
1

A Study of the Performance and Parameter Sensitivity of
Adaptive Distributed Caching

Markus J. Kaiser (mjk@gmx.it)

Department of Computer Science, University of Connecticut

Kwok Ching Tsui (tsuikc@comp.hkbu.edu.hk)

Department of Computer Science, Hong Kong Baptist University

Jiming Liu (jiming@comp.hkbu.edu.hk)

Department of Computer Science, Hong Kong Baptist University

Abstract. A self-organized approach to manage a distributed proxy system called Adaptive
Distributed Caching (ADC) has been proposed previously. We model each proxy as an
autonomous agent that is equipped to decide how to deal with client requests using local
information. Experimental results show that our ADC algorithm is able to compete with
typical hashing based approaches. This paper gives a full description of the self-organizing
distributed algorithm, with a performance comparison based on hits and hops rate.
Additional evaluation of the parameters caching-, multiple- and single-table size is also
presented.

Keywords. Distributed Caching, Adaptive Proxy, Self-Organization, Internet Server

I. INTRODUCTION

The Internet is growing exponentially and web caches have been shown to be a
feasible way to reduce the overall network traffic [12]. Web Servers store objects
(documents), which are requested by clients spread over the global network. A
web cache, or also known as web proxy, is usually placed between the requesting
clients and the resolving origin server. Client requests are usually directed to the
proxy server, which will try to resolve the needed object by its locally cached data.

Proxies that are not able to resolve an incoming request have to make a choice
between either forwarding the request directly to the origin server or query a
neighboring proxy for the needed object. The idea that a proxy can forward
requests to another peer lead to research in the area of cooperative proxies and
distributed proxy systems [27]. Distributed proxy systems are based on the idea
that a set of multiple proxies combined increase the overall storage space for
cached documents and increase therefore the chance to resolve incoming requests.
Cooperative proxies try to combine their individual caches in such a way that
maximum cache-usage is achieved while acting transparently as one single load-
balanced proxy cache [4] which leads to problems like inter-proxy communication
to avoid the storage of equal objects and the distribution of information about
stored projects for the allocation process.

Previous research on cooperative proxies can be found in the area of hierarchical
[27] and hashing approaches [13][29], adaptive caching [17], CacheMesh [28],

2

WebWave [9] and the straightforward approach with a central coordinator
[18][26].

Additionally research for distributed systems cover areas for consistency between
multiple proxies [8], the theoretical description of the underlying processes
[14][29] and attempts to build the system on the idea of economical aspects [24].
Aspects like performance [21][23] and effectiveness of replication schemes [15]
were evaluated and different schemes for the internal representation of URL lists
analyzed [7][16]. Parallel applications for research in the area of distributed
caching can be found in distributed object replication schemes [25], resource
allocation [5] and sever load balancing [1].

II. PREVIOUS WORK

1. Central Coordinator [26]

In our first approach we introduced the self-organizing approach of proxy load
balancing by the usage of a central coordinator in front of all running proxies. We
have shown in that the system is well able to react to adapt the load distribution in
regard to the individual performance characteristics of every proxy. The central
coordinator collectively receives all incoming requests for the proxy system and
assigns the request to the currently best performing proxy without considering
previously stored objects. Additionally it learns from the response time the validity
of its choice and adapts the internal performance values based on a simple
reinforcement learning algorithm. The major drawback in our first approach lay in
the fact that the central coordinator creates the clear bottleneck situation for the
overall system due to the fact that all requests and feedbacks have to pass the
coordinator. Additionally, the system left space for improvement in regard to more
specific request forwarding considering previously stored objects.

2. Self-Organized Adaptive Proxies (SOAP) [10]

Based on our experiences in the approach with a central coordinator we introduced
the idea to place the reinforcement learning component in front of every proxy
(essentially as part of every proxy) allowing the proxies to receive requests
directly with the individual learning and evaluation of forwarding decisions.
Therefore each proxy received an internal table to map the URL of a specific
object onto one proxy of the total set of running proxies. The feedback system was
based on the simple response time evaluation. We had to learn that such a system
requires a large number of requests for each object ID to allow the whole system
to learn the same mapping. Each mapping table contained one entry for a specific
URL domain (category) and the decision-making component mapped each
category onto one proxy location. The drawback of the provided solution lay in the
fact that our solution was not able to deal ideally with bottleneck situations were,
for example, only requests for one category were injected. The major lesson we
learned in our work is the importance of selective caching. The idea behind
selective caching as described later, is the fact that each proxy decides individually
for each object if it will cache the data or discard the received information.

3

3. Unlimited Adaptive Distributed Caching [11]

In our next step we tried to overcome the drawbacks of SOAP and its domains by a
direct mapping of each object onto exactly one location. In abstraction we can look
at the mapping table as a written hashing function with a direct object-ID to
location relationship. This idea introduced a new problem, the mapping table that
stores the URL mappings needed to be very large to be able to store an entry for
every experienced object-ID and we accepted this drawback by letting the table
grow indefinitely. Avoiding the idea of information broadcasting, we attacked the
problem by means of information multicasting along the forwarding path. Each
resolved object bypasses all proxies that forwarded the request previously. It is
important for our system that multiple proxies focus on the same location for a
specific object. Our work has shown that the algorithm is well able to provide the
wanted functionality and was well able to compete with classical hashing
approaches.

