Title (Units): COMP4027 Data Mining and Knowledge Discovery (3,2,1)

Course Aims: To learn the latest development of knowledge discovery and data mining concepts

and techniques. Theories and algorithms for data mining and knowledge discovery will be introduced. Relevant applications in specific domains such as medicine and

heath care will be covered.

Prerequisite: i) COMP 2015 Data Structures and Algorithms

COMP 2016 Database Management

MATH 2005 Calculus, Probability and Statistics for Computer Science

Or

ii) COMP 2865 Fundamental of Data Analysis and Management

Anti-requisite: MATH3836 Data Mining

Course Intended Learning Outcomes (CILOs):

Upon successful completion of this course, students should be able to:

No.	Course Intended Learning Outcomes (CILOs)			
	Knowledge			
1	Distinguish data mining applications from other IT applications			
2	Explain data mining algorithms			
3	Explain applicability of data mining			
	Professional Skill			
4	Suggest appropriate solutions to data mining problems			
5	Analyze data mining algorithms and techniques			
	Attitude			
6	Work as a team in solving challenging data mining problems			

Calendar Description: This course is aimed at providing an overview of concepts and techniques in

knowledge discovery and data mining. Relevant applications in specific domains

such as medicine and heath care will be covered.

Teaching and Learning Activities (TLAs):

CILOs	Type of TLA
1-3	Student will learn the concepts from lecture
4-5	Student will achieve the outcomes via assignment on data mining
4-5	Student will achieve the outcomes via guided laboratory with data mining software
4-6	Student will achieve the outcomes via group project on solving real world data mining problem

Assessment:

No.	Assessment	Weighting	CILOs to be	Description of Assessment Tasks	
	Methods		addressed		
1	Continuous Assessment	40%	4-6	Assignments and labs will be used to consolidate their knowledge and develop their skills in data mining. Lab exercises and projects will further strengthen their understanding and problem solving skills, which takes 15% of an overall score. The written assignments and quizzes take 25% of an overall score.	
2	Examination	60%	1-5	Final examination questions are designed to see how far students have achieved their intended learning outcomes. Analysis based questions will be used to assess the understanding of data mining problems. Problem solving questions will be used to	

		assess students' ability in tackling applications in
		data mining.

Assessment Rubrics:

	Excellent (A)	Good (B)	Satisfactory (C)	Marginal Pass (D)	Fail (F)
Identify and distinguish data mining applications from other IT applications	Thorough identification of almost all applications	Identification of a large number of applications	Identification of a moderate number of applications		Identification of only a very small number of applications
Describe data mining algorithms	Thorough description of almost all data mining algorithms	Description of most of the algorithms	Description of some of the algorithms	Description of a small number of algorithms	Description of only a few number of algorithms
Describe applicability of data mining	Thorough description of almost all usage of data mining	Description of most of the usage	Description of some of the usage	Description of a small number of usage	Description of a very small number of usage
Suggest appropriate solutions to data mining problems	Suggestion of almost all correct solutions	Suggestion of most of the solutions	Suggestion of some of the solutions	Suggestion of a small number of solutions	Suggestion of a very small number of solutions
Analyze data mining algorithms and techniques	Thorough analysis of almost all data mining algorithms and techniques	Analysis of most of the data mining algorithms and techniques	Analysis of some data mining algorithms and techniques	Analysis of a small number of data mining algorithms and techniques	Analysis of a very small number of data mining algorithms and techniques

Course Content and CILOs Mapping:

Content		CILO No.
Ι	Introduction to Data Mining	1
II	Data Mining Algorithms	2, 3, 5, 6
III	Clustering	2, 5
IV	Case Studies in Data Mining	3, 4, 5, 6

References:

- P. Tan, M. Steinback and V. Kumar, Introduction to Data Mining, Addison Wesley, Second Edition, 2016.
- J. Leskovec, A. Rajaraman, and J. Ullman, Mining of Massive Datasets, Second Edition, Cambridge University Press, 2014.
- I. H. Witten and E. Frank, Data Mining: Practical Machine Learning Tools and Techniques with Java Implementations, Morgan Kaufmann Publishers, San Francisco, CA, Third Edition, 2011.
- J. W. Han and M. Kamber, Data Mining: Concepts and Techniques, Morgan Kaufmann Publishers, San Francisco, CA, Third Edition, 2011.
- D. Hand, H. Mannila and P. Smyth, Principles of Data Mining, MIT Press, 2001

Course Content:

Topic

- I. Introduction to Data Mining
 - A. Overview of data mining
 - B. Data preparation for knowledge discovery
 - C. Data warehousing
 - D. Data visualization and exploration
- II. Data Mining Algorithms
 - A. Association rules
 - B. Apriori algorithms
 - C. Classification algorithmsD. Mining event sequences

 - E. Applications
- III. Clustering
 - A. Classical algorithms
 - B. Graph-based clustering
 - C. Advanced methods
 - D. Applications
- IV. Case Studies in Data Mining
 - A. Health Informatics
 - B. Related applications