
OpenCV Introduction and New
Features

OpenCV China Team

Outline

• General overview

• What’s new in OpenCV 4.x

• OpenCV DNN module: overview & new features

• How to make OpenCV run fast

1

2

OpenCV is The most popular “traditional” computer vision library with growing DL capabilities:
http://opencv.org

License BSD (free for non-commercial and commercial use)

Supported Languages C/C++, Java, Python, Javascript

Size >1M lines of code

SourceForge statistics 20M downloads (not include github traffic)

Github statistics >10K clones per week, >9000 patches merged since 2012 (>5 patches per day)

Accelerated with SIMD: SSE, AVX2, AVX512, NEON, many core CPUs: parallel for, GPU: OpenCL, CUDA,
Vulkan, S/W: IPP, MKL, Intel DLDT

The actual versions 3.4.9, 4.2.0 (Dec. 2019)

http://opencv.org/

3

opencv The main OpenCV repository, essential, stable modules

opencv_contrib Experimental or obsolete OpenCV functionality

cvat (Computer Vision
Annotation Tool)

Tool for annotation of datasets; reworked version of VATIC

dldt (Deep Learning
Deployment Toolkit)

Very fast Deep Learning Inference Engine and Model
Optimizer/Converter tool; for Intel/AMD platforms only.

open_model_zoo High-quality CV deep learning models by Intel

opencv_training_extensions Scripts for TensorFlow, PyTorch etc. to retrain some of the
models from open_model_zoo, quantize networks etc.

http://github.com/opencv

More than just OpenCV

http://github.com/opencv

4

1998. OpenCV project started at Intel under name CVL by Gary Bradski

2000. OpenCV 1.0 alpha announced at CVPR. Win32 only; C API;
includes image processing, contours, LK optical flow, … uses IPL as
complimentary library

2006. OpenCV 1.0 gold is finally out. 5 modules (core, cv, cvaux, ml,
highgui), ~200K lines of code, 500+ functions & classes (ml), HTML
docs, no IPL dependency, uses IPP for acceleration, Win & Linux, x86
& x64 support, includes Python interface

2000. Vadim Pisarevsky joined OpenCV Development Team as the team leader.

2007. OpenCV Symposium in Beijing, organized by Shiqi Yu, Vadim
Pisarevsky and Shinn-Horng LEE.

2006. OpenCV China web site

OpenCV History

5

2009. OpenCV 2.0. Rewritten in C++, uses CMake, lots of native SSE2
accelerations. LBP face detection, HOG pedestrian detector, Farneback
dense optical flow, FAST corner detector, MSER region detector.

2012. OpenCV 2.4.0-2.4.3. 22 modules, ~600K lines of code,
automatically generated Python & Java interfaces, CUDA & OpenCL
acceleration, lot’s of parallel code, GSoC 2011&2012 results, Win,
Linux, Android, iOS, x86, x64, ARM support. Migrated to github

2015. OpenCV 3.0. 30+30 modules (with opencv_contrib), >1M lines of
code, T-API, NEON & AVX accelerations, free IPP, GSoC 2013 & 2014
results

OpenCV: Itseez!

6

2016. OpenCV 3.2. Deep Learning module. OpenVX support. GSoC
2015 & 2016 results: state-of-art traditional optical flow, stereo, object
detection, text detection, feature detection, tracking, calibration,
comp. photography algorithms.

2018. OpenCV 4.0. Major cleanup. Emphasis on DL. Halide integration.
Intel integration.

OpenCV: Back to Intel!

7

OpenCV Distributed Team (?)

2019-… OpenCV 4.x Release

OSVF OpenCV
China

Teams in
Russia

2025

OSVF, OpenCV China Foundation (to be founded) support OpenCV

Better support on ARM and specialized DL acclerators (NPU)

OpenCV Courses (online+offline) in multiple languages,
especially in Chinese

2020 OpenCV 20-year anniversary and OpenCV 5 Release

Better support for 3D sensors (lidar, ToF camera)

…

Plan to

Developers and Contributors

8

USA, Bay Area

Open Source Vision
Foundation (OSVF);
OpenCV.org

OpenCV.org.cn
(since 2019 Dec)

China, Shenzhen

Russia, Ni.No

Core OpenCV team
@ Intel Russia

Community
2-3 patches per day
via github.com

http://osvf.org/
http://opencv.org/
http://opencv.org.cn/

Major New Features of OpenCV 4.x
• C++ 11 library!

