Title (Units):	COMP7410 Medical Image Processing, Analysis and Applications (3,2,1)		
Course Aims:	In this course, students will learn fundamental image processing techniques, characteristics of different types of medical images, and how to apply different classical image processing techniques to different types of medical images. Students will also learn the basic concept, structure as well as the components in Picture Archiving and Communication Systems (PACS).		
Prerequisite:	Postgraduate Student Standing		

Course Intended Learning Outcomes (CILOs):

Upon successful completion of this course, students should be able to:

No.	Course Intended Learning Outcomes (CILOs)
	Knowledge
1	Describe the concepts and techniques in digital image processing
2	Describe the characteristics and properties of different types of medical images
3	Describe the structure and components of PASC
	Professional Skill
4	Design and implementation of algorithm(s) for a medical image processing application

Calendar Description:In this course, students will learn fundamental image processing techniques,
characteristics of different types of medical images, and how to apply different
classical image processing techniques to different types of medical images.
Students will also learn the basic concept, structure as well as the components in
Picture Archiving and Communication Systems (PACS).

Teaching and Learning Activities (TLAs):

CILOs	Type of TLA
1-3	Students will learn medical image processing algorithms and image-based medical
	applications through lectures and/or tutorials. In order to help students to have good
	understanding of the medical image processing theories, laboratory sessions will be
	designed so that students could apply what they have learnt in lectures. This is also one of
	the ways to evaluate students' understanding. Besides, assignment(s) and final examination
	will be designed to test students' level of understanding.
1-4	Based on the medical image processing algorithms they have learned, students are required
	to work on a medical imaging project which will be implemented using available library or
	toolbox. Students are required to give a preliminary demonstration as well as a final formal
	presentation on their project. In both cases, instructor(s), teaching assistant and other
	students would ask questions related to their project. In this way, we could assess their
	medical image processing programming skills as well as understanding on medical imaging
	applications.

Assessment:

No.	Assessment Methods	Weighting	CILOs to be addressed	Description of Assessment Tasks
1	Continuous Assessment	50%	1-4	Written and laboratory assignments, and project are designed to evaluate the students understanding of the principles and practice of medical image processing techniques and applications
2	Examination	50%	1-3	Final examination questions are designed to assess students understanding of the methodology, characteristics and techniques of medical image processing and applications

Assessment Rubrics:

	Excellent (A)	Good (B)	Satisfactory (C)	Fail (F)
Creativity and originality on group project	All of the concepts and content are different from the lectures with impressive creativity	Most of the concepts and content are different from the lectures with good creativity	Some of the new concepts	No new idea
Explain, analysis and the use of digital image processing algorithms	Make good use of algorithms	Often make good use of algorithms	Sometimes make good use of algorithms	Not able to make good use of algorithms
Explain the characteristics and properties of different types of medical images	Well explain the characteristics and properties of different types of medical images	Often explain the characteristics and properties of different types of medical images	Sometimes explain the characteristics and properties of different types of medical images	Not able to explain the characteristics and properties of different types of medical images
Explain and analyze the structure and components in PACS	Well explain and analyze the structure and components in PACS	Often explain and analyze of the structure and components in PACS	Sometimes explain the structure and components in PACS	Not able to explain the structure and components in PACS
Implementation of image processing algorithm	Fully correct in implementing image processing algorithms	Mostly correct in implementing image processing algorithms	Partially correct in implementing image processing algorithms	Not able to implement image processing algorithms

Course Content and CILOs Mapping:

Content		CILO No.
Ι	Introduction to Image Processing	1,2,4
Π	Medical Imaging and Its Properties	1,2,4
III	Picture Archiving and Communication Systems	2,3
IV	Case Studies and Applications	2,3,4
V	Project	4

References:

- G. Dougherty, Medical Image Processing: Techniques and Applications, Springer, 2013.
- M. A Haidekker, Medical Image Technology, 1st Ed., Springer, 2013.
- C. Guy and D. Ffytche, An Introduction to the Principles of Medical Imaging, Imperial College Press, 2005.
- I. Bankman, Handbook of Medical Imaging: Processing and Analysis (Biomedical Engineering), Academic Press, 2008.
- H. K. Huang, PACS and Imaging Informatics: Basic Principles and Applications, 3nd Ed., Wiley, 2010.
- IEEE Transactions on Medical Imaging (Journal)
- Proceedings of International Conference on Medical Image Computing and Computer Assisted Intervention (conference)
- Z Li and M S Drew, Fundamentals of Multimedia (Texts in Computer Science), Springer, 2014.
- P Suetens, Fundamentals of Medical Imaging, Cambridge University Press, 2012.

Course Content:

<u>Topic</u>

- I. Introduction to Image Processing
 - А.
 - B. Fundamentals of digital image processing
 - C. Image enhancement in spatial domain
 - D. Image enhancement in frequency domain
 - E. Image restoration
 - F. Image segmentation
 - G. Image compression
- II. Medical Imaging and Its Properties
 - A. Ultrasonic Image
 - B. Magnetic Resonance Image
 - C. Computed Tomography Image
 - D. X-ray Image
- III. Picture Archiving and Communication Systems
 - A. Architecture and operation of PACS
 - B. PACS-based imaging informatics
 - C. Integration of PACS with Hospital Information Systems and Radiology Information Systems
 - D. Standards, interoperability and workflow protocols
- IV. Case Studies and Applications
- V. Project