

DEPARTMENT OF COMPUTER SCIENCE

PhD Degree Oral Presentation

PhD Candidate: Mr Yu LI

Supervisor:

Dr Jianliang XU

External Examiner:

Prof Qing LI

Dr Xiaowen CHU (Proxy for Prof Bin CUI)

Time: 11 October 2011 (Tuesday)

11:00 am – 1:00 pm (35 mins presentation and 15 mins Q & A)

Venue: T909, Cha Chi Ming Science Tower, HSH Campus

“Query Processing and Indexing for Flash-Memory Based Database Systems”

Abstract

NAND flash-memory based storage has been widely used in embedded and mobile systems in the past

decade. Recently it also becomes popular in personal computers and even in enterprise computing

infrastructures in the form of Solid-State Drive (SSD). With its continuously increasing capacity and

dropping price, we envision that some database systems will operate on flash-memory based storage devices

in the near future.

Comparing to conventional magnetic disks, flash memory has a number of unique I/O characteristics. In

particular, flash memory has an excellent random read performance, which is as fast as the sequential read.

On the other hand, the random write of flash memory is not only much slower than the sequential write in

speed, but also may cause other issues such as reducing the endurance of flash memory. Furthermore, such

performance characteristics may vary for different types of flash memory devices. As a result, the

state-of-the-art database algorithms, which assumed I/O characteristics of magnetic disks, become

suboptimal when implemented on flash-memory based storage devices.

In this thesis, we investigate how to optimize query processing and indexing techniques for databases

running on flash-memory based storage devices. With a careful study of the flash I/O characteristics, we

re-examine the data structures and algorithms involved in the implementation of database management

systems. We identify several database components with either performance issues or potential for achieving

higher performance. We then optimize them by exploiting the unique characteristics of flash memory. More

specifically, firstly, we study the indexing structure. The features of flash memory, such as the

erase-before-write constraint and the asymmetric read/write cost, severely deteriorate the performance of the

traditional B+-tree algorithm. We propose a new lazy-update strategy for B+-tree to overcome the

limitations of flash memory. The idea is to defer the time of committing update requests to the B+-tree by

buffering them in a segment of main memory. They are later committed in groups so that each write

operation can be amortized by a bunch of update requests. We identify a victim selection problem for the

lazy-update B+-tree and develop two heuristic- based commit policies to address this problem. Experiment

results show that the proposed lazy-update method, along with a well designed commit policy, greatly

improves the update performance of the traditional B+-tree while preserving the query efficiency.

Secondly, we develop a novel technique called StableBuffer to optimize the random write performance for

write intensive database applications. As motivated by a recently discovered focused write pattern, we

propose to write pages temporarily to a small, pre-allocated storage space on the flash device, i.e.,

StableBuffer, instead of directly writing to their actual destinations. We then recognize and flush efficient

write patterns of the buffer to achieve a better write performance. In contrast to prior log-based techniques,

the StableBuffer solution does not require modifying the driver of flash memory devices and hence is

device-independent. We discuss the detailed design and implementation of the StableBuffer solution.

Experiment results based on a TPC-C benchmark trace shows that StableBuffer significantly improves the

response time and throughput of write operations in comparison with a direct write-throughstrategy.

Finally, we study the core of query processing — join processing — on flash-memory based storage devices.

We propose a new framework called DigestJoin to optimize the join performance by reducing the

intermediate result size and exploiting fast random reads of flash memory. DigestJoin consists of two phases:

(1) projecting the join attributes followed by a join on the projected attributes; and (2) fetching the full

tuples that satisfy the join to produce the final join results. While the problem of tuple/page-fetching with

the minimum I/O cost (in the second phase) is intractable, we propose three heuristic page-fetching

strategies for flash memory. We implement DigestJoin and conduct extensive experiments on a real flash

memory device. Experiment results based on TPC-H datasets show that DigestJoin clearly outperforms the

traditional sort-merge join and hash join under a wide range of system configurations.

*** ALL INTERESTED ARE WELCOME ***