4. Adaptive Distributed Caching with a realistic Mapping Table [12]

As previously mentioned, our algorithm for adaptive distributed caching assumes
infinite resource capacity for the local mapping table in every proxy. This scenario
is highly unrealistic and it was the ultimate goal of this paper to identify an
extension to ADC so that it is more suitable for a realistic situation. Whenever a
previously un-requested object is experienced by one of the proxies, it will receive
an entry in the mapping table so that future requests for it can use the stored
information for the computation of the request frequency. To allow the system to
learn from new requests, each newly created entry should stay long enough in the
mapping table so that a repeat request can occur to allow the algorithm to compute
the average request time. As a consequence of our work we, split up the existing
mapping table into a single-, multiple- and caching table. Elements move back and
forth between the three tables in accordance to the average time-difference
between equal requests.

III. ADAPTIVE DISTRIBUTED CACHING

In the following sections we introduce the core components of the adaptive
distributed caching algorithm. In essence the algorithm combines the advantages
of hierarchical distributed caching (allowing multiple copies of the same object)
and of hashing based distributed caching (fast allocation through global
agreement). As shown in the previous chapter, the algorithm developed out of the
ideas behind the hashing based allocation and during our research we redefined
specific components to reach the wanted global emergent attributes.

In short, our proxy objects maintain multiple copies of the frequently requested
documents to balance the user request load between the cooperative proxies and
reduce the number of copies in situations where only few requests for a particular
object are experienced. In both cases the algorithm allows the distributed proxies
to agree on the specific location of one object without the need for a central
coordinator or a broadcasting protocol.

4

The core of the ADC algorithm can be divided into four parts that allow the global
stabili zation, in combination with the peer proxies: (1) Request Forwarding and
Looping, (2) Multicasting by Backwarding, (3) Mapping Tables and (4) Selective
Caching with Aging.

1. Request Forwarding and Looping

Request Forwarding and Looping describes the idea that during the search process
unresolved requests will be forwarded to a more suitable proxy object or the origin
server. In general, the decision for a forwarding location is based upon either
previously learned data stored in the local mapping tables or a random selection
over the set of known proxies. In cases were random request forwarding resolves
in an loop, meaning that the same proxy got selected more than once during the
forwarding process, the doubled hit proxy wil l always forward the request to the or
gin server and therefore terminate the search process. As a second termination
criterion, to avoid endless request forwarding over a large set of proxies, a
maximum number of forwarding can be set. After reaching the forwarding
maximum the next proxy will end the search process by forwarding the request to
the origin server. It should be kept in mind at this point that in our system we don’ t
expect the loss of messages and that always either one of the proxy objects or the
actual origin server will finally resolve the request. The retrieved object will t hen
traverse the same path back to the requesting client, a process we call this
backwarding, and all proxies on the way have the option to cache the data. In
regard to the internal data structure, it is important that every proxy stores
information about every forwarded request as long as the backwarding process is
not completed. Each request comes with a global unique ID (usually based on the
clients IP address and an internal request counter), which is used to give each
proxy the option to identify forwarding loops.

2. Multicasting by Backwarding

Every running proxy has its own mapping table and unknown objects are usually
resolved by random forwarding based search over the total set of running proxies.
In this paragraph we talk about the idea of data and information dissemination
through multicasting on the backwarding path. Essentially, in our work we tried to
find a technique that allows proxy objects to agree on the same location for a
specific document without the use of a central coordinator or a broadcasting
protocol. Looking at the set up of the proxy system based on a hierarchical
structure we can see that every object will be passed down along the hierarchy
from the root to the leave proxy. In our forwarding process, each object will pass
all previously passed proxies. This backwarding can be seen as a simple technique
for data dissemination based on multi -casting to a selected group of proxy objects.
We use this technique to enforce all proxies in this multi -casting group to agree on
the same location for a specific object. In essence, one proxy will either resolve or
even cache the object, starting at the end of the forwarding path. This proxy will
mark the package with its address and all other proxies on the backwarding path
will receive and accept this information. Each individual proxy on the return path
may cache the object if it fits their selective caching criteria and use the
information about the resolving proxy agent to update the location in their
mapping table. Essentially, the longer the backwarding path, the more proxies will

5

agree on the same location for the specific object. If in the future the same object
is requested starting at a different proxy, the forwarding path only has to hit one of
the previously used proxies to quickly find the agreed location. Over the
backwarding path a different set of proxies will l earn about the location and more
and more proxies will stabili ze on the same information without any further
communication. The resolved objects usually come in sizes of up to n Kbytes and
the additional information of the resolving proxy location creates a negligible
overhead.

3. Mapping Tables

The mapping table is a local data structure within every proxy that is used to
resolve the object location to be used by the forwarding process using the object
ID (URL). In a more abstract sense we can see the mapping table as a direct
replacement of the static hashing function, used in hashing approaches, to map
object IDs onto their unique location. It is the main objective of our algorithm to
allow all existing mapping tables to agree on a unique location for each object
without a broadcasting protocol or central coordinator. In our first attempt of the
algorithm allowed the table to grow infinitely, keeping track of all previously
experienced objects, which usually leads to out of memory problems and
performance drawbacks. In our latest extension we introduced a way to limit the
mapping table while still keeping the performance at the previously attained level.

