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Abstract. A self-organized approach to manage a distributed proxy system called Adaptive 
Distributed Caching (ADC) has been proposed previously.  We model each proxy as an 
autonomous agent that is equipped to decide how to deal with client requests using local 
information.  Experimental results show that our ADC algorithm is able to compete with 
typical hashing based approaches. This paper gives a full description of the self-organizing 
distributed algorithm, with a performance comparison based on hits and hops rate. 
Additional evaluation of the parameters caching-, multiple- and single-table size is also 
presented.  
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I. INTRODUCTION 
 

The Internet is growing exponentially and web caches have been shown to be a 
feasible way to reduce the overall network traffic [12]. Web Servers store objects 
(documents), which are requested by clients spread over the global network. A 
web cache, or also known as web proxy, is usually placed between the requesting 
clients and the resolving origin server. Client requests are usually directed to the 
proxy server, which will try to resolve the needed object by its locally cached data.  

Proxies that are not able to resolve an incoming request have to make a choice 
between either forwarding the request directly to the origin server or query a 
neighboring proxy for the needed object. The idea that a proxy can forward 
requests to another peer lead to research in the area of cooperative proxies and 
distributed proxy systems [27]. Distributed proxy systems are based on the idea 
that a set of multiple proxies combined increase the overall storage space for 
cached documents and increase therefore the chance to resolve incoming requests. 
Cooperative proxies try to combine their individual caches in such a way that 
maximum cache-usage is achieved while acting transparently as one single load-
balanced proxy cache [4] which leads to problems like inter-proxy communication 
to avoid the storage of equal objects and the distribution of information about 
stored projects for the allocation process.  

Previous research on cooperative proxies can be found in the area of hierarchical 
[27] and hashing approaches [13][29], adaptive caching [17], CacheMesh [28], 
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WebWave [9] and the straightforward approach with a central coordinator 
[18][26].  

Additionally research for distributed systems cover areas for consistency between 
multiple proxies [8], the theoretical description of the underlying processes 
[14][29] and attempts to build the system on the idea of economical aspects [24]. 
Aspects like performance [21][23] and effectiveness of replication schemes [15] 
were evaluated and different schemes for the internal representation of URL lists 
analyzed [7][16]. Parallel applications for research in the area of distributed 
caching can be found in distributed object replication schemes [25], resource 
allocation [5] and sever load balancing [1].  

  

II. PREVIOUS WORK 
 

1. Central Coordinator [26] 

In our first approach we introduced the self-organizing approach of proxy load 
balancing by the usage of a central coordinator in front of all running proxies. We 
have shown in that the system is well able to react to adapt the load distribution in 
regard to the individual performance characteristics of every proxy. The central 
coordinator collectively receives all incoming requests for the proxy system and 
assigns the request to the currently best performing proxy without considering 
previously stored objects. Additionally it learns from the response time the validity 
of its choice and adapts the internal performance values based on a simple 
reinforcement learning algorithm. The major drawback in our first approach lay in 
the fact that the central coordinator creates the clear bottleneck situation for the 
overall system due to the fact that all requests and feedbacks have to pass the 
coordinator. Additionally, the system left space for improvement in regard to more 
specific request forwarding considering previously stored objects. 

 

2. Self-Organized Adaptive Proxies (SOAP) [10] 

Based on our experiences in the approach with a central coordinator we introduced 
the idea to place the reinforcement learning component in front of every proxy 
(essentially as part of every proxy) allowing the proxies to receive requests 
directly with the individual learning and evaluation of forwarding decisions. 
Therefore each proxy received an internal table to map the URL of a specific 
object onto one proxy of the total set of running proxies. The feedback system was 
based on the simple response time evaluation. We had to learn that such a system 
requires a large number of requests for each object ID to allow the whole system 
to learn the same mapping. Each mapping table contained one entry for a specific 
URL domain (category) and the decision-making component mapped each 
category onto one proxy location. The drawback of the provided solution lay in the 
fact that our solution was not able to deal ideally with bottleneck situations were, 
for example, only requests for one category were injected. The major lesson we 
learned in our work is the importance of selective caching. The idea behind 
selective caching as described later, is the fact that each proxy decides individually 
for each object if it will cache the data or discard the received information. 
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3. Unlimited Adaptive Distributed Caching [11] 

In our next step we tried to overcome the drawbacks of SOAP and its domains by a 
direct mapping of each object onto exactly one location. In abstraction we can look 
at the mapping table as a written hashing function with a direct object-ID to 
location relationship. This idea introduced a new problem, the mapping table that 
stores the URL mappings needed to be very large to be able to store an entry for 
every experienced object-ID and we accepted this drawback by letting the table 
grow indefinitely. Avoiding the idea of information broadcasting, we attacked the 
problem by means of information multicasting along the forwarding path. Each 
resolved object bypasses all proxies that forwarded the request previously. It is 
important for our system that multiple proxies focus on the same location for a 
specific object. Our work has shown that the algorithm is well able to provide the 
wanted functionality and was well able to compete with classical hashing 
approaches.  
 

