Title (Units):	COMP 7380 Computational Finance (3,2,1)			
Course Aims:	To introduce the principles of computational finance; to discuss financial market mechanics such as options, futures, and other derivatives; to study hedging strategies using futures; to understand trading strategies involving options; to explain option pricing models such as the Black-Scholes-Merton equation and its solution and implementation; to investigate sensitivity factors affecting option prices.			
Prerequisite:	Postgraduate student standing and basic knowledge in probability, statistics and differential equations			

Course Intended Learning Outcomes (CILOs):

Upon successful completion of this course, students should be able to:

No.	Course Intended Learning Outcomes (CILOs)			
	Knowledge			
1	Understand products in financial markets.			
2	Explain financial concepts such as options, futures, and derivatives.			
3	Describe pricing models for options, futures, and derivatives.			
4	Derive solutions for option pricing models.			
	Professional Skill			
5	Compute prices for options and futures.			
6	Analyze effects of market conditions on option pricing.			

Calendar Description: This course is designed to introduce the principles of computational finance. Topics covered include financial market mechanics such as options, futures, and other derivatives, hedging strategies using futures, and trading strategies involving options. Detail explanations of option pricing models such as the Black-Scholes-Merton equation and its solution and implementation will be given. Sensitivity factors affecting option prices will be discussed.

Teaching and Learning Activities (TLAs):

CILOs	TLAs will include the following		
1-4	Students will learn the computational finance concepts and techniques via lectures, tutorials, and		
	assignments.		
5-6	Students will work on assignments to gain hands-on experience in financial mathematics and option		
	price calculations.		

Assessment:

No.	Assessment Methods	Weighting	CILOs to be addressed	Remarks
1	Continuous Assessment	40%	1-6	Continuous assessments are designed to measure how well the students have learned the basic concepts and techniques in the pricing and modeling of options, futures and other derivatives
2	Examination	60%	1-6	Final examination questions are designed to see how far students have achieved their intended learning outcomes. Questions will primarily be analysis and skills based to assess the students' ability in computational finance.

Rubrics:

	Excellent (A)	Good (B)	Satisfactory (C)	Fail (F)
Demonstrates an	Demonstrates	Demonstrates	Demonstrates	Demonstrates limited
understanding of	thorough	sufficient	acceptable	knowledge and
financial concepts	knowledge and	knowledge and	knowledge and	understanding of key
	understanding of	understanding of	understanding of	concepts and

	key	key	key	characteristics in
	concepts and	concepts and	concepts and	finance, including
	characteristics in	characteristics in	characteristics in	options, futures, and
	finance, including	finance, including	finance, including	other derivatives.
	options, futures, and	options, futures, and	options, futures, and	other derivatives.
	other derivatives.	other derivatives.	other derivatives.	
Uses critical and	Uses critical and	Uses critical and	Uses critical and	Uses critical and
creative thinking	creative thinking	creative thinking	creative thinking	creative thinking with
skills to analyze	with a high degree	with a considerable	with an acceptable	a limited degree of
pricing models	of effectiveness in	degree of	degree of	effectiveness in
1 0	analyzing pricing	effectiveness in	effectiveness in	analyzing pricing
	models.	analyzing pricing	analyzing pricing	models.
		models.	models.	
Understands how	Demonstrates	Demonstrates	Demonstrates	Demonstrates
option prices move	understanding and	understanding and	understanding and	understanding and
in relation to	criticism with a high	criticism with a	criticism with an	criticism with a
different market	degree of clarity in	considerable	acceptable degree	limited degree of
factors.	various sensitivity	degree of clarity in	of clarity in various	clarity in various
	analysis factors.	various sensitivity	sensitivity analysis	sensitivity analysis
	5	analysis factors.	factors.	factors.
Implements	Correct program	Mostly correct	Acceptably correct	No/incorrect program
solutions for option	implementation	program	program	implementation
pricing models	*	implementation	implementation	*
		1	1	

Course Intended Learning Outcomes and Weighting:

Content	CILO No.
I. Background Mathematics	1-6
II. Options and Futures	1-2
III. Black-Scholes-Merton Model	3-5
IV. Extended Topics	4, 6

References:

J. Hull, <u>Options, Futures, and Other Derivatives</u>, Pearson Hall, 9th Edition, 2014. Yuh-Dauh Lyuu, <u>Financial Engineering and Computation: Principles</u>, <u>Mathematics</u>, <u>Algorithms</u>, Cambridge University Press, 2002.

Z. Bodie, A. Kane, and A. Marcus, <u>Investments</u>, McGraw Hill, 2013.
E. Elton, M. Gruber, S. Brown, and W. Goetzmann, <u>Modern Portfolio Theory and</u> <u>Investment Analysis</u>, Wiley, 9th Edition, 2014.

Course Content in Outline:

<u>Topic</u>

- I. Background Mathematics
 - A. Statistics
 - B. Differential equations
 - C. Computational methods

II. Options and Futures

- A. Introduction to markets, contracts, and traders
- B. Mechanics of futures markets
- C. Hedging strategies using futures
- D. Interest rates
- E. Determination of forward and futures prices
- F. Mechanics of options markets
- G. Properties of stock options
- H. Trading strategies involving options

III. Black-Scholes-Merton Model

- A. Binomial trees
- B. Wiener processes and Ito's LemmaC. Black-Scholes-Merton model and differential equation
- D. Sensitivity analysis of options (delta, theta, gamma, and etc.)
- IV. Extended Topics (e.g., Volatility, Value at Risk, and etc.)