result caching 

– Weight readjustment



[Asudeh18]: Result stability

• Given a total ranking of the dataset w.r.t. q

• They use GIR volume as a measure of stability

• Allowing q to move in a region R in pref. space

• They report total rankings in decreasing stability 
order (i.e., decreasing GIR volume)

• Their approach relies on sampling (i.e., is 
approximate) with a probabilistic accuracy 
analysis



[Mouratidis15]: MaxRank

• MaxRank query: given a focal option p, find:

1. The highest rank p may achieve under any 
possible user preference, and 

2. All the regions in the preference space where that 
rank is attained



[Vlachou10 & 11]: Reverse top-k query

• Bichromatic (main focus): Given a focal option
p, a set of options, and a set of top-k queries, 
identify the queries that have p in their result 

– Algebraic bounds based on MBRs

• Monochromatic: 
Given a focal option p and a set of options, find 
all regions in pref. space where p is in the 
top-k result 

– Solution only for 2-D
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[Vlachou10 & 11]: Reverse top-k query

• Monochromatic RTOP-k in 2-D

• S(r) = α·x1 + (1-α)·x2

• Every intersection of

scoreline of p ↔ 

reordering

• Plane sweep algo. 
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[Tang17]: k-Shortlist Preference Regions

• Monochromatic RTOP-k for d ≥ 2

• aka: k-Shortlist Preference Regions (kSPR):

– All regions in preference space where a given focal 
option p belongs to the top-k result

15
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[Tang17]: kSPR Example
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• Preference space

• Order of p

• kSPR result for k = 3:

– The shaded wedges

– Every query vector in 

shaded area ranks p
among the top-3 

options



[Tang17]: Fast pruning
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• Dominees

– ignore

• Dominators

– simply increment k*

• Incomparable

– How to deal with them? 

Data Space
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[Tang17]: kSPR

• Consider a single 
incomparable opt. r

• Score of r higher than 
p iff query vector is 
inside a half-space

– Inequality S(r) > S(p) 

maps into half-space 

in query space

Query Space
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[Tang17]: Fundamentals

• Idea: map each incomp. option to a h/s
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• Set of h/s including 
cell = set of options 
scoring higher than p

• Count in each cell = 
no. of options that 
score higher than p

• kSPR result for k=4: 
cells with count ≤ 3

Half-space Arrangement

h1q2 3

4

4

5

3

2

1
3

4

2

3
4

3

4

h2

h3

h7

h6

h4

h5

q1



[Tang17]: Cell Tree

• Insert h/s one by one into a binary tree to maintain 

the arrangement

• Insertion of h1 (root split into 2 leaves)

• Insertion of h2 (each leaf split into two)
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[Tang17]: Cell Tree (3 h/s, k = 2)

• Assume 3 h/s as shown below:

• Cell Tree looks like:
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[Tang17]: Cell Representation (implicit)
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• Cell computation takes 
O(nd/2)

• Implicit representation 
by defining halfspaces:

{h1
−,h2

−,h3
−,h4

+,h5
−,h6

+}

• …even better, just the 
bounding ones:
{h2

−,h6
+}

• Trouble: how to detect 
infeasible cells?



[Tang17]: Case Study

kSPR (k=3) on real NBA data for Dwight Howard

��: points

��: rebounds

��: points

��: rebounds

Season: 2014-15 Season: 2015-16



Uncertain Preferences

• Literature assumes q is given and exact, but…

• …whether manually input or mined, it could only 

be taken as a mere indication

• If only approximate prefs., instead of exact q, use 

a region R in pref. space to allow for inaccuracies

• [Ciaccia&Martinenghi17]: 

identify all possible top-1 options (k = 1)

• [Mouratidis&Tang18]: 

identify all possible top-k options (k ≥ 1)



[Mouratidis&Tang18]: Uncertain Top-k

• Given: 

approx. preferences ↔ region R in pref. space

• UTK1: report all options that may be among the 

top-k when q ∈ R

• UTK2: report specific top-k set for any q ∈ R



UTK: Example
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UTK output for k = 2

(in preference space)
Dataset



r-dominance; r-skyband
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• Consider options r1 and r2

• ∀q in R, S(r1) > S(r2) : r1 r-dominates r2

• r-skyband: options r-dominated by <k others

• Good filtering, but still superset of UTK options 
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2
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UTK1 – Refinement (RSA)
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• ∀ remaining candidate r determine if there is position 

in R where r is in top-k

• Progressively consider competitors and recursively 
partition R by focusing only on promising regions

