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Abstract. Proxy servers are common solutions to relieve organizational networks
from heavy traffic by storing the most frequently referenced web objects in their
local cache. These proxies are commonly known as cooperative proxy systems and
are usually organized in such a way as to optimize the utilization of their storage
capacity. A self-organized approach to manage a distributed proxy system called
Adaptive Distributed Caching (ADC) is proposed. We model each proxy as an
autonomous agent that is equipped to decide how to deal with client requests using
local information. Experimental results show that our ADC algorithm is able to
compete with typical hashing-based approaches. This paper gives a full description
of the self-organizing distributed algorithm, with a performance comparison based
on hit rate and hop count. Additional evaluation of the performance with respect
to the request routing table size is also presented.
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1. Introduction

The Internet is growing exponentially and web caches have been shown
to be a feasible way to reduce the overall network traffic [3, 6, 18] . Web
servers store web objects, which are requested by clients spread over
the global network. A web cache, or proxy, is usually placed between
clients making requests and web servers servicing the requests. It will
try to resolve the needed object by its local cache. The Internet traffic
is expected to reduce and the response to user request is expected to
improve [1, 11].

Proxies that are not able to resolve an incoming request have to make
a choice between either forwarding the request directly to the origin
server or query a neighboring proxy. The idea that a proxy can forward
requests to another peer leads to research in cooperative proxies and
distributed proxy systems [8, 33]. Distributed proxy systems are based

c© 2003 Kluwer Academic Publishers. Printed in the Netherlands.

so-adc.tex; 30/04/2003; 16:44; p.1



2 TSUI ET AL.

on a set of proxies that when combined increase the overall storage
space (cache) and, therefore, increase the chance of fulfilling incoming
requests. Cooperative proxies try to combine their individual caches
in such a way that maximum cache-usage is achieved while acting
transparently as one single load-balanced proxy cache [10]. They lead to
overhead problems like inter-proxy communication and the distribution
of object storage location information.

Previous research on cooperative proxies can be found in hierarchi-
cal [33] and hashing approaches [20, 29], adaptive web caching [37],
CacheMesh [34], WebWave [15] and the straightforward approach with
a central coordinator [25].

Additional research for distributed systems covers areas on consis-
tency between multiple proxies [14], the theoretical description of the
underlying processes [21, 35] and attempts to build the system on the
idea of economical models [31]. Issues such as performance [28, 30] and
effectiveness of replication schemes [23] were also studied and different
schemes for the internal representation of URL lists have been ana-
lyzed [13, 24]. Research in distributed caching can also be found in
distributed object replication schemes [32], resource allocation [9] and
server load balancing [36].

Another way to relieve network congestion is to install an ‘reverse
proxy’ at the origin server end [5, 7]. This will speed up server response
while balancing the load between multiple servers that might be mirrors
of the main server. Various approaches have been suggested [4]. The
advantage of this approach is transparency to user, no matter the
server is located locally or distributed across the Internet. However,
this solution does not bring the web objects closer to the clients.

The load balancing problem can be tackled in many different ways.
A knowledge-intensive approach relies heavily on the experience of
network designers who ‘understands’ the network traffic behavior and
try to configure the proxy servers appropriately. This is an unreliable
approach as the network traffic can be unpredictable. A slightly auto-
mated approach is to define certain heuristics in, say, an expert system
that can react to the changes. This approach takes the human out
of the loop but still suffers the same adaptability problem. A highly
adaptive solution is needed that can react quickly to the change in
traffic behavior, such as sudden burst of requests or break down of
certain part of the Internet. It should also be able to learn the different
modes of operation online so that the system does not need to be taken
offline.

The successful discovery of such an adaptive system will allow or-
ganizations to deliver better quality of service to local users. The same
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benefit also applies to subscribers of Internet service providers if such
an adaptive load balancing strategy is adopted.

The proposed method emphasize the self-organization of autonomous
proxy servers. The basic idea is to allow the elements of a system
to make decisions based on some simple local behavior model that
only need limited information about the system – a notion central to
the computational paradigm known as autonomy oriented computa-
tion [22]. Unlike common hashing algorithms, routing of requests are
not pre-defined. In this sense, central control unit is absent in the pro-
posed methods. Moreover, proxy systems using the proposed methods
do not require any prior knowledge about any hardware differences
between the proxy server, nor do they need to know in advance the
client traffic pattern.

