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* Multimodal Systems

» Bimodal Systems

= Simultaneous Imaging, Single Shot

= Finger Imaging — Fingerprint and Fingervein

= Finger Imaging — Fingerprint and Finger Knuckle

= Hand Imaging — Palmprint, Finger Geometry and Hand Geometry

= Face Imaging — Face and Periocular, Iris and Periocular, ...
Obscured or Changed



* Finger Vein Biometric

» Key Advantages

= QOrientation Large, Robust and Hidden Biometric Feature

Vascular Structure — Unique and Private Identifier
= |dentical Twins — Different Vein Structure

= Not Intrusive

= Not Easily Damaged, Obscured or Changed

= Highly Stable and Repeatable

= Extremely Difficult to Fake



* Vascular Imaging

» Finger Vein Imaging

Vein E
JIR

Eﬁge Sensor

Near-infrared
Light (LED) (CCD Camera)

» Imaging Hardware

1 ;:,,

. T Eonte
NWWNIW!JJ ;,::_

Scattering of Light

> d
U

Image Sens /D
(CCD Camera)

(b) Front View

Near-infrared
Light (LED)

_YUU

Near-infrared
Light (LED)

v WL

Image Sensor
(CCD Camera)

(a) Side View




* Earlier Work

» Imaging and lllumination (810nm)

Light source Neutral density filter CCD camera
(LED)

M. Kono, H. Ueki, and S. Umemura, “A new method for the identification of individuals by using of vein pattern matching of a
finger,” Proc. 51" Symp. Pattern Measurement, pp. 9-12 (in Japanese), Yamaguchi, Japan, 2000.

M. Kono, H. Ueki, and S.-i. Umemura, “Near-infrared finger vein patterns for personal identification,” Applied Optics, vol. 41,
no. 35, pp. 7429-7436, December, 2002

» Preprocessing
= Matched Image — Registration
= Qrientation Alignment using Finger/Images Shape



* Normalized Cross-Correlation Coefficient

» Matching Finger Vein Images (aligned ROI)
= Similarity Score — Cross-Correlation Coefficient
= Y= IFFT2 [«FFT2(p) *FFT2(q)], »i=1...N
= & — complex conjugate; * — element-by-element multiplication

= Normalized Cross Correlation — C = max[Y;,|2

» Experimental Results
= Database — 678 volunteers, 2 images/person
= Genuine — 678, Impostors — 229, 503 (678x677x1/2)
= “All 678 individuals were perfectly identified” U SR
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7 Limiatons Al
= Proprietary database — Lack of reproducibility P
= Only 2 images/person — Reliable? Commercial Interests?



* Repeated Line Tracking (2004)

» Line Tracking
= |mproved Imaging, System
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N. Miura, A. Nagasaka, and T. Miyatake, “Feature extraction of finger-vein patterns based on repeated line
tracking and its application to personal identification,” Machine Vision and Applications, pp. 194-203, Jul. 2004.



* Repeated Line Tracking

180

» Line Tracking ..
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= Small No of Repetitions — Insufficient feature extraction
= Large No of Repetitions — High computational cost
= Atleast — 3000 (lower limit)

N. Miura, A. Nagasaka, and T. Miyatake, “Feature extraction of finger-vein patterns based on repeated line
tracking and its application to personal identification,” Machine Vision and Applications, pp. 194-203, Jul. 2004.



* Repeated Line Tracking

» Tracking Results
= Number of times a pixel has been tracked

Infrared image (left) and value distribution in the tracking space (right)

N. Miura, A. Nagasaka, and T. Miyatake, “Feature extraction of finger-vein patterns based on repeated line
tracking and its application to personal identification,” Machine Vision and Applications, pp. 194-203, Jul. 2004.



* Repeated Line Tracking

» Tracking Results
= Comparisons
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N. Miura, A. Nagasaka, and T. Miyatake, “Feature extraction of finger-vein patterns based on repeated line
tracking and its application to personal identification,” Machine Vision and Applications, pp. 194-203, Jul. 2004.