3.1 Single-table

The single-table is used to simply keep track of the current flow of requests. Each
unknown object will receive a new entry on the top of the table, displacing the
oldest entry at the bottom of the table – the well -known LRU algorithm. It is a
requirement of the single-table that it is large enough so that requests with at least
two hits can occur. When an existing entry in the mapping table experiences
another hit, the time difference between the two requests will be used as a first
approximation of the average object request frequency and the object will move
from the single-table to the multiple-table (described below).

Figure 3 shows a simple example of a single-mapping table. The first column
contains the general object ID in our case the object URL. The second column
contains the current assigned location for the specific object. This information is
local and might vary between different proxy agents. Objects for which a
particular proxy is responsible will have the value THIS in this column of that
proxy’s single-table. The third column takes a marker, which stores a local time
value of the time when this object was last requested. The fourth column keeps
track of the average time between two requests of this object and the last column
simply keeps track of the number of times this a specific object has been
requested.

It should be pointed out that we intentionally do not use the HITS value to
compute the average request time but focus solely on the time difference between
the last two requests. In any adaptive system, changes in the recent past need to be
considered and the HITS value would allow objects that were highly requested in
the past to remain unnecessaril y long in the local cache.

6

OBJ-ID PROXY LAST AVG HITS

www.xy634 Proxy[5] 9952 0 1

www.xy34 Proxy[4] 9953 0 1

www.xy123 Proxy[1] 9954 0 1

www.xy64 Proxy[2] 9955 0 1

www.xy53 Proxy[1] 9956 123 432

www.xy343 Proxy[7] 9957 0 1

www.xy452 Proxy[4] 9958 522 434

www.xy2 Proxy[1] 9959 0 1

www.xy32 Proxy[2] 9960 0 1

www.xy29 Proxy[4] 9961 0 1

Figure 1: A Sample Single-table

3.2 Multiple-Table

The multiple-table is also restricted in its size and contains only objects that were
requested more than once ordered by their average request time. Once the table is
filled, newly arriving objects from the single-table have to have a lower average
value than the worst case currently residing in the table before it will be placed at
the appropriate position. Removed objects from the multiple-table will be placed
into the single-table as a regular entry, giving it the chance to be hit again later.
The forwarding address for elements with the THIS value marks objects for which
this proxy itself is responsible when future requests arrive and unresolved queries
need to be forwarded to the origin server. The general structure of the multiple-
table is equal to that of the single-table and it should be pointed out that the table
is always ordered in ascending order of the fourth column (average request time).
This order allows the simple identification of the object with the worst average
time and quick insertions/deletions based using binary search.

OBJ-ID PROXY LAS AVG HITS

www.xy64 Proxy[8] 2252 70 2

www.xy55 This 4253 75 2

www.xy13 Proxy[1] 4154 83 34

www.xy644 This 6555 90 2

www.xy52 Proxy[4] 3356 123 42

www.xy433 Proxy[8] 7557 313 4

www.xy52 This 3458 323 44

www.xy32 Proxy[1] 7859 553 65

www.xy232 This 3260 766 2

www.xy299 Proxy[4] 3261 874 54

Figure 2: A Sample Multiple-Table

7

3.3 Caching Table

The caching table in an ADC proxy keeps track of all currently cached objects.
This table is very similar to the previously described multiple-table, with the
exception that the table entries represent actually stored objects. Similar to the
multiple-table, this table is also ordered by the average request value in column
four and new objects have to outperform at least the worst case in (the last row)
the table and will be placed in the appropriate position within it. Elements that
drop out of the bottom of this table move back to the multiple-table which gives
them the chance to be hit again in the near future or to drop out completely over
time.

OBJ-ID PROXY LAST AVG HITS

www.xy6 Proxy[3] 1152 2 434

www.xy5 This 5453 5 342

www.xy33 Proxy[2] 5254 6 211

www.xy44 This 6755 10 432

www.xy2 This 8356 15 43

www.xy3 This 8357 33 1

www.xy52 This 2258 37 434

www.xy23 Proxy[2] 1259 38 22

www.xy32 This 6360 44 42

www.xy99 Proxy[3] 7361 65 124

Figure 3: Caching Table

4. Selective Caching and Aging

Selective Caching was introduced in our previous work to allow each proxy to
autonomously specialize on a specific set of cached data [26]. In hierarchical and
hashing systems, every proxy stores all passing objects regardless of its future
significance and usually uses the LRU algorithm as the cache replacement
strategy. This approach has the drawback that it creates a high cache fluctuation
rate with minimal reliability in regard to the cached content. Proxy agents based on
ADC keep track of the average request frequency of all requested objects based on
the last two experienced requests. The learned data in the form of time gap
between two requests will be used to decide whether the new data should be
cached or discarded. A newly arrived object will only be cached if its average
request time is smaller than the worst case currently residing in the cache.