This article will first describe some work related to proxy servers.
Details of the Adaptive Distributed Caching (ADC) algorithm will then
be described together with experimental results on their performance.
The article concludes with discussions on some interesting observations
and future research directions.

2. Related Work

Proxy servers help to lower the demand on bandwidth and improve
request turnaround time by storing up the frequently referenced web
objects in their local cache. However, the cache still has a physical
capacity limit and objects in the cache need to be replaced so as to
make room for the new object that need to be stored in the cache.
Commonly used strategy is least recently used (LRU) where the oldest
object in the cache is replaced first. There are a lot of work on improving
this base strategy.

Existing cooperative proxy systems can be organized in hierarchical
and distributed manners [12, 26]. The hierarchical approach is based on
the Internet Caching Protocol (ICP) with a fixed hierarchy. A page not
in the local cache of a proxy server is first requested from neighboring
proxies on the same hierarchy level. Root proxy in the hierarchy will be
queried if requests are not resolved locally and they continue to climb
the hierarchy until the request objects are found. This often lead to a
bottleneck situation at the main root server.

The distributed approach is usually based on a hashing algorithm
like the Cache Array Routing Protocol (CARP) [10]. Each requested
page is mapped to exactly one proxy in the proxy array in a hashing
system and will either be resolved by the local cache or requested
from the origin server. Hashing-based allocations can be widely seen
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as the ideal way to find cached web pages, due to the fact that their
location is pre-defined. Their major drawback is inflexibility and poor
adaptability.

Adaptive Web Caching [37] and CacheMesh [34] try to overcome
specific performance bottlenecks. For example, Adaptive Web Caching
dynamically creates proxy groups combined with data multicasting,
while CacheMesh computes the routing protocol based on exchanged
routing information. Both approaches can still be considered experi-
mental. Yet other approaches like pre-fetching, reverse proxies and ac-
tive proxies can usually be seen as further improvements to speed up the
performance of a general hierarchical or distributed infrastructure and
go hand in hand with our proposed self-organizing approach. See [16]
for a more detailed discussion on the limitations of the pre-fetching
approach.

Others have work on structuring the proxy servers so as to improve
the chance of locating the required object in one of the proxy servers.
Common technique is to arrange a host of proxy servers in a hierarchical
manner so that some proxy server, not necessarily on the same local
area network, is the proxy of many other proxy servers while serving as
the proxy of some local users [27]. This approach shortens the distance
between the web server and the user who requests the object. However,
some work has to be done on the design of the proxy hierarchy.

Wu and Yu [36] have done some work on load balancing at the
client side using proxy servers. They emphasized on tuning the com-
monly used hashing algorithm for load distribution. Researchers from
MIT, on the other hand, have proposed a new hashing algorithm called
consistent hashing to improve caching performance when resources are
added from time to time [20].

3. Adaptive Distributed Caching

In this section, we will introduce the core components of the adap-
tive distributed caching (ADC) algorithm. In essence, the algorithm
combines the advantages of hierarchical distributed caching (allowing
multiple copies of the same object) and of hashing based distributed
caching. ADC was developed out of the ideas behind the hashing based
allocation and during our research we redefined specific components to
reach the desired emergent behaviors.

In short, our proxies maintain minimal number of duplicate copies
of the frequently requested objects to balance the user request load
between the cooperative proxies. ADC allows the distributed proxies
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Figure 1. Different ways to deal with a client request where a cache miss occurs at
the first point of inception by CARP and ADC

to agree on the specific location of one object without the need for a
central coordinator or a broadcasting protocol.

All proxies in the widely used CARP algorithm use the same hash-
ing algorithm to find out which proxy is responsible for a particular
request based on the URL of the needed object [10]. If a proxy that
first encountered the request (p1 in Figure 1a) is responsible for the
object, it will fulfill the request either from its cache or fetch the object
the server. Otherwise, it will forward the request to another proxy (p2

in Figure 1b), which will act like p1 except forwarding a reqest. The
benefits of CARP are efficient request handling and no redundant data.
However, it is susceptible to data loss due to infrastructure change in
the proxy system, and potential uneven distribution of load due to
exceptional high demand on certain sites.