4. Adaptive Distributed Caching with a realistic Mapping Table [12] 

As previously mentioned, our algorithm for adaptive distributed caching assumes 
infinite resource capacity for the local mapping table in every proxy. This scenario 
is highly unrealistic and it was the ultimate goal of this paper to identify an 
extension to ADC so that it is more suitable for a realistic situation. Whenever a 
previously un-requested object is experienced by one of the proxies, it will receive 
an entry in the mapping table so that future requests for it can use the stored 
information for the computation of the request frequency. To allow the system to 
learn from new requests, each newly created entry should stay long enough in the 
mapping table so that a repeat request can occur to allow the algorithm to compute 
the average request time.  As a consequence of our work we, split up the existing 
mapping table into a single-, multiple- and caching table. Elements move back and 
forth between the three tables in accordance to the average time-difference 
between equal requests.  

 

III. ADAPTIVE DISTRIBUTED CACHING 
 

In the following sections we introduce the core components of the adaptive 
distributed caching algorithm. In essence the algorithm combines the advantages 
of hierarchical distributed caching (allowing multiple copies of the same object) 
and of hashing based distributed caching (fast allocation through global 
agreement). As shown in the previous chapter, the algorithm developed out of the 
ideas behind the hashing based allocation and during our research we redefined 
specific components to reach the wanted global emergent attributes.  
 

In short, our proxy objects maintain multiple copies of the frequently requested 
documents to balance the user request load between the cooperative proxies and 
reduce the number of copies in situations where only few requests for a particular 
object are experienced. In both cases the algorithm allows the distributed proxies 
to agree on the specific location of one object without the need for a central 
coordinator or a broadcasting protocol. 
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The core of the ADC algorithm can be divided into four parts that allow the global 
stabili zation, in combination with the peer proxies: (1) Request Forwarding and 
Looping, (2) Multicasting by Backwarding, (3) Mapping Tables and (4) Selective 
Caching with Aging.  

 

1. Request Forwarding and Looping 

Request Forwarding and Looping describes the idea that during the search process 
unresolved requests will be forwarded to a more suitable proxy object or the origin 
server. In general, the decision for a forwarding location is based upon either 
previously learned data stored in the local mapping tables or a random selection 
over the set of known proxies. In cases were random request forwarding resolves 
in an loop, meaning that the same proxy got selected more than once during the 
forwarding process, the doubled hit proxy wil l always forward the request to the or 
gin server and therefore terminate the search process. As a second termination 
criterion, to avoid endless request forwarding over a large set of proxies, a 
maximum number of forwarding can be set. After reaching the forwarding 
maximum the next proxy will end the search process by forwarding the request to 
the origin server. It should be kept in mind at this point that in our system we don’ t 
expect the loss of messages and that always either one of the proxy objects or the 
actual origin server will finally resolve the request. The retrieved object will t hen 
traverse the same path back to the requesting client, a process we call this 
backwarding, and all proxies on the way have the option to cache the data. In 
regard to the internal data structure, it is important that every proxy stores 
information about every forwarded request as long as the backwarding process is 
not completed. Each request comes with a global unique ID (usually based on the 
clients IP address and an internal request counter), which is used to give each 
proxy the option to identify forwarding loops. 