As mentioned before, we introduced selective caching as a mean to focus on the
more important often requested objects, and preliminary work has shown that our
algorithm works better with the approach of selective caching and an ordered table
than a table based on a typical LRU algorithm. An object will only be cached if it
is able to move from the multiple-table into the caching table by having an average
request time shorter than the worst case. To make sure that old objects will expire,
we introduced a simple object aging strategy by computing the objects average
time with a focus on the passed time since the last request.

8

2

)(lastnowaverage
age

TTT
T

−+
=

Figure 4: Moving Average over last two requests

The advantage of this equation is that it is simple and comes with a minimal
computational cost. It gives the currently requested objects a lower age (allowing
them to stay longer in the table) and represents the actual average value for the
next request. Essentially it can be seen as a moving average with a focus on the
current time. It should be noted that all objects age at the same pace and that an
established table order remains the same during the aging process. Newly entering
objects use the current age of the existing objects to place itself into the
appropriate position.

IV. ALGORITHM

The algorithm for ADC is implemented in every running proxy with an equal
setting without any further modifications or fine-tuning. Each proxy essentially
reacts to two types of events: an incoming request or an incoming reply, otherwise
it stays idle. The following sections describe the core parts of the algorithm with
additional descriptions.

1. Receive Request

Each proxy receives incoming requests and trys to resolve it by means of its
locally cached data or through smart forwarding to a more suitable location.
Looking at the meta-code in Figure 5 we can clearly see this decision-making as
the if-statement in line 3. If the request could be resolved by the local data, the
proxy will fetch the stored object, update the respective entry in the mapping table
data structure and return the object to the requesting peer. On the other side, were
the object was not available in the local cache, the proxy stores the information for
the backwarding and forwards the request to the origin server if a loop got
detected or the current request exceeds maximum number of forwarding hops. In
all other cases, the proxy looks up the stored forwarding information and uses it to
transfer the request to a better peer.

Receive_Request()

 Local_time++

 Object = Request.getRequestedObject()

IF (Object is locally cached)

Update_entry(Object,this)

Return getData(Object) to Request.getSender()

ELSE

Store_Backwarding(Request)

Request.setSender(this)

9

IF(Loop_Detected(Object) OR Request.isMaxHops()

 Forward Request to Origin Server

ELSE

Forward Request to Forward_Addr(Object)

Figure 5: Receive_Request()

Figure 6 describes the general selection of the forwarding address. It should be
pointed out that in case where no entry for the requested object exists, the proxy
will select a random peer over the total set of all known proxies including itself.
Additionally, the counter for the received requests represents the local clock of the
proxy and is used for the later described average computation.

Forward_Addr (Object)

 Entry = find Entry in Multiple or Single Table (Object)

 IF (Entry == NULL)

 Return Random Selection (Set of Proxy Locations)

 ELSE

 Return Entry.location

Figure 6: Forward_Addr()

2. Receive Reply

The second major event for every proxy system is the arrival of a reply from a
previously forwarded request along the backwarding path. It is assumed in our
system that every request got finally resolved by either one of the proxies or the
origin server, therefore each reply package carries the data for the requested object
and as described earlier the information about the resolving proxy. Figure 7 shows
this aspect in the second if statement. The first if-clause simply checks if the
resolving proxy got already set, a NULL value stays for the data from the origin
server and the current proxy will be assigned as the official resolver. After
updating the internal mapping table, the proxy checks if the received data was
stored in the local cache and sets itself as resolving proxy if no other proxy has
previously cached the same data. This focus on only one caching location is
necessary to allow the system to agree faster on one location for a specific object.
Finally the object continues its way along the backwarding path.

Receive_Reply()

IF (reply.getResolver() == null)

Reply.setResolver(this)

Update_Entry(Object,reply.getResolver())

IF(isLocallyCached(Object) AND reply.notCached())

 Reply.setResolver(this)

 Reply.setCached(this)

 Backward Reply

Figure 7: Receive_Reply()

10

3. Update Entry

In both sub-procedures for receive request and reply, we can identify the method
Update_Entry as the core procedure to update the internal mapping table data
structure. The Update_Entry table is accessed each time when the information for
a resolved object passes the proxy, or directly when the proxy was able to resolve
the request using its locally cached data. Looking at Figure 8 we can see that the
Update_Entry method contains essentially four parts due to the fact that the
method first needs to identify the table that contains the related entry and searches
for it in the order, caching table, multiple-table and single-table. If not found a new
entry will be created and placed into the single-table.

The first part checks the caching table for the wanted information and updates the
entry in accordance to the new assigned location and average time. The caching
table is ordered and the updated entry will be placed respectively.

The second part of the method checks the multiple-table, if the object was not
found in the caching table. If found in the multiple-table, the entry will be updated
in regard to average time and location but this time the proxy checks if the new
average time is lower than the worst case in the caching table. If that is the case,
the last element in the caching table will move into the ordered multiple-table and
the selected element from the multiple-table will move into the ordered single-
table.

The third part checks the single-table for the wanted object and is similar to the
second part. If found, the entry will be updated and the proxy checks if the new
average value is smaller than the worst average value of the multiple-table, if
that’s the case the element from the single-table will be placed into the ordered
multiple-table and the last element of the multiple-table will be placed at the top of
the single-table. It should be reminded again that the single-table is based on a
simple LRU algorithm while entering elements will be placed on the top of the
table and leaving elements drop out on the bottom.