• Use r-dominance relationships to prioritize 

competitors during verification of r

w1

w
2

R

1
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UTK1 – Drill optimization

• When a promising partition is examined, we first 
perform a regular top-k query for a drill vector, 
i.e., a vector inside the partition 

• If candidate r is in top-k, it is part of UTK1 result

• Drill vector must be inside the partition

• We compute it using LP as the vector q* in the 
partition that maximizes score of r



UTK2 – Refinement (JAA)
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• Choose a candidate p as anchor and produce 
a single partitioning of R for all candidates, 
i.e., determine the rank of p anywhere in R

• If its rank is different than k in some partitions, 
choose a different anchor p’ for them

• …anchor choice: make sure it’s the k-th
somewhere in the partition at hand



UTK2: Refinement Example
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• Let k=2

• Choose an option as anchor

• Determine its rank in R

• equal-to, less-than, and greater-than partitions 

• E.g., for ρ1 (less-than) choose different anchor

ρ1: 1

ρ2: 2
ρ3: 3

ρ4: 4

ρ2: 2
ρ3: 3

ρ4: 4
2

3

3

1

2 3

2

3
4



Case Study
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UTK (k=3) on NBA data for 2016-17 (2D and 3D)
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2D: (rebounds, points)

k = 3 and R = [0:64, 0:74]
Data Space

3D: (rebounds, points, assists)

R = [0:64, 0:72] × [0:72, 0:74]
Preference Space



Related in spirit

• [Ciaccia&Martinenghi18]:
– Assuming data indexed by sorted lists…

– they compute the r-skyband…

– following the threshold algorithm paradigm

– aiming to reduce random/sorted accesses to lists 

• [Qian15]:
– Learn approx. user preferences (i.e., a region R)…

– by iterative pairwise comparisons 

33



[Qian15]: Iterative pairwise comparisons

• 1st probe: r1 vs. r2 (user chooses r1)
• 2nd probe: r3 vs. r4 (user chooses r4)

34
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[Liu16]: Why-not RTOP-k

• Given a focal option p, and…

• a set of query vectors Q (for which p is not in 
top-k set)

• Compute the minimum perturbation to

– (attribute values of) p, or

– the query vectors and value k, or

– all of the above (focal option, vector set, value k)

– s.t. p is among the top-k for every vector in Q
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[Liu16]: Why-not RTOP-k

• Exact solution for 1st problem; improving p

• Key idea:

– Let pi-k be the current k-th opt. for query vector qi

– To be in top-k for qi, the updated p must outscore 

pi-k for qi ↔ qi ⋅ p ≥ qi ⋅ pi-k

– This inequality defines a half-space hi in data 

space! 

– The new p must be in the intersection of the half-

spaces hi defined for each qi in Q

36



[Yang16]: Influence optimization

• Problem: improve p so that it is top-1 for at 
least m query vectors in set Q

• Key idea:

– Let pi be the current k-th opt. for query vector qi

– To be top-1 for qi, the updated p must outscore pi

for qi ↔ qi ⋅ p ≥ qi ⋅ pi

– This inequality defines a half-space hi in data 

space! 

– The new p must be in the intersection of at least m

half-spaces hi defined by vectors qi in Q
37



[Yang&Cai17]: Improvement strategies

• Similar objective to prev. problem

• Given focal opt. p and a set of query vectors Q

• Compute the minimum perturbation 
(improvement) to values of p so that it appears 
in top-k set for at least m vectors in Q

• Problem is hard; heuristic solutions proposed 
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[Tang19]: Top Ranking Region (TopRR)

• Input: dataset & a region R in pref. space 
(representing our target clientele)

• Query: where should we build a new option p
s.t. it is in top-k set for any query vector in R?

• Challenge: dealing with a continuous region in 
pref. space (R) and a continuous region in 
data space (the output)

• Key idea: beat continuity by reducing it to a 
finite number of critical points, while retaining 
exactness! 39



TopRR: Example

TopRR output for k = 3

(in data space)
Dataset

#1

#2
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Top-k in High-D?

• Unless the data exhibit strong correlation, top-k 
is meaningless in more than 5-6 dimensions!

• As d grows, the highest score across the 
dataset approaches the lowest score!

• I.e. ranking by score no longer offers 

distinguishability ↔ looses its usefulness

• Behaviour very similar to nearest neighbor 
query, known to suffer from the dimensionality 
curse [Beyer99]
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Top-k in High-D?

• IND data

• …of fixed cardinality n = 100K 

• …we vary data dimensionality

42



Thank you! 
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