Title (Units): COMP4115 Exploratory Data Analysis and Visualization (3,2,1)

Course Aims: To learn the essential exploratory techniques for analyzing and visualizing data,

and to gain hands-on experience of using software tools for data analytics.

Prerequisite: i) MATH 2005 Calculus, Probability and Statistics for Computer Science

or

ii) COMP 2865 Fundamental of Data Analysis and Management

or

III) Any ITEC course at Level 2 or above

Course Intended Learning Outcomes (CILOs):

Upon successful completion of this course, students should be able to:

No.	Course Intended Learning Outcomes (CILOs)
	Knowledge
1	Describe exploratory data analysis and visualization concepts
2	Describe data analysis and visualization models and algorithms
3	Describe applicability of different data analysis and visualization models techniques to solve real-
	world problems
	Professional Skill
4	Acquire and pre-process data
5	Apply exploratory data analysis to some real data sets and provide interpretations via relevant
	visualization
	Attitude
6	Exhibit the awareness of the importance and limitation of the exploratory data analysis paradigm

Calendar Description: This course aims at providing basic concepts and techniques in exploratory data

analysis and visualization. Hands-on experience of using data analytics software

tools will also be covered.

Teaching and Learning Activities (TLAs):

CILOs	Type of TLA
1-3	Student will learn the concepts from lecture
1-5	Student will achieve the outcomes via assignment on exploratory data analysis
4-6	Student will achieve the outcomes via guided laboratory with data analysis software
4-6	Student will achieve the outcomes via project based on real world data

Assessment:

No.	Assessment	Weighting	CILOs to be	Description of Assessment Tasks
	Methods		addressed	
1	Continuous Assessment	40%	1-6	Assignments and labs will be used to consolidate their knowledge and develop their skills in exploratory data analysis. Project will further strengthen their understanding and problem solving skills.
2	Examination	60%	1-5	Final examination questions are designed to evaluate how far students have achieved their intended learning outcomes. Analysis based questions will be used to assess the understanding of exploratory data analysis problems. Problem solving questions will be used to assess students' ability in tackling applications in data analysis and visualization.

Assessment Rubrics:

	Excellent (A)	Good (B)	Satisfactory (C)	Marginal Pass (D)	Fail (F)
Describe exploratory data analysis and visualization algorithms	Thorough description of almost all data mining algorithms	Description of most of the algorithms	Description of some of the algorithms	Description of a small number of algorithms	
Describe applicability of related techniques	Thorough description of almost all usage of data mining	-	Description of some of the usage		Description of a very small number of usage
Acquire and pre- process data from online sources	Suggestion of almost all correct solutions	Suggestion of most of the solutions		Suggestion of a small number of solutions	Suggestion of a very small number of solutions
Apply exploratory data analysis to some real data sets and provide interpretations via relevant visualization	with concise and precise visualization	Careful analysis of some types of data with clear visualization of the results.	types of data with some visualization of the results.	limited types of data with primitive visualization of the	Incorrect analysis of most types of data with inappropriate visualization of the results.

Course Content and CILOs Mapping:

Cor	CILO No.	
I	Introduction to Exploratory Data Analysis and Visualization	1-6
II	Pattern Discovery	1-3, 5
III	Graphical Visualization	1-3, 5
IV	Case Studies in Exploratory Data Analysis for Different Application Domains	3, 5,6

References:

- W.L. Martinez and A.R. Martinez. Exploratory Data Analysis with MATLAB, Chapman & Hall/CRC, 2011
- B. Everitt. An Introduction to Applied Multivariate Analysis with R (Use R!), Springer, New York, 2011
- W. McKinney. Python for Data Analysis: Data Wrangling with Pandas, NumPy, and IPython, O' Reilly, 2012
- M.A. Russell. Mining the Social Web: Data Mining Facebook, Twitter, LinkedIn, Google+, GitHub and More, O' Reilly, 2013

Course Content:

Topic

- I. Introduction to Exploratory Data Analysis and Visualization
 - A. Overview of the exploratory aspect of data analysis
 - B. Data acquisition from on-line data sources and preprocessing techniques
- II. Pattern Discovery
 - A. Dimensionality Reduction Linear and Non-Linear Models
 - B. Clustering and Classification
 - C. Smoothing Scatterplots and Regression
- III. Graphical Visualization

- A. Visualizing ClustersB. Visualization Data DistributionsC. Multivariate VisualizationD. Graph Data Visualization

- Case Studies in Exploratory Data Analysis for Different Application Domains IV.