 

2. Multicasting by Backwarding 

Every running proxy has its own mapping table and unknown objects are usually 
resolved by random forwarding based search over the total set of running proxies. 
In this paragraph we talk about the idea of data and information dissemination 
through multicasting on the backwarding path. Essentially, in our work we tried to 
find a technique that allows proxy objects to agree on the same location for a 
specific document without the use of a central coordinator or a broadcasting 
protocol. Looking at the set up of the proxy system based on a hierarchical 
structure we can see that every object will be passed down along the hierarchy 
from the root to the leave proxy. In our forwarding process, each object will pass 
all previously passed proxies. This backwarding can be seen as a simple technique 
for data dissemination based on multi -casting to a selected group of proxy objects. 
We use this technique to enforce all proxies in this multi -casting group to agree on 
the same location for a specific object. In essence, one proxy will either resolve or 
even cache the object, starting at the end of the forwarding path. This proxy will 
mark the package with its address and all other proxies on the backwarding path 
will receive and accept this information. Each individual proxy on the return path 
may cache the object if it fits their selective caching criteria and use the 
information about the resolving proxy agent to update the location in their 
mapping table. Essentially, the longer the backwarding path, the more proxies will 
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agree on the same location for the specific object. If in the future the same object 
is requested starting at a different proxy, the forwarding path only has to hit one of 
the previously used proxies to quickly find the agreed location. Over the 
backwarding path a different set of proxies will l earn about the location and more 
and more proxies will stabili ze on the same information without any further 
communication. The resolved objects usually come in sizes of up to n Kbytes and 
the additional information of the resolving proxy location creates a negligible 
overhead.  

 

3. Mapping Tables 

The mapping table is a local data structure within every proxy that is used to 
resolve the object location to be used by the forwarding process using the object 
ID (URL). In a more abstract sense we can see the mapping table as a direct 
replacement of the static hashing function, used in hashing approaches, to map 
object IDs onto their unique location.  It is the main objective of our algorithm to 
allow all existing mapping tables to agree on a unique location for each object 
without a broadcasting protocol or central coordinator. In our first attempt of the 
algorithm allowed the table to grow infinitely, keeping track of all previously 
experienced objects, which usually leads to out of memory problems and 
performance drawbacks. In our latest extension we introduced a way to limit the 
mapping table while still keeping the performance at the previously attained level.  

 

3.1 Single-table 

The single-table is used to simply keep track of the current flow of requests. Each 
unknown object will receive a new entry on the top of the table, displacing the 
oldest entry at the bottom of the table – the well -known LRU algorithm. It is a 
requirement of the single-table that it is large enough so that requests with at least 
two hits can occur. When an existing entry in the mapping table experiences 
another hit, the time difference between the two requests will be used as a first 
approximation of the average object request frequency and the object will move 
from the single-table to the multiple-table (described below).  

Figure 3 shows a simple example of a single-mapping table. The first column 
contains the general object ID in our case the object URL. The second column 
contains the current assigned location for the specific object.  This information is 
local and might vary between different proxy agents.  Objects for which a 
particular proxy is responsible will have the value THIS in this column of that 
proxy’s single-table. The third column takes a marker, which stores a local time 
value of the time when this object was last requested. The fourth column keeps 
track of the average time between two requests of this object and the last column 
simply keeps track of the number of times this a specific object has been 
requested.  

It should be pointed out that we intentionally do not use the HITS value to 
compute the average request time but focus solely on the time difference between 
the last two requests. In any adaptive system, changes in the recent past need to be 
considered and the HITS value would allow objects that were highly requested in 
the past to remain unnecessaril y long in the local cache. 
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OBJ-ID PROXY LAST AVG HITS 

www.xy634 Proxy[5] 9952 0 1 

www.xy34 Proxy[4] 9953 0 1 

www.xy123 Proxy[1] 9954 0 1 

www.xy64 Proxy[2] 9955 0 1 

www.xy53 Proxy[1] 9956 123 432 

www.xy343 Proxy[7] 9957 0 1 

www.xy452 Proxy[4] 9958 522 434 

www.xy2 Proxy[1] 9959 0 1 

www.xy32 Proxy[2] 9960 0 1 

www.xy29 Proxy[4] 9961 0 1 

Figure 1: A Sample Single-table 

3.2 Multiple-Table 

The multiple-table is also restricted in its size and contains only objects that were 
requested more than once ordered by their average request time. Once the table is 
filled, newly arriving objects from the single-table have to have a lower average 
value than the worst case currently residing in the table before it will be placed at 
the appropriate position. Removed objects from the multiple-table will be placed 
into the single-table as a regular entry, giving it the chance to be hit again later. 
The forwarding address for elements with the THIS value marks objects for which 
this proxy itself is responsible when future requests arrive and unresolved queries 
need to be forwarded to the origin server. The general structure of the multiple-
table is equal to that of the single-table and it should be pointed out that the table 
is always ordered in ascending order of the fourth column (average request time). 
This order allows the simple identification of the object with the worst average 
time and quick insertions/deletions based using binary search. 