* Repeated Line Tracking

» Tracking Results
= Comparisons

Dark Sample: Repeated Line Tracking and using Matched Filter

N. Miura, A. Nagasaka, and T. Miyatake, “Feature extraction of finger-vein patterns based on repeated line
tracking and its application to personal identification,” Machine Vision and Applications, pp. 194-203, Jul. 2004.



* Repeated Line Tracking

» Matching Binarized Images
Downsampling, Translation and Matching — Highest Score
Mismatch Ratio (Normalized by vein pixels in two images)
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» Limitations
= No comparison with earlier (Hitachi) work
= Proprietary database — Lack of reproducibility
= Only 2 images/person — Least reliable, Commercial

N. Miura, A. Nagasaka, and T. Miyatake, “Feature extraction of finger-vein patterns based on repeated line
tracking and its application to personal identification,” Machine Vision and Applications, pp. 194-203, Jul. 2004.



* Local Maximum Curvature (2007)

» Multiple Profiles \ e 40
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» Computing Curvature
= Discrete Lines o001
= Binarization — Otsu’s Method o
= Same Dataset (678 Subjects) ooeo!
0.000001
FAR

N. Miura, A. Nagasaka, and T. Miyatake, “Extraction of finger-vein patterns using maximum curvature points
in image profiles,” ICICE Transactions, August 2007.



* Finger Vein Imaging

» Imaging Setup
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* Region of Interest Segmentation

» Pre-Processing
! !

v‘sz?;::e = Binarization Edge Map »  Difference Area > Thy>- Vein ROI - aﬁz::::ﬁ?
—‘ T A
¥
Boundary Image Normalized
Correction Enhancement Enhanced Image

» Sample Example
= Acquired image to segmented ROI

| — | — | —




* Region of Interest Segmentation

» Pre-Processing
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» Sample Example (Poor Quality)
= Acquired image to segmented ROI

—

= Mask — Estimation of Orientation (centroid & moments)
= Rotational Alignment of ROI




* Region of Interest Enhancement

» Pre-Processing
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» Image Enhancement
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* Feature Extraction

» Gabor Filter and Morphological Processing

= Set of Filters —» Extract Vein Structure

© feey) =, max {hg, (x,y) xv(x 1)}




Feature Extraction

» Morphological Operations and Feature Encoding

= Morphological Operations — Enhance clarity of vein patterns

z(x,y) = f(x,y) = (f(x,y) ©b) ®b

= SE — b, Grey scale erosion/dilation, top-hat operation

= Feature Encoding
_ (255 if z(x,y)>0
R(x’y)_{o if z(x,y) <0



* Generating Match Score

» Finger Vein Match Score

= Robust - Accommodate translational and rotational variations

= Binarized feature map R and T — Match score

Z;cnzlzgllzl@ (E(X + lry +j),T(X,y),MR(X + l!y +])JMT(x!y)))

R,T,Mp, M) = )
Sv( y L, MR, T) ViE[O,ZMT/r]l,an}E[O'Zh]< Z;n=12;l=1 MR(x,y) N MT(x,y)

= Masks — Mg, M+, Automatically generated

M ={(G,N|V(xy) € LI(x,y) # Iy}



* Experiments and Results

» Sample Results

Sample results from different feature extraction methods: (a) enhanced finger vein image, (b) output
from matched filter, (c) output from repeated line tracking, (d) output from maximum curvature, (e)
output from Gabor filters, and () output from morphological operations on (e)



* Experiments and Results

» HK PolyU Fingervein Database

= World’s First Publicly/Freely Accessible Database

= Two Session Database, 6264 Images

= First Session — 156 Subjects, Second Session — 105 Subjects
= Six Images — Each from Index and Middle Fingers

» Two Session Experiments (Protocol A)
Three Sets— Individual Fingers and Combination

= Genuine Scores — 630 (105 x 6)
Imposter Scores — 65,520 (105 x 104 x 6)