Finally, the fourth part takes care of the situation, where the object was not found
in one of the three mapping tables and creates a new entry. The new entry will be
initiali zed with the assigned values and placed on top of the single-table, the last
element of the single-table drops out.

Update_Entry (Object, Location)

// PART 1 : CHECK AND UPDATE CACHED TABLE

 IF (Entry = RemoveEntry(CachedTable,Object)!= NULL)

 Entry.calcAverage(Local_Time)

 Entry.location = Location

 InsertOrdered(CachedTable, Entry)

 RETURN

// PART 2 : CHECK AND UPDATE MULTIPLE TABLE

 IF (Entry = RemoveEntry(MultipleTable,Object)!= NULL)

 Entry.calcAverage(Local_Time)

 Entry.location = Location

 IF(Entry.getAverage < CachedTable.WorstAverage())

11

 IF (CachedTable.Size == MaxCachedSize)

Temp = RemoveLastEntry(CachedTable)

InsertOrdered(MultipleTable, Temp)

InsertOrdered(CachedTable, Entry)

 ELSE

 InsertOrdered(MultipleTable, Entry)

 RETURN

// PART 3 : CHECK AND UPDATE SINGLE TABLE

 IF (Entry = RemoveEntry(SingleTable,Object)!= NULL)

 Entry.calcAverage(Local_Time)

 Entry.location = Location

 IF(Entry.getAverage<MultipleTable.WorstAverage())

 IF (MultipleTable.Size == MaxMultipleSize)

Temp = RemoveLastEntry(MultipleTable)

InsertOnTop(SingleTable, Temp)

InsertOrdered(MultipleTable, Entry)

 ELSE

 InsertOnTop(SingleTable, Entry)

 RETURN

// PART 4 : CREATE NEW ENTRY

 Entry = Create new Entry (Object, Location)

 IF (SingleTable.Size == MaxSingleSize)

 RemoveLastElement(SingleTable)

 InsertOnTop(Entry)

Figure 8: Update_Entry()

4. Calculate Average

The Calc_Average function, used in the Update_Entry method, computes the new
average time value for a specific entry based on the current local time. Essentially,
the function contains three parts with the important last line, where each object
receives the time-stamp for the last access. The average value for a newly created
object will always be assigned with 0, while the second time when the object got
accessed, the local_time and the timestamp value is used to compute the
approximate average rate. In all other cases, we compute an average time-
difference between two requests based on the earlier described formula for a
simple moving average over two values.

Calc_Average()

IF (hits == 0)

 average = 0;

 ELSE

 IF (hits == 1)

12

 average = local_time - timeStamp;
 ELSE

average=(average+(local_time-timeStamp))/2;

 hits++;

 timeStamp = time;

Figure 9: Calc_Average()

V. EXPERIMENTATION

To validate and verify the described algorithm for adaptive distributed caching, we
ran multiple simulations over a set of artificially created client requests. We used
the polygraph application as benchmarking tool to create a set of around 4 million
requests. In all tests we compared the results of the ADC algorithm to the widely
used distributed caching based on a hashing algorithm like CARP and evaluated
the performance in regard to hits rate and parameters like HOPS and execution
time.

1. Settings

The current experimentations allows the variation of the following five
parameters: algorithm, number of proxies, size of single-table, size of multiple-
table and size of caching table. Additional parameters like maximum number of
hops and changes of the infrastructure can be used but were not applied in our
latest work and are part of our future concentration. All tests are based run on the
multi-agent platform Carolina [19] with each running agent implements one proxy.
Our group had access to a set of 8 equal Pentium III machines and we distributed
the agents in such a fashion that each host run exactly one ADC-agent. It should be
pointed out at this point that our application only focuses on the handling of
requested URLs and the proxies will not cache and transfer the actual objects data.

1.1 Algorithm

We simulated the new ADC algorithm and one simple hashing algorithm based on
the widely used CARP approach [29]. A proxy in the CARP algorithm tries to
resolve incoming requests by means of its locally cached data and forwards the
unresolved request in accordance to a globally known hashing function assigning
the requested object to a specific location in the total set of known proxies. If the
second proxy cannot resolve the forwarded request, the request will be assigned to
the origin server. After the request got resolved the second proxy will store the
received data replacing existing information based on the LRU algorithm and
forward the request directly to the requesting client, bypassing the first proxy.

1.2 Number of proxies

The number of running proxies is represented by the number of running proxy
agents, were each agent receives its individual process for execution. In our test
we were able to show that a simulation running on a powerful one Gigabyte
memory machine returns the same results as a run spread over a distributed set of

13

machines were each hosts runs exactly one proxy agent. As shown later, the single
CPU approach outperforms the distributed approach in relation to execution time
due to the fact that no network communication is involved. For our tests we are
able to run any number of proxy agents by means of parallel processes or a
maximum of eight proxies when each proxy receives its individual host.