• Emphasis on Deep Learning (see further)
○ Significantly extended and accelerated OpenCV DNN

module

○ Started replacing some traditional algorithms in OpenCV
with deep nets (e.g. face, object, text detection)

• Introduced graph API (G-API) for efficient image
processing pipelines

• Smaller and faster
○ AVX2 & AVX512 acceleration; NEON acceleration for 32-bit

and 64-bit ARM CPUs; ~10-30% acceleration using AVX2!

○ Lower footprint. OpenCV 4.0 is ~20% smaller than OpenCV
3.x.

9

• FP16 support (especially useful for efficient Deep
Learning inference): cv::Mat fp16_tensor({32,32,16},
CV_FP16);

• Video I/O: Hardware-accelerated video
decoding/encoding on Windows (WMF) and Linux
(GStreamer), new Android backend …

• QR code detector and decoder

• Results from GSoC 2017 and GSoC 2019

10

Graph API (G-API) Overview
• A new separate module opencv_gapi (not a complete library

rewrite): https://github.com/opencv/opencv/wiki/Graph-API

• Provides alternative “lazy” image processing functions, e.g.
cv::Sobel => cv::gapi::Sobel

‐ Instead of immediate evaluation gapi:: functions construct
expression subgraphs (GMat) and then you get a complete
graph (GComputation)

• The produced graph is compiled (once) and then can be
processed more efficiently than a sequence of direct function
calls

• CPU and GPU backends are ready; more backends are in
progress

11

https://github.com/opencv/opencv/wiki/Graph-API

12

G-API: Print imaging benchmark
We can see the “Graph effect” :

• Memory consumption – process big images by tiles w/o storing
intermediate results explicitly

• Cache efficiency => better efficiency

• Code compactness – better performance with no need to write custom
“fused” loops

• [to be added soon] automatic offloading to GPU

13

Memory consumption* Performance* (based on cache efficiency)

* – all measurements are taken on Intel® Core™-i5 6600 CPU, single thread

DNN module overview
• Compact self-contained implementation in C++; inference

only!

• 5 importers (Caffe 1, TensorFlow, Torch, Darknet, ONNX)

• 40+ layers, 100+ unit tests, 20+ samples

• Supports many popular topologies: image classification,
object & text detection, semantic segmentation, instance
segmentation, pose estimation, face recognition, style
transfer, tracking, etc.

14

• Easy-to-use C++, Python, Java and Javascript interface

• Sophisticated layer fusion mechanism & memory manager to
improve efficiency and decrease memory footprint

• Many different execution backends with graceful fallback to
the default C++ implementation:

15

DNN_BACKEND_OPENCV + + + + – –

DNN_BACKEND_INFERENCE_ENGINE + + + – + +

DNN_BACKEND_HALIDE (Deprecated) + + – + – –

DNN_BACKEND_VKCOM (Vulkan) – + – ? – –

DNN_BACKEND_TENGINE (soon)

Supported Topologies
• Classification

Caffe: AlexNet, GoogLeNet, VGG, ResNet, SqueezeNet, DenseNet, ShuffleNet

TensorFlow: Inception, MobileNet

Darknet (https://pjreddie.com/darknet/imagenet/), ONNX (https://github.com/onnx/models)

• Object detection
Caffe: VGG-SSD, Mobilenet-SSD, Faster-RCNN, R-FCN

TensorFlow: SSD, Faster-RCNN, Mask-RCNN (TF OD API), EAST text detection

YOLOv2, TinyYOLO, YOLOv3 (all Darknet), TinyYOLOv2 (ONNX)

• Semantic segmentation
FCN (Caffe), ENet (Torch), ResNet101_DUC_HDC (ONNX)

• Other
OpenPose body and hands pose estimation (Caffe), Colorization (Caffe), Fast-Neural-Style
(Torch), OpenFace face recognition (Torch)

Refer to https://github.com/opencv/opencv/wiki/Deep-Learning-in-OpenCV for details

16

https://pjreddie.com/darknet/imagenet/
https://github.com/onnx/models
https://github.com/opencv/opencv/wiki/Deep-Learning-in-OpenCV

SSD-like network versus Haar Cascades

17

SSD-like network versus Haar Cascades

Haar Cascade DL

Size on disk 528KB 10MB (fp32), 5MB (fp16)

Efficiency @ 300x300** 30 ms 9.34 ms

Performance
AP @ IoU = 0.5*

0.609 (FDDB)
0.149 (WIDER FACE, val.)

0.797 (FDDB)
0.173 (WIDER FACE, val.)