 

OBJ-ID PROXY LAS AVG HITS 

www.xy64 Proxy[8] 2252 70 2 

www.xy55 This 4253 75 2 

www.xy13 Proxy[1] 4154 83 34 

www.xy644 This 6555 90 2 

www.xy52 Proxy[4] 3356 123 42 

www.xy433 Proxy[8] 7557 313 4 

www.xy52 This 3458 323 44 

www.xy32 Proxy[1] 7859 553 65 

www.xy232 This 3260 766 2 

www.xy299 Proxy[4] 3261 874 54 

Figure 2: A Sample Multiple-Table 
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3.3 Caching Table  

The caching table in an ADC proxy keeps track of all currently cached objects. 
This table is very similar to the previously described multiple-table, with the 
exception that the table entries represent actually stored objects. Similar to the 
multiple-table, this table is also ordered by the average request value in column 
four and new objects have to outperform at least the worst case in (the last row) 
the table and will be placed in the appropriate position within it. Elements that 
drop out of the bottom of this table move back to the multiple-table which gives 
them the chance to be hit again in the near future or to drop out completely over 
time. 

 

OBJ-ID PROXY LAST AVG HITS 

www.xy6 Proxy[3] 1152 2 434 

www.xy5 This 5453 5 342 

www.xy33 Proxy[2] 5254 6 211 

www.xy44 This 6755 10 432 

www.xy2 This 8356 15 43 

www.xy3  This 8357 33 1 

www.xy52 This 2258 37 434 

www.xy23 Proxy[2] 1259 38 22 

www.xy32 This 6360 44 42 

www.xy99 Proxy[3] 7361 65 124 

Figure 3: Caching Table 

  

4.  Selective Caching and Aging  

Selective Caching was introduced in our previous work to allow each proxy to 
autonomously specialize on a specific set of cached data [26]. In hierarchical and 
hashing systems, every proxy stores all passing objects regardless of its future 
significance and usually uses the LRU algorithm as the cache replacement 
strategy.  This approach has the drawback that it creates a high cache fluctuation 
rate with minimal reliability in regard to the cached content. Proxy agents based on 
ADC keep track of the average request frequency of all requested objects based on 
the last two experienced requests. The learned data in the form of time gap 
between two requests will be used to decide whether the new data should be 
cached or discarded. A newly arrived object will only be cached if its average 
request time is smaller than the worst case currently residing in the cache.  

As mentioned before, we introduced selective caching as a mean to focus on the 
more important often requested objects, and preliminary work has shown that our 
algorithm works better with the approach of selective caching and an ordered table 
than a table based on a typical LRU algorithm. An object will only be cached if it 
is able to move from the multiple-table into the caching table by having an average 
request time shorter than the worst case. To make sure that old objects will expire, 
we introduced a simple object aging strategy by computing the objects average 
time with a focus on the passed time since the last request. 
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The advantage of this equation is that it is simple and comes with a minimal 
computational cost. It gives the currently requested objects a lower age (allowing 
them to stay longer in the table) and represents the actual average value for the 
next request. Essentially it can be seen as a moving average with a focus on the 
current time. It should be noted that all objects age at the same pace and that an 
established table order remains the same during the aging process. Newly entering 
objects use the current age of the existing objects to place itself into the 
appropriate position. 

 

IV. ALGORITHM 
 

The algorithm for ADC is implemented in every running proxy with an equal 
setting without any further modifications or fine-tuning. Each proxy essentially 
reacts to two types of events: an incoming request or an incoming reply, otherwise 
it stays idle. The following sections describe the core parts of the algorithm with 
additional descriptions.  

 

1. Receive Request 

Each proxy receives incoming requests and trys to resolve it by means of its 
locally cached data or through smart forwarding to a more suitable location. 
Looking at the meta-code in Figure 5 we can clearly see this decision-making as 
the if-statement in line 3. If the request could be resolved by the local data, the 
proxy will fetch the stored object, update the respective entry in the mapping table 
data structure and return the object to the requesting peer. On the other side, were 
the object was not available in the local cache, the proxy stores the information for 
the backwarding and forwards the request to the origin server if a loop got 
detected or the current request exceeds maximum number of forwarding hops. In 
all other cases, the proxy looks up the stored forwarding information and uses it to 
transfer the request to a better peer.  