1.3 Single-table Size

Represents the number of equal-sized objects that can be mapped by the single-
table. As described earlier, this value is most significant for the performance and
hit rate of the overall algorithm. The larger the table size, the larger the part of the
request pattern that is temporarily stored for evaluation. On the other side, the
larger the table, the more memory is used by the application and needs to be
shifted around during the memory access. Our experimentation shall show how
different values for the single-table influence the outcome of the system.

1.4 Multiple-table Size

Represents the number of equal-sized objects that can be mapped by the multiple-
table. Ideally this table should be as large as the total amount of available cached
objects minus the locally cached objects allowing a one-to-one mapping for the
content of all proxies but in real system the multiple-table will only be able to
trace a fraction of all known objects. Changing this parameter, by increasing and
decreasing the table will show how different values affect the overall systems
performance. It is strongly assumed that the ideal value for the mapping table size
is highly dependent on the characteristics of the experienced request pattern.

1.5 Caching Table Size

Represents the number of equal-sized objects that can be cached in one proxy. The
larger the local caching table the more objects can be stored. Due to the fact, that
each proxy is limited in its usable resources like RAM and disc space, no proxy is
able to store the total of all experienced objects. The cache table will in
accordance with our algorithm only store the most often requested objects and
changes in the table size shall provide an idea for its relation to the systems
performance.

1.6 Request Pattern

For the evaluation of our system, we needed to access to a set of requests, which
we can run against our proxies to evaluate the overall performance. We looked
into different online available log files of server and proxy systems but due to a
lack of description that could allow a third person to repeat our test cases and a
lack of large request files we decided to use the widely used polygraph proxy
benchmarking tool [32]. The polygraph application is mostly used for the real-time
evaluation of hardware proxy systems for and it allows us the specific settings of
different parameters to create an artificial request pattern which, is supposed to be
close to the in real-life experienced request distribution of the Internet. The created
file comes with a set of almost 4 million requests and is divided into three phases.
Phase 1 with around 1.0 million requests covers a simple fill phase with almost no

14

request repetitions. Phase 2 with around 1.5 milli on requests offers requests and
repeats itself in Phase 3.

Figure 10: Polygraph Settings

2. ADC versus Hashing

In this section of the experimental part we compare the performance of our ADC
algorithm to the performance of a common hashing algorithm by experienced hits
and hops. The system runs with 20k entries for the single and the multiple-table
and 10k entries for the caching table in each of the 5 running proxies.

2.1 Hit Rate

In the first evaluation Figure 11 we compare the plain hit rate experienced for the
earlier described polygraph request pattern of around 3.99 milli on requests. The
diagram shows clearly the three mentioned phases, a fill phase up to around 900k
requests, the request phase I and the request phase II . The diagram shows the
average hit rate as a moving average over the last 5000 requests and the total
number of requests. It is clearly visible that, the ADC algorithm drags after the
Hashing algorithm to reach its high values in phase I, but is then after the learning
phase is finished quite able to outperform the hashing algorithm by a minimal
margin. Further tests, with a repetition of the request pattern and a system with
pre-learned information shall be shown in the future work.

METHODS - ADC vs. HASHING

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0 1000000 2000000 3000000 4000000

REQUESTS

H
IT

 R
A

T
E

HASH 5000
HASH TOTAL
ADC 5000
ADC TOTAL

Figure 11: Hit Rate – ADC vs. Hashing

/* PolyMix-4 workload */

TheBench.peak_req_rate = 100/sec;

FillRate = TheBench.peak_req_rate;

ProxyCacheSize = 1MB;

15

2.2 Hops Rate

Figure 12 shows the comparison of the average number of hops needed to resolve
a request. A hop is regarded as the message transfer between client-proxy, proxy-
proxy and proxy-server. We can safely claim that on average, the ADC algorithm
needs two more hops than the hashing algorithm to resolve an incoming request.
This result, on one side, allows the ADC algorithm to search for a specific object
more flexibly than the hashing algorithm. On the other side, ADC has longer
systems response than the hashing algorithm.

HOPS - ADC vs. HASHING

0

1

2

3

4

5

6

7

8

9

0 1000000 2000000 3000000 4000000
REQUESTS

H
O

P
S

HASH 5000
HASH TOTAL
ADC 5000
ADC TOTAL

Figure 12: Hops – ADC vs. Hashing

3. Changing Table Size

Our experiments with different table sizes were focused on the size of 5k to 30k
for the Caching, Multiple and Single-table. In the evaluation we focused on the
three parameters, average Hits, Hops and Simulation Time needed for the 3.99
milli on requests. The static settings for all simulations were 10k for the caching
table and 20k for the single and multiple-table. For example, when we changed the
values for the caching table, we kept the size of the single and multiple-table at
20k entries.

3.1 Hits by Table Size

In the first part of the evaluation we changed each table size from 5k to 30k in the
steps of 5k and observed the overall experienced hit-rate. Looking at Figure 13 we
can clearly identify that the size of the caching table is mostly responsible for the
value of the overall hit rate. Naturally, the more cache is available in the system,
the more hits are experienced in the test-run. Increasing both the single and the
multiple-table, did not allow the system to improve the hit-rate above the around
0.7 for the caching table size of 10k. Interestingly, even a single-table size of 5k
was still able to capture enough requests to allow the system to reach the same
number of hits as a single-table size of 30k. A multiple-table of under 10k has a
negative impact on the overall hit rate, but increasing it over the 10k did not
significantly improve the number of experienced hits. Future work, will focus

16

more on the area of under 10k but is safe to say at this point, that the ideal
parameters for the three tables is highly dependent on the nature of the
experienced request pattern.