Combination — Index and Middle Finger. 210 Class
Genuine Scores — 1260 (210 x 6)
Imposter Scores — 263,340 (210 x 209 x 6)



* Experiments and Results

» Two Session Experiments (Protocol A)
Comparative Results— Individual Fingers and Combination

Table 1: Performance from ﬁnger vein matching with various ap_pmaches without mask

Approach Index Finger =~ Middle Finger Index and Middle Finger
Even Gabor with Morphological 7.14% 12.39% 9.31%
Repeated line tracking [5] 15.28% 18.59% 16.70%
Maximum curvature [6] 15.41% 18.06% 16.61%
Matchedfilter 8.60% 11.87% 10.00%
Even Gabor 6.50% 10.12% 8.10%

Table 2: Performance from finger vein matching with various approaches with mask
Approach Index Finger MiddleFinger Index and Middle Finger
Even Gabor with Morphological 3.33% 6.99% 4.91%
Repeated line tracking [5] 15.60% 18.18% 16.43%
Maximum curvature [6] 10.96% 11.08% 10.99%
Matchedfilter 4.84% 7.81% 5.31%

Even Gabor 3.82% T7.08% 4.61%




Ganuing Acceptance Rate
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* Experiments and Results

» Two Session Experiments (Protocol A)

Comparative Results— Individual Fingers and Combination

Receiver Operating Characteristics - Finger Vein (Middle Finger)
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A. Kumar and Y. Zhou, "Human identification using finger images," IEEE Trans. Image Processing, vol. 21, pp. 2228-2244, April 2012



* Experiments and Results

» Single Session Experiments (Protocol B, Larger Subjects)
Comparative Results— Individual Fingers and Combination

Table 4: Performance from finger vein matching with various approaches without mask

Approach Index Finger MiddleFinger Index and Middle Finger
Even Gabor with Morphological 1.16% 2.24% 1.71%
Repeated line tracking [5] 5.57% 7.77% 6.38%
Maximum curvature [6] 2.59% 3.73% 3.27%
Matchedfiiter 1.70% 1.75% 1.71%
Even Gabor 0.89 % 1.71% 1.22%

Table 5: Performance from finger vein matching with various approaches with mask
Approach Index Finger MiddleFinger Index and Middle Finger
Even Gabor with Morphological 0.43% 0.96% 1.65%
Repeated line tracking [5] 6.54% 9.95% 8.25%
Maximum curvature [6] 2.20% 3.13% 2.65%
Matchedfilter 1.88% 2.10% 1.89%

Even Gabor 0.54% 1.16% 0.80%




* Experiments— Convolutional Neural Network

» Two Session Experiments (Protocol A, using CNN)

» Lightened CNN Architecture
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C. Xie and A. Kumar, “Finger Vein Identification using Convolutional Neural Networks,” Technical Report No. COMP-K-25, The Hong
Kong Polytechnic University, Dec. 2016.



* Experiments— Convolutional Neural Network

» Light CNN Architecture

= Light CNN introduced in [A]
= Maxout — less parameters
= MFM (Max Feature Map)
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ar

Type Flﬁée;ig;ze Output Size #Params
Convl h=h/1.2 128 = 128 = 06 24K
MFM1 - 128 = 128 = 48 -
Pooll 2% 2/2 Gd = 64 = 48 -
Conv2a 1x1/1 G4 = 64 = 06 46K
MFM2a - Gd = 64 = 48 -
Comv2 3= 311 G = G4 = 102 165K
MFM2 - G4 = 64 = 06 -
Pool2 2% 2/2 32 = 32 = 96 -
Conv3a 1x1/1 32 x 32 x 102 18K
MFM3a - 32 = 32 = 96 -
Convi 3= 3/1.1 32 % 32 = 3 331K
MFM3 - 32 % 32 = 102 -
Pool3 2x2/2 16 = 16 = 192 -
Convda 1x1/1 16 = 16 = 334 T3K
MFM4a - 16 = 16 = 192 -
Convd 3= 3/1.1 16 = 16 = 256 442K
MFM4 - 16 = 16 = 128 -
Conv5a 1x1/1 16 = 16 = 256 32K
MFMS5a - 16 = 16 = 128 -
Convs 3= 311 16 = 16 = 256 294K
MFMS5 - 16 = 16 = 128 -
Pool4 2x2/2 Bx 8= 128 -
fel - 512 4 194K
MFM_fcl - 256 -
Total - - 3.556K

