
1

Title (Units): COMP4007 Software Design, Development, and Testing (3,3,1)

Course Aims: This course is aimed to further develop students' knowledge and skills in software

engineering, and to introduce and discuss software design patterns, state-of-the-art

techniques and advanced topics in developing reliable software systems. At the

end of the study of this course, students should:

i) appreciate the importance of software quality and the essence of software

reliability engineering,

ii) be familiar with software design patterns, development process standards, and

testing techniques, and

iii) be up-to-date about emergent technologies and practical issues in software

engineering.

Prerequisite: COMP3006 Software Engineering, or

COMP3007 Systems Analysis and Design, or

COMP3047 Software Engineering

Course Intended Learning Outcomes (CILOs):

Upon successful completion of this course, students should be able to:

No. Course Intended Learning Outcomes (CILOs)

 Knowledge

1 Explain software reliability engineering process, techniques, and the applicability.

2 Explain essential recurring structures or patterns in software design and implementation, as well as

their applications in developing reliable software systems.

3 Explain software test planning process, testing strategies, and testing techniques.

4 Explain software models and test design patterns.

 Professional Skill

5 Perform software design, development, and testing systematically, following the underlying patterns

and essential techniques introduced.

Calendar Description: This course is aimed to further develop students' knowledge and skills in software

engineering, and to introduce and discuss software design patterns, state-of-the-art

techniques and advanced topics in developing reliable software systems.

Teaching and Learning Activities (TLAs):

CILOs Type of TLA

1-4 Students will acquire the concepts and develop understandings through lectures and in-class

exercises.
5 Students will develop their software design, development, and testing skills through

demonstrated software development exercises and projects.

Assessment:

No. Assessment

Methods

Weighting CILOs to be

addressed

Description of Assessment Tasks

1 Continuous

Assessment

60% 5 The group project provides opportunities for

students to practice and demonstrate their skills and

abilities in applying and integrating the principles

and techniques of software design, development,

and testing learned.
2 Examination 40% 1-4 Final examination questions evaluate students’ in-

depth knowledge and understanding of the key

principles and techniques necessary for developing

reliable software systems.

2

Assessment Rubrics:

Excellent (A) Achieves all the five LOs, demonstrating a good mastery of both the theoretical and

practical aspects of the knowledge and skills associated with software design,

development, and testing
 Able to develop and present sound arguments and correct solutions to problems,

accompanied by in-depth analysis and insight
 Demonstrates a thorough understanding and solid knowledge of the principles and

techniques of software design, development, and testing
 Able to draw on a variety of techniques and relevant knowledge and appropriately

apply them to new software design, development, and testing situations and problems

Good (B) Achieves all five LOs, demonstrating a good understanding of the associated concepts

and underlying methodologies
 Able to develop solutions to problems, accompanied by adequate explanations
 Demonstrates a competent level of knowledge of the principles and techniques of

software design, development, and testing
 Ability to make use of appropriate techniques and knowledge and apply them to

familiar situations and problems

Satisfactory (C) Achieves most of the five LOs, demonstrating a basic level of understanding of the

associated concepts and underlying methodologies
 Able to provide acceptable solutions to problems
 Demonstrates an adequate level of knowledge of the principles and techniques of

software design, development, and testing
 Ability to make use of some techniques and knowledge and apply them to familiar

situations

Marginal Pass (D) Achieves most of the five LOs, with minimal understanding of the associated

concepts and underlying methodologies
 Able to provide solutions to simple problems
 Demonstrates a basic level of knowledge of the principles and techniques of software

design, development, and testing
 Ability to apply some techniques and knowledge to a limited number of typical

situations

Fail (F) Achieves less than three of the LOs, with little understanding of the associated

concepts and underlying methodologies
 Unable to provide solutions to simple problems
 Knowledge of the principles and techniques of software design, development, and

testing falling below the basic minimum level
 Unable to apply techniques or knowledge to situations or problems

Course Content and CILOs Mapping:

References:

 K. Beck, Implementation Patterns, Addison-Wesley, 2007

 R. C. Martin, Clean Code: A Handbook of Agile Software Craftsmanship, Addison-Wesley, 2007

 Glenford J. Myers, Corey Sandler, Tom Badgett, The Art of Software Testing, 3rd Edition, Wiley, Nov.,

2011

 Lee Copeland, A Practitioner's Guide to Software Test Design, Artech House, Jan. 2004

 Lisa Crispin & Janet Gregory, Agile Testing: A Practical Guide for Testers and Agile Teams, 1st Edition,

Addison-Wesley Professional, Jan. 2009

 Wazlawick, Object-Oriented Analysis and Design for Information Systems, Morgan Kaufman, 2014

Content CILO No. Hours

I Software Quality 1 3

II Software Design and Development 2,4,5 12

III Software Design Patterns 2,4 15

IV Software Testing 1-4,5 9

3

 Jeffrey A. Hoffer, Joey George, and Joe A. Valacich, Modern Systems Analysis and Design, (7th Edition),

Prentice Hall, 2013

 Alan Dennis, Barbara Haley Wixom, and David Tegarden, Systems Analysis and Design: An Object-

Oriented Approach with UML (5th Edition), Wiley, 2015

 Hassan Gomaa, Software Modeling and Design – UML, Use Cases, Patterns, and Software Architectures,

Cambridge University Press, 2011

 Jez Humble, and David Farley, Continuous Delivery: Reliable Software Releases through Build, Test, and

Deployment Automation, Addison-Wesley, 2010

 Robert V. Binder, Testing Object-Oriented Systems: Models, Patterns, and Tools, Addison-Wesley

Professional, 1999

 John Viega, and Gary McGraw, Building Secure Software: How to Avoid Security Problems the Right

Way, Addison-Wesley, 2006

 Ivar Jacobson, Grady Booch, and James Rumbaugh, The Unified Software Development Process, Addison-

Wesley, 1999

 Joshua Kerievsky, Refactoring to Patterns, Addison-Wesley Professional, 2004

 Cay S. Horstmann, Object-oriented Design and Patterns, John Wiley & Sons, 2006

 Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides, Design Patterns: Elements of Reusable

Object-Oriented Software, Addison-Wesley, 1994

Course Content:

Topic

I. Software Quality

 A. Quality control techniques

B. Software reliability engineering (a development perspective)

II. Software Design and Development

 A. Formal specifications and formal design techniques

B. Basics of design patterns

C. Implementation plan

D. Development tools and code generation

E. Coding styles and standard practice

III. Software Design Patterns

 A. Creational design patterns

B. Structural design patterns

C. Behavioral design patterns

IV. Software Testing

 A. Verification and validation

B. Design-level and implementation-level testing

C. Testing plan, strategies and techniques

D. Testing object-oriented software

E. Combinational models and state machines

F. Responsibility-based testing and test design patterns