*PASCAL VOC metric using COCO evaluation tool, http://cocodataset.org/#detections-eval

**Intel® Core™ i5-4460 CPU @ 3.20GHz x 4

http://cocodataset.org/#detections-eval

18

https://www.learnopencv.com/cpu-performance-comparison-of-opencv-and-other-deep-learning-frameworks/

https://www.learnopencv.com/cpu-performance-comparison-of-opencv-and-other-deep-learning-frameworks/

26.4
19.9

39.5

53.2
48.6

0 1 2 3 4

async

FPS

New Features in OpenCV DNN (4.x)
• Vulkan-based backend (for Android)

• CUDA-based backend (GSoC 2019):
https://github.com/opencv/opencv/pull/14827

• Intel NCS and NCS2 support via Intel Inference Engine
• ONNX importer added in 4.0, extended in 4.1.x

• Mask-RCNN topology support + mask_rcnn.py sample
• 3D CNNs support. New Action Recognition sample: action_recognition.py

• New high-level API for detection, semantic segmentation
• Asynchronous inference
• Deep learning networks visualization: cv::dnn::dumpToFile(dot_file);
• Improvements of ONNX and TensorFlow importers

• 18% speedup of YOLOv3 on NCS2

19

async face detection
performance on
Intel NCS2

dump of opencv_face_detect model
(shows fused layers)

https://github.com/opencv/opencv/pull/14827
https://github.com/opencv/opencv/blob/4.1.1/samples/dnn/mask_rcnn.py
https://github.com/opencv/opencv/blob/4.1.1/samples/dnn/action_recognition.py

Acceleration on Different Platforms

20

Tools/libs Applicable for

cv::parallel_for_ many-core CPUs

wide universal intrinsics
CPUs with SIMD (vector) instructions.
Dynamic dispatching is used since
OpenCV 4.0

Intel & AMD x86/x64: SSE2-4, AVX2, AVX512

ARM v7 and v8 (aarch64): NEON

PPC64: VSX

MIPS: MSA (PR submitted)

OpenCL (OpenCV T-API) Intel iGPU, AMD GPU, Nvidia GPU

CUDA NVidia GPU (deprecated, except for DNN)

Vulkan DNN Inference on GPU (mostly for Android)

IPP, MKL, OpenBLAS CPU (traditional vision; image processing & linear algebra)

Intel DLDT DNN Inference on Intel CPUs, GPUs, VPUs

Tengine In progress: DNN Inference on ARM

write once, run fast everywhere

21

21

OpenCV

kernel_1 kernel_2 kernel_N…

Universal
Intrinsics API

Old Intel CPUs
(SSE2 .. SSE4)

New Intel CPUs
(AVX2, AVX512)

ARMv7, ARMv8
(NEON)

MIPS P5600 (MSA)

PowerPC64 (VSX)

intrin_sse.hpp

intrin_avx2.hpp,
intrin_avx512.hpp

intrin_neon.hpp

intrin_msa.hpp

intrin_vsx.hpp

RISC-V ?

intrin_riscv.hpp

parallel_for()

OpenMP

C++ 11 threads

Microsoft
Concurrency

Unix pthreads

Apple Grand
Central Dispatch

Intel TBB

T-API
(High-level

OpenCL-based API)

ARM MALI GPU

AMD GPU

NVidia GPU

+

CPU GPU

Any GPU w.
OpenCL support

Dynamically loaded
& configured

Intel Gen GPU

• ~400 intrinsics for each platform – light-
weight, <5% overhead

• 500+ optimized SIMD loops

• ~300 OpenCL kernels

• ~25000 Unit tests

Accelerating OpenCV on CPUs: cv::parallel_for_

• cv::parallel_for_ – cross-platform implementation of
parallel loop concept (uses Win32 threads,
std::threads, GDC, pthreads, OpenMP etc.
underneath).

• cv::Mutex – cross-platform implementation of thread
synchronization object

22

Thr 0

Thr 0 Thr 1 Thr 3 Thr 2 Thr 1 Thr 0 Thr 2 Thr 3

y: 0 Ymax=image_height-win_size+1

0 y1 y2 y3 y3 y4 y5 y6 Ymax

for

parallel_for_

Accelerating OpenCV on CPUs: wide universal
intrinsics

23

24

The Future
• OpenCV on Edge – much better ARM support:

‐ more optimizations of traditional vision algorithms

‐ DNN inference optimization (probably, using Tengine by OpenAI)

• Support for specialized H/W DNN accelerators

‐ extensive testing (Continuous Integration) of OpenCV on ARM

• Improved documentation, tutorials, courses (online & offline)

• Slow but steady refinement of traditional CV functionality (camera
calibration, 3D vision, image processing …)

• OpenCV 5

+ = 🤝

Thank You !

25