The ADC proxies do not have a pre-defined request routing function
and try to learn the routing table (mapping tables) by observing the
experienced traffic. Any proxy that cannot fulfill the incoming request
(p1 in Figure 1b) will forward the request to another proxy, which in
turn may continue to forward the request until a proxy (pn) either has
the requested objects in its cache or decides to fetch the objects from the
origin server. The requested object will then travel in reverse direction
along the path that the request has originally traversed and each proxy
on the path will decide whether to cache the object (selective caching).
Therefore, it is likely that there are duplicate copies of the web object.

The following subsections will first describe the mapping tables that
is used as request routing tables and index to the cache content. Details
of the core functions of ADC, namely, request forwarding, backtracking,
and selective caching, will be then given.
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Table Ia. A sample single-table

OBJ-ID PROXY LAST AVG HITS

www.xy634 [5] 9952 0 1

www.xy34 [4] 9953 0 1

www.xy123 [1] 9954 0 1

www.xy64 [2] 9955 0 1

www.xy53 [1] 9956 123 432

3.1. Mapping Tables

The mapping table is a local data structure within a proxy that is
used to resolve the object location by the forwarding process (see sec-
tion 3.2). In a more abstract sense we see the mapping table as a direct
replacement of the static hashing function used in hashing approaches
to map object IDs (URLs) onto a unique location.

It is the main objective of our algorithm to allow all existing mapping
tables to agree on a unique location for each object without a broadcast-
ing protocol or central coordinator. In our first attempt of the algorithm
allowed the table to grow infinitely, keeping track of all previously
experienced objects, which usually leads to out of memory problems
and performance issues [17]. In our latest extension we introduced a
way to limit the mapping table while still keeping the performance at
the previously attained level [18].

3.1.1. Single-Table
The single-table is used to simply keep track of the current flow of
requests. Each unknown object will become a new entry on the top of
the table, displacing the oldest entry at the bottom of the table - the
well-known LRU algorithm. It is a requirement of the single-table that
it is large enough so that requests with at least two hits can occur.

Table Ia shows a simple example of a single-mapping table. The first
column contains the general object ID - object URLs in our case. The
second column contains the current assigned location for the specific
object. This information is local and might vary between different prox-
ies. Objects for which a particular proxy is responsible will have the
value ‘THIS’ in this column of its single-table. The third column takes a
marker, which stores the time when this object was last requested. The
fourth column keeps track of the average time between two requests of
this object and the last column simply keeps track of the number of
times a specific object has been requested.
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Table Ib. A sample multiple-table

OBJ-ID PROXY LAST AVG HITS

www.xy64 [8] 2252 70 2

www.xy55 THIS 4253 75 2

www.xy13 [1] 4154 83 34

www.xy644 THIS 6555 90 2

www.xy52 [4] 3356 123 42

Table Ic. A sample cache-table

OBJ-ID PROXY LAST AVG HITS

www.xy6 [3] 1152 2 434

www.xy5 THIS 5453 5 342

www.xy33 [2] 5254 6 211

www.xy44 THIS 6755 10 432

www.xy2 THIS 8356 15 43

It should be pointed out that we intentionally do not use the HITS
value to compute the average request time but focus solely on the
time difference between the last two requests. In any adaptive system,
changes in the recent past need to be considered and the HITS value
would allow objects that were highly requested in the past but within
a very short time span to remain unnecessarily long in the local cache.

When an existing entry in the single-table experiences another hit,
migration from the single-table to the multiple may occur depending
on two factors: the time difference between the latest two requests - a
reasonable first approximation of the average object request frequency;
and the request frequency of the objects in the multiple-table.

3.1.2. Multiple-Table
The multiple-table (Table Ib) is restricted in size and contains only
objects that were requested more than once. The organization of the
multiple-table is the same as the single table and is ordered by the
average request time of the objects. This order allows the simple iden-
tification of the object with the worst average time and quick inser-
tions/deletions based using binary search.

Once the multiple-table is filled, newly arrived objects from the
single-table need to have an average request time lower than the worst
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case currently residing in the table before it will be placed at the
appropriate position. Objects removed from the multiple-table will be
put back into the single-table as a regular entry; giving it the chance
to be hit again later. An object will be considered for migrating from
the multiple-table to the caching-table when it is requested again after
an entry has been created in the multiple-table.