[A] X. Wu et al., “A Light CNN for Deep Face Representation with Noisy Labels,” https://arxiv.org/abs/1511.02683 Nov. 2016

C. Xie and A. Kumar, “Finger Vein Identification using Convolutional Neural Networks,” Technical Report No. COMP-K-25, The Hong

Kong Polytechnic University, Dec. 2016.
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* Experiments— Convolutional Neural Network

» Experimental Results using Light CNN

» EER of 13.27% (Independent Second Session Test Data)

Receiver Operating Characteristics
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[A] X. Wu et al., “A Light CNN for Deep Face Representation with Noisy Labels,” https://arxiv.org/abs/1511.02683. Nov. 2016



https://arxiv.org/abs/1511.02683
https://arxiv.org/abs/1511.02683

* Experiments— Convolutional Neural Network

» DCNN (VGG) with cross entropy loss

> Architecture
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K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale image recognition,” Proc. ICLR, 2015.



Results— Convolutional Neural Network

» Two Session Experiments (Protocol A, Comparative Results)

DCNN
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* Experiments— Convolutional Neural Network

» Two Session Experiments (Comparative Results using Public Database)

Key Conclusions

= Generally SDH delivers superior performance (better ROC and
also notable improvement in EER)

= DCNN with cross entropy loss has similar effect on SDH, but
cannot combined with SDH directly

= Log scale and the modified TFS structure can improve
performance (evident from ROC but less noticeable for EER)

= Triplet loss has similar effect as TFS
= State of art (TIP2012) ->GAR of over 0.6 @FAR of 1e-05 (slide 24)

In summary, achieved accuracy fails to match those from using the
method detailed in TIP 2012 reference

(more details available in the following reference)

C. Xie and A. Kumar, “Finger Vein Identification using Convolutional Neural Networks,” Technical Report No. COMP-K-25, The Hong
Kong Polytechnic University, Dec. 2016.



* Synthesizing Finger Vein Images

» Summary of Public Databases

fingers

Database Ref. Size Sessions | Public
Hong Kong [KZ12] 6264 images from 156 subjects, 2 fingers per 2 Yes
Polytechnic University subject

SDUMLA-HMT [YLSII] 3816 images, 6 fingers per subjects | Yes
University of Twente [TVI3] 1440 1images of 60 subjects 2 No
FV-USM [MASR14] [ 5904 images of 123 subjects, 492 different 2 Yes

finger classes
CFVD [ZLL+13] 1345 1mages of 13 subjects, 130 different 2 No

Which is Real? Which is Synthesized?

e Lol ) . [
L L [

F. Hillerstrom and A. Kumar, “On generation and analysis of synthetic finger-vein images for biometrics identification,” Technical Report
No. COMP-K-17, June 2014, http://www.comp.polyu.edu.hk/~csajaykr/COMP-K-17.pdf



http://www.comp.polyu.edu.hk/~csajaykr/COMP-K-17.pdf
http://www.comp.polyu.edu.hk/~csajaykr/COMP-K-17.pdf
http://www.comp.polyu.edu.hk/~csajaykr/COMP-K-17.pdf
http://www.comp.polyu.edu.hk/~csajaykr/COMP-K-17.pdf
http://www.comp.polyu.edu.hk/~csajaykr/COMP-K-17.pdf
http://www.comp.polyu.edu.hk/~csajaykr/COMP-K-17.pdf

* Finger Knuckle Identification

» Motivation
= Limitations of Traditional Biometrics
= Multimodal Biometrics, Identification At-A-Distance
= Anatomy of Hands — Uniqueness of Knuckle, Correlation with DNA
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= Forensic ldentification — Only Piece of Evidence from Suspects
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* Online Finger Knuckle Identification

