Title (Units):COMP 2320 Operating Systems (3,3,1)

Course Aims: To introduce the fundamentals and major concepts of operating systems design and implementation; to study the detailed operations of various components of an operating system.

Prerequisite: Nil

Learning Outcomes (LOs):

Upon successful completion of this course, students should be able to:

No.	Learning Outcomes (LOs)			
	Knowledge			
1	Describe the basic concepts of operating systems, including development and achievements, functionalities and objectives, structure and components			
2	Explain how memory, devices (I/O), files, processes and threads are managed, and evaluate the performance of various scheduling algorithms			
3	Define the concepts covered in concurrency control, including mutual exclusion and synchronization, deadlock and starvation			
4	Develop software using multiprocess and multithread programming techniques			
	Professional Skill			
5	Analyze the relationship between the operating system and the hardware environment in which it runs			
6	Design and implement appropriate operating systems			
	Transferable Skill			
7	Solve complex problems in groups and develop skills in problem solving using systematic approaches			
	Attitude			
8	Commit to develop the role of operating systems in wider context			

Calendar Description: Introduces the fundamentals of operating systems design and implementation. Topics include an overview of the components of an operating system, mutual exclusion and synchronization, deadlock and starvation, implementation of processes and threads, resources scheduling algorithms, memory management, and file systems.

Assessment:

No.	Assessment Methods	Weighting	Remarks
1	Continuous Assessment	30%	Continuous assessments are designed to measure how well students have learned the fundamentals and major concepts of operating systems.
2	Examination	70%	Final examination questions are designed to see how far students have achieved their intended learning outcomes. Questions will primarily be analysis and skills based to assess students' ability in operating systems design and implementation.

Rubrics:

Criteria	Excellent (A)	Good (B)	Satisfactory (C)	Marginal Pass (D)	Fail (F)
Basic	The student	The student	The student	The student is	The student is
objectives,	acquires excellent	acquires	acquires average	able to identify	unable to identify
functionalities,	knowledge in the	sufficient	knowledge in the	major components	major components
and components	objectives of	knowledge in the	objectives of	in an operating	in an operating
in an operating	operating systems,	objectives of	operating	system, name	system, name some
system	how operating	operating systems,	systems, how	some basic	basic
	systems are	how operating	operating	functionalities in	functionalities in
	related to	systems are	systems are	an operating	an operating
	computer	related to	related to	system, and	system, and briefly
	hardware, what	computer	computer	briefly describe	describe how these
	functionalities are	hardware, what	hardware, what	how these	components or
	provided to users,	functionalities are	functionalities	components or	functionalities

Processes and Threads	and what the major components are in operating systems. The student understands thoroughly the internal structures of processes and threads, what mutual exclusion is, how to synchronize processes and avoid deadlocks, and how to schedule processes and threads.	provided to users, and what the major components are in operating systems. The student understands sufficiently the internal structures of processes and threads, what mutual exclusion is, how to synchronize processes and avoid deadlocks, and how to schedule processes and threads.	are provided to users, and what the major components are in operating systems. The student understands more than basic concepts in the internal structures of processes and threads, what mutual exclusion is, how to synchronize processes and avoid deadlocks, and how to schedule processes and threads.	functionalities work. The student understands some basic concepts of processes and threads, deadlocks, and process/thread scheduling algorithms.	work. The student has no knowledge in basic concepts of processes and threads, deadlocks, and process/thread scheduling algorithms.
Memory, I/O devices, and files	The student demonstrates excellent know- how in the management of main and virtual memory, I/O devices, and files.	The student demonstrates considerable know-how in the management of main and virtual memory, I/O devices, and files.	The student demonstrates average know- how in the management of main and virtual memory, I/O devices, and files.	The student demonstrates some know-how in the management of main and virtual memory, I/O devices, and files.	The student does not know about the management of main and virtual memory, I/O devices, and files.
Multiprocess and/or multithread programming techniques	The student correctly writes multiprocess/mult ithread programs that meet all specifications.	The student writes multiprocess/mult ithread programs that meet most specifications.	The student writes multiprocess/mul tithread programs that meet some key specifications.	The student writes multiprocess/mult ithread programs that meet a few specifications.	The student is unable to program with multiprocess/multit hread techniques.

Learning Outcomes and Weighting:

Content	LO No.
I. Operating Systems Overview	1, 5-8
II. Process & Thread Management	2, 4-8
III. Concurrency Control	3-8
IV. Memory Management	2, 5-8
V. Processor Scheduling	2, 5-8
VI. I/O & File Management	2, 5-8
VII. Case Studies	1-8

References:

H.M. Deitel, P.J. Deitel, D.R. Choffnes, <u>Operating Systems</u>, 3rd Edition., Addison-Wesley, 2004.
A. Silberschatz, P.B. Galvin, <u>Operating System Concepts</u>, Addison-Wesley, 7th Edition. 2004.
W. Stallings, <u>Operating Systems</u>, Prentice-Hall, 5th Edition. 2004.
A.S. Tanenbaum, <u>Modern Operating Systems</u>, 3rd Edition. Prentice-Hall, 2007.

<u>Topic</u>

- I. Operating Systems Overview
 - A. Historical development
 - B. Operating system objectives and functionalities
 - C. Major achievements
- II. Process & Thread Management
 - A. Process concepts
 - B. Thread concepts
 - C. Descriptions, structures, and controls
 - D. Multiprocess and Multithread programming

III. Concurrency Control

- A. Mutual exclusion
- B. Synchronization
- C. Deadlock
- D. Starvation

IV. Memory Management

- A. Multiprogramming and partitions
- B. Paging and segmentation
- C. Virtual memory
- D. Demand paging
- E. Page replacement algorithms
- V. Processor Scheduling
 - A. Scheduling concepts
 - B. Scheduling algorithms
 - C. Algorithm evaluation

VI. I/O & File Management

- A. I/O devices
- B. Disk scheduling
- C. File organization
- D. Directory structures
- VII. Case Studies