3.1.3. Caching-Table
The caching table (Table Ic) in an ADC proxy keeps track of all
currently cached objects. This table is very similar to the multiple-
table, with the exception that the table entries represent actually stored
objects. Similar to the multiple-table, this table is also ordered by the
average request value in column four and new objects have to outper-
form at least the worst case in (the last row) the table and will be
placed in the appropriate position within it. Elements that drop out of
the bottom of this table move back to the multiple-table which gives
them the chance to be hit again in the near future or to drop out
completely over time.

Notice that some entries in the caching-table has the ‘PROXY’ entry
set to another proxy ID. These objects are cached (i.e. a duplicate
copy is made) during the selective caching process (see section 3.4) and
the ID corresponds to the proxy that actually supplied the requested
object, either from its cache or from the origin server.

3.2. Request Forwarding

Every proxy in ADC has its own mapping table and each request comes
with a global unique ID (usually based on the clients IP address and
an internal request counter). ADC proxies handle a request by first
look into its cache. Ideally, the requested object is found and returned
to the requester (i.e. a client or another proxy). Otherwise, it triggers
the request forwarding mechanism. Upon receipt of a reply, either from
another proxy or the origin sever, further processing is required. The
complete pseudocode is depicted in Figure 2.

Request forwarding describes the idea that during the search process,
unresolved requests will be forwarded to a more suitable proxy object
or the origin server. In general, the decision for a forwarding location is
based upon either previously learned data stored in the local mapping
tables or a random selection over the set of known proxies. In cases
where the same proxy got selected twice during the forwarding process,
the doubly-hit proxy will always forward the request to the origin server
to prevent a loop from happening. Similarly, a maximum number of
forwarding can be set to avoid endless forwarding.
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Request Handling:
begin

if (object in cache)
update caching-table
return object

else
// forward request
store request info
if (hop count > max hop count) or (seen request twice)

send request to origin server
else

if (object in single-table or multiple table)
retrieve proxy id

else
host ← randomly select a proxy id or origin server

endif
send request to host

endif
// process reply
perform selective caching
if (responsible proxy is THIS)

return object to client
else

if (object obtained from origin server)
mark object with proxy id
return object to requester (upstream proxy or client)

endif
endif

endif
end

Figure 2. The pseudocode for handling a request in a ADC proxy server

The retrieved object will then traverse the same path back to the
requesting client and all proxies on the way have the option to cache the
data. We call this process backtracking. In regard to the internal data
structure, it is important that every proxy stores information about
every forwarded request as long as the backtracking process is not
completed.

3.3. Multicasting by Backtracking

Backtracking is the process a retrieved object travels back from the
downstream proxy. This is the method by which all ADC proxies agree
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10 TSUI ET AL.

on the location for a specific web object in the absence of a central co-
ordinator or a broadcasting protocol. The assumption is that the proxy
which retrieves the web object concerned will mark the package with
its ID and all other proxies on the return path will receive and accept
this information. Once the mapping tables are updated, subsequent
requests for the same object can be directed to the right location.

3.4. Selective Caching and Aging

Selective caching was introduced in our previous work to allow each
proxy to autonomously specialize on a specific set of cached data [17]. In
hierarchical and hashing systems, every proxy stores all passing objects
regardless of its future significance and usually uses the LRU algorithm
as the cache replacement strategy. This approach has the drawback
that it creates a high cache fluctuation rate with minimal reliability in
regard to the cached content. Proxy agents based on ADC keep track
of the average request frequency of all requested objects based on the
last two requests experienced. The learned data, in the form of time
gap between two requests, will be used to decide whether the new data
should be cached or not. A newly arrived object will only be cached if
its average request time is smaller than the worst case currently residing
in the cache.

As mentioned before, we introduced selective caching as a mean
to focus on the frequently requested objects, and preliminary work has
shown that our ADC algorithm works better with selective caching and
an ordered table than a table based on a typical LRU algorithm [19].
An object will only be cached if it is able to move from the multiple-
table into the caching-table by having an average request time shorter
than the worst case.

To make sure that old objects will expire, we introduced a simple
object aging strategy by computing the object average time with a
focus on the passed time since the last request.