 
Receive_Request()   

 Local_time++  

 Object = Request.getRequestedObject() 

IF (Object is locally cached) 

Update_entry(Object,this)  

Return getData(Object) to Request.getSender() 

ELSE 

Store_Backwarding(Request)  

Request.setSender(this) 
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IF(Loop_Detected(Object) OR Request.isMaxHops() 

 Forward Request to Origin Server 

ELSE 

Forward Request to Forward_Addr(Object) 

 

Figure 5: Receive_Request() 

 

Figure 6 describes the general selection of the forwarding address. It should be 
pointed out that in case where no entry for the requested object exists, the proxy 
will select a random peer over the total set of all known proxies including itself. 
Additionally, the counter for the received requests represents the local clock of the 
proxy and is used for the later described average computation. 

 

Forward_Addr (Object) 

 Entry = find Entry in Multiple or Single Table (Object) 

 IF (Entry == NULL) 

  Return Random Selection (Set of Proxy Locations) 

 ELSE 

 Return Entry.location 

Figure 6: Forward_Addr() 
 

2. Receive Reply 

The second major event for every proxy system is the arrival of a reply from a 
previously forwarded request along the backwarding path. It is assumed in our 
system that every request got finally resolved by either one of the proxies or the 
origin server, therefore each reply package carries the data for the requested object 
and as described earlier the information about the resolving proxy. Figure 7 shows 
this aspect in the second if statement. The first if-clause simply checks if the 
resolving proxy got already set, a NULL value stays for the data from the origin 
server and the current proxy will be assigned as the official resolver. After 
updating the internal mapping table, the proxy checks if the received data was 
stored in the local cache and sets itself as resolving proxy if no other proxy has 
previously cached the same data. This focus on only one caching location is 
necessary to allow the system to agree faster on one location for a specific object. 
Finally the object continues its way along the backwarding path.  
 

Receive_Reply() 

IF (reply.getResolver() == null) 

Reply.setResolver(this) 

Update_Entry(Object,reply.getResolver()) 

IF(isLocallyCached(Object) AND reply.notCached()) 

 Reply.setResolver(this) 

 Reply.setCached(this) 

 Backward Reply  

Figure 7: Receive_Reply() 
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3. Update Entry 

In both sub-procedures for receive request and reply, we can identify the method 
Update_Entry as the core procedure to update the internal mapping table data 
structure. The Update_Entry table is accessed each time when the information for 
a resolved object passes the proxy, or directly when the proxy was able to resolve 
the request using its locally cached data. Looking at Figure 8 we can see that the 
Update_Entry method contains essentially four parts due to the fact that the 
method first needs to identify the table that contains the related entry and searches 
for it in the order, caching table, multiple-table and single-table. If not found a new 
entry will  be created and placed into the single-table.  

The first part checks the caching table for the wanted information and updates the 
entry in accordance to the new assigned location and average time. The caching 
table is ordered and the updated entry will be placed respectively. 

The second part of the method checks the multiple-table, if the object was not 
found in the caching table. If found in the multiple-table, the entry will be updated 
in regard to average time and location but this time the proxy checks if the new 
average time is lower than the worst case in the caching table. If that is the case, 
the last element in the caching table will move into the ordered multiple-table and 
the selected element from the multiple-table will move into the ordered single-
table. 

The third part checks the single-table for the wanted object and is similar to the 
second part. If found, the entry will be updated and the proxy checks if the new 
average value is smaller than the worst average value of the multiple-table, if 
that’s the case the element from the single-table will be placed into the ordered 
multiple-table and the last element of the multiple-table will be placed at the top of 
the single-table. It should be reminded again that the single-table is based on a 
simple LRU algorithm while entering elements will be placed on the top of the 
table and leaving elements drop out on the bottom. 

Finally, the fourth part takes care of the situation, where the object was not found 
in one of the three mapping tables and creates a new entry. The new entry will be 
initiali zed with the assigned values and placed on top of the single-table, the last 
element of the single-table drops out.  
 