HITS BY TABLESIZE

0

0.02

0.04

0.06

0.08

0.1

0.12

0 5000 10000 15000 20000 25000 30000 35000

TA B LESIZE

SINGLE
MULTIPLE
CACHE

Figure 13: Hit Rates by Table Size

3.2 Hops by Table Size

Looking at the graph for the average number of hops needed to resolve a request
(Figure 14), it should be pointed out that even if it appears the graph go through a
bread spectrum of changes, of mostly declining nature, the values change only in
the area of a ¼ hop, and can be regarded as not significant in comparison of the
average number of around 7 hops. The most radical decline can be observed for
changes in the single-table. Increasing the single-table, allows more objects to be
stored in the system and requests are more li kely to be resolved on an earlier base.
Similar behavior can be observed for the multiple-table, more objects will be
mapped. The slightly decreasing line for the single-table can be explained by the
assumption that when old entries from the multiple-table move back into the
single-table, they still keep their forwarding information and speed-up minimally
the resolution of requests.

HOPS BY TABLESIZE

6.95

7

7.05

7.1

7.15

7.2

7.25

7.3

0 5000 10000 15000 20000 25000 30000 35000

TABLESIZE

H
O

P
S

SINGLE
MULTIPLE
CACHE

Figure 14: Hops by Table Size

17

3.3 Time by Table Size

Looking at the graph for the average time needed to resolve a request (Figure 15),
it can be stated that increasing the single and multiple-table slows down the overall
execution time while increasing caching table has no significant impact. An
explanation for the behavior can be given by an in-depth analysis of the time
consuming parts of the test-bed. On one hand, we have the actual ADC algorithm
during the search process with its time-consuming parts during the access on the
single and multiple-table.

TIME BY TABLESIZE

5000

5500

6000

6500

7000

7500

8000

8500

9000

0 5000 10000 15000 20000 25000 30000 35000

TABLESIZE

T
IM

E
 [

S
E

C
O

N
D

S
]

SINGLE
MULTIPLE
CACHE

Figure 15: Processing Time by Table Size

While the single-table is based on the LRU algorithm with a linked list requires
the element-wise search within the list to take out entries and replace them.
Insertion and deletion at the ordered multiple-table is mostly operated by binary
search algorithms. Both accesses are extremely time consuming and a more
adapted data structure should provide speed-ups in the future versions of this
algorithm. Another source of time delays can be found in the amount of used
memory by each proxy, paging and context switches cause significant delays
during the simulation of the test-bed (in this case all proxies running on one
machine). Due to the fact, that most of the used memory is needed for the storage
of the actual request URLs, algorithms like MD5 [16] should be used in the future
to reduce the amount of required memory.

VI. CONCLUSION

In the presented paper, we focused on two major contributions to our previous
work in the area of Adaptive Distributed Caching. The first part of the paper
presented a clear description of the actual algorithm, which will allow any
interested party to reproduce the work for further research. We presented at the
second part of the paper comparisons of the ADC algorithm with a hashing
algorithm based on a new 3.99 million request file, and evaluation results

18

regarding various parameters li ke caching, multiple- and single-table sizes. We
focused on the evaluation of the overall hit and hops rate and have shown their
impact on the overall systems performance. Additionally, we pointed out different
areas where our work leaves space for improvement and gave a first feel for
further evaluations. Additional future work, can be found in the creation of a real
proxy system based on the free available Squid server [31], additional
improvements on the algorithmic level, further test beds to understand the impact
of individual system parameters, the performance comparison based on a new set
of request patterns and an evaluation based on the Wisconsin Proxy Benchmark
[1], the transfer of our results on new application areas li ke (server load balancing
and resource allocation) and finally the creation of a theoretical framework to
explain emerging attributes li ke merging and self-organization.

VII. REFERENCE

[1] J. Almeida and P. Cao, Measuring Proxy Performance with the Wisconsin Proxy
Benchmark, Technical Report, University of Wisconsin Department of Computer
Science, April 1998.

[2] L. Breslau, P. Cao, L. Fan, G. Philli ps, and S. Shenker, Web Caching and Zipf-like
Distributions: Evidence and Implications, Technical Report 1371, Computer Sciences
Dept, Univ. of Wisconsin-Madison, April 1998.

[3] C.-Y. Chiang, Y. Li, M. T. Liu, M. E. Muller, On Request Forwarding for Dynamic
Web Caching Hierarchies, In Proceedings of the 20th International Conference on
Distributed Computing Systems (ICDCS'00), Taipei, Taiwan, April 2000.

[4] J. Cohen, N. Phadnis, V. Valloppillil , K.W.Ross, Cache array routing protocol v.1.1,
Sept. 1997, Internet Draft.