Tage =
Taverage + (Tlast − Tnow)

2
(1)

The advantage of this equation is that it is simple and incurs minimal
computational cost. It gives the currently requested objects a lower age
(allowing them to stay longer in the table) and represents the actual
average value for the next request. Essentially it can be seen as a moving
average with a focus on the current time. It should be noted that all
object age at the same pace and that an established table order remains
the same during the aging process. New objects use the current age of
the existing objects to place itself into the appropriate position.
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4. Experimentation

To validate and verify the Adaptive Distributed Caching algorithm de-
scribed above, we ran multiple simulations over two sets of artificially
created client requests using the polygraph benchmarking tool1, which
is mostly used for the real-time evaluation of hardware proxy systems
for and it allows us the specific settings of different parameters to create
an artificial request pattern which is supposed to be close to that in
real-life.

4.1. Experimental Setup

In the first set of tests, we compare the performance of the ADC al-
gorithm to the widely-used hashing-based CARP [35] using cache hit
rate and hop count. The second set of tests aim to test the sensitivity
of the ADC algorithm according to the size of the mapping tables and
performance is evaluated according to cache hit rate, hop count and
execution time. In all the tests, object size is ignored and are assumed
to be uniform. The number of ADC or HASH proxies is 5 and there
are 525 servers providing web objects to 250 clients. The maximum
number of requests per second is set at 100. Therefore, the maximum
possible number of requests in the generated data files is 266.5 million.

4.2. Request Patterns

Both created files come with a set of almost 4 million requests, which
is equivalent to around 12 hours of traffic from the 250 clients, and
is divided into three main phases. The load in each phase gradually
increases from 10% to 100% at the initial 20 minutes and wise vera
at the last 20 minutes. Figure 4 shows the request throughput in each
phase 2 . Phase 1 (fill), with around 864k requests, covers a simple fill
phase with only 9% request repetitions. Phase 2 (top1) with around
1.5 million requests offers requests and repeats itself in Phase 3 (top2).
There is an idle time covering 108k requests where the workload is kept
at only 10% of the maximum workload. For performance assessment of
industrial strength proxy servers using the polygraph tool, only the
middle section of top2 is used.

The two request patterns differ only in the document popularity
model. For scenario 1 data file (Figure 3a), it has a set of popular
documents (the hot set), which is equal to 1% of the total number of
requested documents at any instant (the working set). The probability
of requesting an object from the hot set is 10%. Scenario 2 data file
(Figure 3b) has the same hot set size but the probability of accessing
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Figure 3a. Number of requests per server for Scenario 1 request pattern
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Figure 3b. Number of requests per server for Scenario 2 request pattern

the hot set is 90%. This result of this variation is a difference in the
maximum achievable hit rate.

4.3. Performance Metrics

We used cache hit rate and hop count to measure the performance of
the algorithms. When we study the parameter sensitivity in relation to
table size, we also included simulated execution time.

Cache hit rate refers to the percentage of time a request can be
located in the local cache of any proxy server in the proxy system. It can
serve as an indicator as how much network traffic can be saved by em-
ploying a proxy. The maximum achievable hit rate depends on the cache
size and the traffic pattern. Therefore, unless exact hardware/software
is used, direct comparison with published results is not useful. However,
for our purposes, relative performance can be measured.

Hop count measures the number of inter-machine communication,
i.e. client/proxy, proxy/proxy, and proxy/server communication. For
the hashing algorithm, the possible combination sequence of communi-
cations are (shown graphically in Figure 1a & b):

so-adc.tex; 30/04/2003; 16:44; p.12



DISTRIBUTED PROXY SERVER MANAGEMENT 13

Figure 4. Throughput of the polygraph generated traffic pattern over time

− client/proxy/client (local cache lookup)

− client/proxy/-server/proxy/client (origin server lookup)

− client/proxy1/proxy2/client (cache lookup from non-directly con-
nected proxy)

− client/proxy1/-proxy2/server/proxy2/client (origin server lookup
from non-directly connected proxy)

Therefore, the average hop count should be bounded between 2 and
5, and an ideal hop count will be between 2 and 3. As for ADC, the
number of hops is always an even number because the route will be
traversed twice. The lower bound for ADC’s hop count is two, and the
ideal hop count is between 2 and 4.

4.4. ADC versus Hashing

We compare the performance of our ADC algorithm to the perfor-
mance of a common hashing algorithm by hit rate - the percentage of
reuse, and hop count - the number of intervening proxies/server before
the requested object reaches the requester. The system runs with 20k
entries for the single- and the multiple-table and 10k entries for the
caching-table in each of the 5 running proxies.