Update_Entry (Object, Location) 

// PART 1 : CHECK AND UPDATE CACHED TABLE 

 IF (Entry = RemoveEntry(CachedTable,Object)!= NULL) 

  Entry.calcAverage(Local_Time) 

  Entry.location = Location 

  InsertOrdered(CachedTable, Entry) 

  RETURN 

 

// PART 2 : CHECK AND UPDATE MULTIPLE TABLE 

 IF (Entry = RemoveEntry(MultipleTable,Object)!= NULL) 

  Entry.calcAverage(Local_Time) 

  Entry.location = Location 

  IF(Entry.getAverage < CachedTable.WorstAverage()) 
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  IF (CachedTable.Size == MaxCachedSize) 

Temp = RemoveLastEntry(CachedTable) 

InsertOrdered(MultipleTable, Temp) 

InsertOrdered(CachedTable, Entry) 

  ELSE 

   InsertOrdered(MultipleTable, Entry) 

  RETURN 

 

// PART 3 : CHECK AND UPDATE SINGLE TABLE 

 IF (Entry = RemoveEntry(SingleTable,Object)!= NULL) 

  Entry.calcAverage(Local_Time) 

  Entry.location = Location 

  IF(Entry.getAverage<MultipleTable.WorstAverage()) 

  IF (MultipleTable.Size == MaxMultipleSize) 

Temp = RemoveLastEntry(MultipleTable) 

InsertOnTop(SingleTable, Temp) 

InsertOrdered(MultipleTable, Entry) 

  ELSE 

   InsertOnTop(SingleTable, Entry) 

  RETURN 

 

// PART 4 : CREATE NEW ENTRY  

 Entry = Create new Entry (Object, Location)  

 IF (SingleTable.Size == MaxSingleSize) 

 RemoveLastElement(SingleTable) 

 InsertOnTop(Entry) 

Figure 8: Update_Entry() 
 

4. Calculate Average 

The Calc_Average function, used in the Update_Entry method, computes the new 
average time value for a specific entry based on the current local time. Essentially, 
the function contains three parts with the important last line, where each object 
receives the time-stamp for the last access. The average value for a newly created 
object will always be assigned with 0, while the second time when the object got 
accessed, the local_time and the timestamp value is used to compute the 
approximate average rate. In all other cases, we compute an average time-
difference between two requests based on the earlier described formula for a 
simple moving average over two values.  
 

Calc_Average() 

IF (hits == 0)    

  average = 0; 

 ELSE 

 IF (hits == 1)    
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   average = local_time - timeStamp;  
  ELSE 

average=(average+(local_time-timeStamp))/2; 

 hits++; 

 timeStamp = time; 

Figure 9: Calc_Average() 
 

V. EXPERIMENTATION 
 

To validate and verify the described algorithm for adaptive distributed caching, we 
ran multiple simulations over a set of artificially created client requests. We used 
the polygraph application as benchmarking tool to create a set of around 4 million 
requests. In all tests we compared the results of the ADC algorithm to the widely 
used distributed caching based on a hashing algorithm like CARP and evaluated 
the performance in regard to hits rate and parameters like HOPS and execution 
time.  

 

1.  Settings 

The current experimentations allows the variation of the following five 
parameters: algorithm, number of proxies, size of single-table, size of multiple-
table and size of caching table. Additional parameters like maximum number of 
hops and changes of the infrastructure can be used but were not applied in our 
latest work and are part of our future concentration. All tests are based run on the 
multi-agent platform Carolina [19] with each running agent implements one proxy. 
Our group had access to a set of 8 equal Pentium III machines and we distributed 
the agents in such a fashion that each host run exactly one ADC-agent. It should be 
pointed out at this point that our application only focuses on the handling of 
requested URLs and the proxies will not cache and transfer the actual objects data.  

 

1.1 Algorithm 

We simulated the new ADC algorithm and one simple hashing algorithm based on 
the widely used CARP approach [29]. A proxy in the CARP algorithm tries to 
resolve incoming requests by means of its locally cached data and forwards the 
unresolved request in accordance to a globally known hashing function assigning 
the requested object to a specific location in the total set of known proxies. If the 
second proxy cannot resolve the forwarded request, the request will be assigned to 
the origin server. After the request got resolved the second proxy will store the 
received data replacing existing information based on the LRU algorithm and 
forward the request directly to the requesting client, bypassing the first proxy.  

 

1.2 Number of proxies 

The number of running proxies is represented by the number of running proxy 
agents, were each agent receives its individual process for execution. In our test 
we were able to show that a simulation running on a powerful one Gigabyte 
memory machine returns the same results as a run spread over a distributed set of 
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machines were each hosts runs exactly one proxy agent. As shown later, the single 
CPU approach outperforms the distributed approach in relation to execution time 
due to the fact that no network communication is involved. For our tests we are 
able to run any number of proxy agents by means of parallel processes or a 
maximum of eight proxies when each proxy receives its individual host.  