[5] J.C. Chuang, "Resource Allocation for stor-serv: Network Storage Services with QoS
Guarantees", NetStorage'99, Network Storage Symposium Dec. 1999.

[6] J. Dill ey and M. Arlitt , Improving Proxy Cache Performance: Analysis of three
Replacement Policies, IEEE Internet Computing, Nov.-Dec. 1999.

[7] L. Fan, P. Cao, J. Alineida, and A. Broder. Summary Cache: A Scalable Wide-Area
Web Cache Sharing Protocol. In Proceedings of ACM SIGCOMM Conference, 1998.

[8] J. Gwertzman and M. Seltzer, World-wide web cache consistency. USENIX
Symposium on Internetworking Technologies and Systems, pages 141--152, January
1996.

[9] A. Heddaya and S. Mirdad, WebWave: Globally Load Balanced Fully Distributed
Caching of Hot Published Documents, in Proceedings of 17th IEEE Conference on
Distributed Computing Systems, May 1997.

[10] M. J. Kaiser, K. C. Tsui, J. Liu, Self-organized Autonomous Web Proxies, in
Proceedings of the First International Joint Conference on Autonomous Agents &
Multi -agent Systems, pp. 1397-1404, IEEE, 2002.

[11] M. J. Kaiser, K. C. Tsui, J. Liu, Adaptive Distributed Caching, in Proceedings of the
IEEE Congress on Evolutionary Computation, pp. 1810-1815, IEEE, 2002.

[12] M. J. Kaiser, K. C. Tsui, J. Liu, Adaptive Distributed Caching with minimal memory
usage, in Proceedings of SEAL 2002, to appear.

[13] D. R. Karger, E. Lehman, F. T. Leighton, R. Panigrahy, M. S. Levine, and D. Lewin.
Consistent hashing and random trees: Distributed caching protocols for relieving hot

19

spots on the world wide web. In ACM Symposium on Theory of Computing, pp. 654-
663, May 1997.

[14] C. Lindemann, and A. Reuys, Modeling Web Proxy Cache Architectures, 1999.

[15] J.-M. Menaud, V. Issarny, and M. Banatre. Improving Effectiveness of Web Caching,
in Recent Advances in Distributed Systems, volume 1752 of LNCS. Springer Verlag,
2000.

[16] A. J. Menezes, P. C. van Oorschot and S. A. Vanstone, Handbook of applied
Cryptography, CRC Press, ISBN:0-8493-8523-7, p. 816, October 1996.

[17] S. Michel, K. Nguyen, A. Rosenstein, L. Zhang, Adaptive Web Caching: Towards a
New Caching Architecture, 3rd International WWW Caching Workshop, June 1998.

[18] S. Paul and Z. Fei. Distributed caching with centralized control. In Proc. of the Fifth
International Web Caching and Content Delivery Workshop, Lisbon, Portugal, May
2000

[19] L. Qiu, V. Padmanabhan, and G. Voelker, On the placement of web server replicas, in
IEEE INFOCOM, Apr. 2001.

[20] P. Rodriguez, C. Spanner, and E. W. Biersack, Web Caching Architectures:
Hierarchical and Distributed Caching. 4th International Caching Workshop, 1999.

[21] P. Rodriguez, C. Spanner, and E. W. Biersack, Analysis of Web Caching
Architectures: Hierarchical and Distributed Caching (2001).

[22] K. W. Ross, Hash-Routing for Collections of Shared Web Caches, IEEE Network
Magazine, 11, 7:37-44, Nov-Dec 1997.

[23] A. Rousskov and V. Soloviev, On Performance of Caching Proxies, in Proceedings of
the ACM SIGMETRICS Conference, Madison, WI, June 1998.

[24] M. Sinnwell and G. Weikum, A cost-model-based online method for distributed
caching, In Proceedings IEEE Conference on Data Engineering, Birmingham, GB,
1996.

[25] R. Tewari, M. Dahlin, H. Vin, and J. Kay. Design Considerations for Distributed
Caching on the Internet. In Proceedings of the 19th IEEE Conference on Distributed
Computing Systems, May 1999.

[26] K. C. Tsui, J. Liu, H. L. Liu, Autonomy Oriented Load Balancing in Proxy Cache
Servers, Web Intelli gence: Research and Development, First Asia-Pacific Conference,
WI 2001, p.115-124.

[27] J. Wang, A survey of Web Caching Schemes for the Internet, ACM Computer
Communication Review, 29(5):36--46, October 1999.

[28] Z. Wang, Cachemesh: A Distributed Cache System for World Wide Web, Web Cache
Workshop, 1997.

[29] A. Wolman, G. M. Voelker, N. Sharma, N. Cardwell , A. Karlin, and H. M. Levy, On
the scale and performance of cooperative Web proxy caching, in Proceedings of the
17th ACM Symposium on Operating Systems Principles (SOSP '99), pp. 16-31,
Kiawah Island Resort, SC, USA, December, 1999.

[30] K.-L. Wu, P. S. Yu, Load Balancing and Hot Spot Relief for Hash Routing among a
Collection of Proxy Caches, in Proceedings of the 19th IEEE International Conference
on Distributed Computing Systems.

[31] http://www.squid-cache.org/

[32] http://www.web-polygraph.org/

