Title (Units): COMP 7060 Advanced Topics in Intelligent Systems (3,3,0)

Course Aims: Through a systematic training, students will be able to conduct independent intelligent systems research and develop theoretical or practical solutions in some selected domains, such as learning, planning, self-organization, soft-computing, adaptive computation, evolutionary computation, and intelligent agents.

Prerequisite: Research Postgraduate Student Standing

Learning Outcomes (LOs):

Upon successful completion of this course, students should be able to:

No.	Learning Outcomes (LOs)
	Knowledge
1	Explain the fundamental concepts and characteristics in some selected domains, such as learning, planning, self-
	organization, soft-computing, adaptive computation, evolutionary computation, and intelligent agents
2	Explain the advantages and limitations of various methods developed for the selected domains
3	Describe the applicability, design and implementation considerations of related techniques in tackling different types of
	application problems
4	Describe the recent research development in the selected domains
	Professional Skill
5	Formulate some application scenarios or problems based on related intelligent systems models and algorithms
6	Implement self-organization, learning, reasoning, and adaptation algorithms

Calendar Description: This course deals with the advanced topics in intelligent systems. Through a systematic training, students will be able to conduct independent intelligent systems research and develop theoretical or practical solutions in some selected domains, such as learning, planning, self-organization, soft-computing, adaptive computation, evolutionary computation, and intelligent agents.

Assessment:

No.	Assessment	Weighting	Remarks		
	Methods				
1	Continuous assessment	50%	Continuous assessments will provide opportunities to students for demonstrating their understanding of both fundamental concepts and relevant computing algorithms/techniques via developing an intelligent system, implementing some specific algorithms, or conducting a literature review on some selected domains.		
2	Examination	50%	The final examination will be designed to check all learning outcomes, in which the students will analyze and discuss certain intelligent systems development issues, as well as to work out solutions in various problem scenarios.		

Assessment Rubrics:

Criteria	Excellent (A)	Good (B)	Satisfactory (C)	Fail (F)
Formulate	Compare, contrast	Formulate some	Formulate classical	Unable to perform
problems based on	and design	selected classical	problems and solve	problem formulation
intelligent systems	appropriate	problems and	them using some	and implementation.
models and	intelligent systems	implement intelligent	existing intelligent	
algorithms and	to solve problems;	systems to solve	system tools.	
implement them	Identify	them.		
	appropriate			
	occasions or			
	contexts for their			
	use.			
Describe the key	Describe the	Describe the features	Describe the features of	Unable to clearly
fundamental	features and the	and the derivation of	various key different	identify key
concepts and	derivation of	various key different	intelligent system	fundamental concepts
characteristics of	various key	intelligent system	models and algorithms.	and characteristics of

different intelligent	different intelligent	models and	different intelligent
system models and	system models and	algorithms; Explain	system models and
algorithms	algorithms; Explain	how they work using	algorithms
indicating their	how they work in	simple toy examples.	
purposes, strengths	the context of some		
and limitations	selected		
	applications.		

Learning Outcomes and Weighting:

Content	LO No.
I-XI Selected Domains in Intelligent Systems	1-6

References:

Yoav Shoham and Kevin Leyton-Brown. Multiagent Systems: Algorithmic, Game-Theoretic, and Logical Foundations (1st Edition), Cambridge University Press, 2008
Steven Johnson, Emergence: The Connected Lives of Ants, Brains, Cities, and Software, Simon & Schuster, 2001.
Jiming Liu, Xiaolong Jin, and Kwok Ching Tsui, <u>Autonomy Oriented Computing: From Problem</u> Solving to Complex Systems Modeling, Kluwer Academic Publishing / Springer, 2005.
Ning Zhong, Jiming Liu and Yiyu Yao (editors), <u>Web Intelligence</u>, Springer, 2003.
Jiming Liu, Autonomous Agents and Multi-Agent Systems: Explorations in Learning, Self-Organization, and Adaptive Computation, World Scientific Publishing, 2001.
Mitchel Resnick, Turtles, Termites and Traffic Jams: Explorations in Massively Parallel Microworlds (Complex Adaptive Systems series), MIT Press, 1994.
Gerhard Weiss (Editor), Multiagent Systems (2nd Edition), MIT Press, 2013.
Kenneth A. De Jong, Evolutionary Computation: A Unified Approach, MIT Press, 2016.
(Note: Additional reading materials such as research papers and chapters will be provided.)

Course Content in Outline:

<u>Topic</u>

Some of the following topics will be covered:

- I. Agent Learning
- II Artificial Life and Autonomy-Oriented Computation
- III. Autonomous Agents and Multi-Agent Systems
- IV. Behavior Engineering
- V. Constraint Satisfaction and Satisfiability
- VI. Evolutionary Computation
- VII. Planning and Optimization
- VIII. Real-World Problem-Solving
- IX. Self-Adaptation and Adaptive Computation
- X. Self-Organization and Self-Organized Criticality
- XI. Soft-Computing and Uncertainty Management