  

1.3 Single-table Size 

Represents the number of equal-sized objects that can be mapped by the single-
table. As described earlier, this value is most significant for the performance and 
hit rate of the overall algorithm. The larger the table size, the larger the part of the 
request pattern that is temporarily stored for evaluation. On the other side, the 
larger the table, the more memory is used by the application and needs to be 
shifted around during the memory access. Our experimentation shall show how 
different values for the single-table influence the outcome of the system.  

 

1.4 Multiple-table Size 

Represents the number of equal-sized objects that can be mapped by the multiple-
table. Ideally this table should be as large as the total amount of available cached 
objects minus the locally cached objects allowing a one-to-one mapping for the 
content of all proxies but in real system the multiple-table will only be able to 
trace a fraction of all known objects. Changing this parameter, by increasing and 
decreasing the table will show how different values affect the overall systems 
performance. It is strongly assumed that the ideal value for the mapping table size 
is highly dependent on the characteristics of the experienced request pattern.    

 

1.5 Caching Table Size 

Represents the number of equal-sized objects that can be cached in one proxy. The 
larger the local caching table the more objects can be stored. Due to the fact, that 
each proxy is limited in its usable resources like RAM and disc space, no proxy is 
able to store the total of all experienced objects. The cache table will in 
accordance with our algorithm only store the most often requested objects and 
changes in the table size shall provide an idea for its relation to the systems 
performance.  

 

1.6 Request Pattern 

For the evaluation of our system, we needed to access to a set of requests, which 
we can run against our proxies to evaluate the overall performance. We looked 
into different online available log files of server and proxy systems but due to a 
lack of description that could allow a third person to repeat our test cases and a 
lack of large request files we decided to use the widely used polygraph proxy 
benchmarking tool [32]. The polygraph application is mostly used for the real-time 
evaluation of hardware proxy systems for and it allows us the specific settings of 
different parameters to create an artificial request pattern which, is supposed to be 
close to the in real-life experienced request distribution of the Internet. The created 
file comes with a set of almost 4 million requests and is divided into three phases. 
Phase 1 with around 1.0 million requests covers a simple fill phase with almost no 
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request repetitions. Phase 2 with around 1.5 milli on requests offers requests and 
repeats itself in Phase 3.  

 

 

 

 

 

Figure 10: Polygraph Settings 

 

2.  ADC versus Hashing 

In this section of the experimental part we compare the performance of our ADC 
algorithm to the performance of a common hashing algorithm by experienced hits 
and hops. The system runs with 20k entries for the single and the multiple-table 
and 10k entries for the caching table in each of the 5 running proxies.  

 

2.1 Hit Rate  

In the first evaluation Figure 11 we compare the plain hit rate experienced for the 
earlier described polygraph request pattern of around 3.99 milli on requests. The 
diagram shows clearly the three mentioned phases, a fill phase up to around 900k 
requests, the request phase I and the request phase II . The diagram shows the 
average hit rate as a moving average over the last 5000 requests and the total 
number of requests. It is clearly visible that, the ADC algorithm drags after the 
Hashing algorithm to reach its high values in phase I, but is then after the learning 
phase is finished quite able to outperform the hashing algorithm by a minimal 
margin. Further tests, with a repetition of the request pattern and a system with 
pre-learned information shall be shown in the future work.  

 

METHODS - ADC vs. HASHING

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0 1000000 2000000 3000000 4000000

REQUESTS

H
IT

 R
A

T
E

HASH 5000
HASH TOTAL
ADC 5000
ADC TOTAL

 

Figure 11: Hit Rate – ADC vs. Hashing  

 

/* PolyMix-4 workload  */ 
 

TheBench.peak_req_rate = 100/sec; 
 

FillRate = TheBench.peak_req_rate; 
 

ProxyCacheSize = 1MB; 
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2.2 Hops Rate 

Figure 12 shows the comparison of the average number of hops needed to resolve 
a request. A hop is regarded as the message transfer between client-proxy, proxy-
proxy and proxy-server. We can safely claim that on average, the ADC algorithm 
needs two more hops than the hashing algorithm to resolve an incoming request. 
This result, on one side, allows the ADC algorithm to search for a specific object 
more flexibly than the hashing algorithm. On the other side, ADC has longer 
systems response than the hashing algorithm.  
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Figure 12: Hops – ADC vs. Hashing 

 

3.  Changing Table Size 

Our experiments with different table sizes were focused on the size of 5k to 30k 
for the Caching, Multiple and Single-table. In the evaluation we focused on the 
three parameters, average Hits, Hops and Simulation Time needed for the 3.99 
milli on requests. The static settings for all simulations were 10k for the caching 
table and 20k for the single and multiple-table. For example, when we changed the 
values for the caching table, we kept the size of the single and multiple-table at 
20k entries.  