» KnuckleCodes (BTAS 2009)

Automated Segmentation — Efficient ROI Matching using KnuckleCodes

i
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Image Enhancamant

Blockwise
Reflection

'

P KuuckleCode Generation |

Finger Imaging | _| Knuckle Humination Histogram Localized Orientation
(back surface, peg-free) Localization Normalization Equalization Estimation
KnuckleCode Minimum KnuckleCode Line Orientation Map
Database Matching Distance Encoding ( Dominant Orientation)

v

A. Kumar and Y. Zhou, "Human identification using knucklecodes," Proc. 3rd Intl. Conf. Biometrics, Theory and Applications, BTAS'09,
pp. 147-152, Washington DC, USA, Sep. 2009




* Feature Extraction

> Localized Radon Transform

S|Le,] S[Le,] S|Les] SLey] SLes] Slleel

Select the direction which results in minimum (maximum) magnitude



Match Score Generation

» Matching KnuckleCodes
= Partially Matching Knuckles — Translation and Rotation of Fingers
= Matching Score for two Z-bit KnuckleCodes

m n
SR, T) = vielos aﬁ},ivnje[ﬂ,zh] (Z Z ¢ (R{:x +1L,v+ f), T(x, }r:}))

x=1ly=1
W= ﬂuur(?),h = ﬂuur(g)

R(x—w,y —h) x€Ew+lLw+m], v€ [h+1, h+n]
—1 otherwise

R(xy)= {

_ 0 if Jp=KyVbh
‘;’UE:!HB} [1 otherwise p= 1,2, .7

= Size of KnuckleCodes — One fourth of knuckle image size (X, = 2)



* Experimental Results

» Experiments
= 158 Subjects, 5 Images per Subject, Age group — 16-55 year
= Unconstrained (peg-free) imaging

Five-fold Cross-Validation, Average of Results

Genuine Scores — 790 (158 x 5)

Imposter Scores — 124030 (158 x 157 x 5)

Comparative Performance using (even) Gabor filters

= f=1/(242), 12 filters, 15 x 15 mask size

(b) (©)

KnuckleCodes generated for knuckle image in (a) using LRT in (b), and using even Gabor filters in (c)



* EXxperimental Results

» Results
= Comparative Receiver Operating Characteristics

Receiver Operating Characteristics (Average)
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* Experimental Results

> Results
= Performance Analysis
E qual Error Rate
X, 2 3 4
! 13| 15| 14 | 13 | 15 | 14
Mean (%) 1.15 ] 1.15 | 1.08 | 2.78 | 2.53 | 6.96
Std deviation (%) | 1.57 | 1.57 | 1.08 | 0.96 | 1.48 | 0.9
E qual Error Rate
D (Intervals in 0-7 ) 6 8 10 12 14 16
Mean (%) 203 | 1.08 | 129 | 1.14 | 127 | 129
KnuckleCodes (Radon) =47 (rotion @) | 1.37 | 1.08 | 1.50 | 137 | 1.60 | 1.24
Mean (%) 418 | 11.14 | 5.82 | 2.66 | 3.29 | 7.59
KnuckleCodes (Gabor) - = 4 Cation (%) | 2.31 | 1.88 | 1.04 | 1.81 | 2.26 | 2.24

KnuckleCodes generated for knuckle image in (a) using LRT in (b), and using even Gabor filters in (c)




* EXxperimental Results

> Results
= Cumulative Match Characteristics

Cumulative Match Characteritics
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* Minor Finger Knuckle

» Forward Motion of Fingers

= First Minor Finger Knuckle
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= Second Minor Finger Knuckle?

A. Kumar, "Importance of being unique from finger dorsal patterns: Exploring minor finger knuckle patterns in verifying human identities,"
IEEE Trans. Information Forensics & Security, vol. 9, pp. 1288-1298, August 2014.
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