 

3.1 Hits by Table Size 

In the first part of the evaluation we changed each table size from 5k to 30k in the 
steps of 5k and observed the overall experienced hit-rate. Looking at Figure 13 we 
can clearly identify that the size of the caching table is mostly responsible for the 
value of the overall hit rate. Naturally, the more cache is available in the system, 
the more hits are experienced in the test-run. Increasing both the single and the 
multiple-table, did not allow the system to improve the hit-rate above the around 
0.7 for the caching table size of 10k. Interestingly, even a single-table size of 5k 
was still able to capture enough requests to allow the system to reach the same 
number of hits as a single-table size of 30k. A multiple-table of under 10k has a 
negative impact on the overall hit rate, but increasing it over the 10k did not 
significantly improve the number of experienced hits. Future work, will focus 
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more on the area of under 10k but is safe to say at this point, that the ideal 
parameters for the three tables is highly dependent on the nature of the 
experienced request pattern.  
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Figure 13: Hit Rates by Table Size 

 

3.2 Hops by Table Size 

Looking at the graph for the average number of hops needed to resolve a request 
(Figure 14), it should be pointed out that even if it appears the graph go through a 
bread spectrum of changes, of mostly declining nature, the values change only in 
the area of a ¼ hop, and can be regarded as not significant in comparison of the 
average number of around 7 hops. The most radical decline can be observed for 
changes in the single-table. Increasing the single-table, allows more objects to be 
stored in the system and requests are more li kely to be resolved on an earlier base. 
Similar behavior can be observed for the multiple-table, more objects will be 
mapped. The slightly decreasing line for the single-table can be explained by the 
assumption that when old entries from the multiple-table move back into the 
single-table, they still keep their forwarding information and speed-up minimally 
the resolution of requests.  
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Figure 14: Hops by Table Size 
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3.3 Time by Table Size 

Looking at the graph for the average time needed to resolve a request (Figure 15), 
it can be stated that increasing the single and multiple-table slows down the overall 
execution time while increasing caching table has no significant impact. An 
explanation for the behavior can be given by an in-depth analysis of the time 
consuming parts of the test-bed. On one hand, we have the actual ADC algorithm 
during the search process with its time-consuming parts during the access on the 
single and multiple-table.  
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Figure 15: Processing Time by Table Size 

 

While the single-table is based on the LRU algorithm with a linked list requires 
the element-wise search within the list to take out entries and replace them. 
Insertion and deletion at the ordered multiple-table is mostly operated by binary 
search algorithms. Both accesses are extremely time consuming and a more 
adapted data structure should provide speed-ups in the future versions of this 
algorithm. Another source of time delays can be found in the amount of used 
memory by each proxy, paging and context switches cause significant delays 
during the simulation of the test-bed (in this case all proxies running on one 
machine). Due to the fact, that most of the used memory is needed for the storage 
of the actual request URLs, algorithms like MD5 [16] should be used in the future 
to reduce the amount of required memory.  
 

VI. CONCLUSION 
 

In the presented paper, we focused on two major contributions to our previous 
work in the area of Adaptive Distributed Caching. The first part of the paper 
presented a clear description of the actual algorithm, which will allow any 
interested party to reproduce the work for further research. We presented at the 
second part of the paper comparisons of the ADC algorithm with a hashing 
algorithm based on a new 3.99 million request file, and evaluation results 
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regarding various parameters li ke caching, multiple- and single-table sizes. We 
focused on the evaluation of the overall hit and hops rate and have shown their 
impact on the overall systems performance. Additionally, we pointed out different 
areas where our work leaves space for improvement and gave a first feel for 
further evaluations. Additional future work, can be found in the creation of a real 
proxy system based on the free available Squid server [31], additional 
improvements on the algorithmic level, further test beds to understand the impact 
of individual system parameters, the performance comparison based on a new set 
of request patterns and an evaluation based on the Wisconsin Proxy Benchmark 
[1], the transfer of our results on new application areas li ke (server load balancing 
and resource allocation) and finally the creation of a theoretical framework to 
explain emerging attributes li ke merging and self-organization.  
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