4.4.1. Hit Rate
Figure 5a and 5b show the average hit rate as a moving average over
5,000 request intervals for scenario 1 and 2 traffic patterns respectively.
The general observation is that during the fill and top1 phases, ADC
takes longer time to achieve the hit rate hashing achieved. However,
in the measurement taking phase (top2), ADC performs as well as the
hashing algorithm.
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Figure 5a. Hit rates achieved by ADC and hashing for scenario 1 traffic pattern
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Figure 5b. Hit rates achieved by ADC and hashing for scenario 2 traffic pattern

4.4.2. Hop Count
While ADC and hashing achieve similar cache hit rate, it is necessary
to see if ADC is doing so at the expense of increased latency. Figure 6a
and 6b show the comparison of the average number of hops needed to
resolve a request.

For scenario 1 traffic, hashing requires on average close to 5 hops
to resolve a request. That means hashing needs to contact the origin
server via the second proxy most of the time. On the other hand, ADC
needs on average 2 additional hops than hashing. That means ADC
needs to consult one more proxy than hashing about half of the time.
This result, on one hand, allows the ADC algorithm to search for a
specific object more flexibly than the hashing algorithm. On the other
hand, ADC has longer systems response than the hashing algorithm.

Scenario 2 traffic is generated such that a high cach hit rate can be
achieved. The reduction in hop count also reflects this fact. Hashing
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Figure 6a. Hop counts of ADC and hashing for scenario 1 traffic pattern
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Figure 6b. Hop counts of ADC and hashing for scenario 2 traffic pattern

require on average only 4 hops. That means the second proxy only
need to contact the origin server about half of the time. ADC needs
only one additional hop than hashing during the top2 phase, which can
be accounted for by the additional proxy/proxy transfer before reaching
the client. There is no need for ADC to employ more than two proxies
to resolve a request. It is clear that ADC can optimally duplicate the
frequently requested objects and cut down on the need to contact the
origin server for the required web objects.

4.5. Changing Table Size

This section reports our experiments that focused on varying the size
for the caching-, multiple- and single-table between 5k and 30k, and we
varying the size of one table at a time. The default table sizes for all
simulations were 10k for the caching table and 20k for the single and
multiple-table. We used average hit rate, hop count and simulation
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Figure 7a. Hit rate and Hop count by various table size combinations (using scenario
1 traffic)

6.95

7

7.05

7.1

7.15

7.2

7.25

7.3

5000 10000 15000 20000 25000 30000

H
op

 C
ou

nt

Table Size

Single
Multiple
Cache

Figure 7b. Hit rate and Hop count by various table size combinations (using scenario
1 traffic)

time needed for the 4 million requests in scenario 1 as our evaluation
criteria.

4.5.1. Hits by Table Size
In the first part of the evaluation we changed each table size from 5k
to 30k in the steps of 5k and observe the overall cache hit rate. We
can identify from Figure 7b that the size of the caching table is mostly
responsible for the overall hit rate. Naturally, the more cache is available
in the system, the more hits are experienced in the test-run. Increasing
both the single and the multiple-table beyond 10k did not improve the
hit rate above 7%. Interestingly, even a single-table size of 5k was still
able to capture enough requests to allow the system to reach the same
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Figure 8. Execution time (in seconds) of the simulations for various table size

number of hits as a single-table size of 30k. A multiple-table of under
10k has a negative impact on the overall hit rate.

4.5.2. Hops by Table Size
Figure 7a depicts the average number of hops needed to resolve a re-
quest for various table sizes. The general trend is that larger table sizes
results in less hops. However, the difference is actually less than 0.15
hops for the single- and multiple-table. The biggest difference resulted
in increasing the caching-table size is still just hop, and can be regarded
as not significant in comparison of the average number of around 7 hops.
The least radical decline can be observed from the changes in the single-
table size. This result is consistent with the hit rate results above: the
bigger the caching-table the better. If the size of the single-table is big
enough to handle the amount of requests a proxy encounters plus those
entries demoted from the multiple-table, further increase in size will be
benefit the system, as these objects are not cached.

4.5.3. Time by Table Size
Figure 8 shows the simulation time in seconds. It can be observed
that increasing the single- and multiple-table slows down the overall
execution time while increasing caching-table has no significant impact.
It seems the most time consuming part of ADC lies with the access
mechanism of the single- and multiple-table.

While the single-table is based on the LRU algorithm, locating a
candidate for removal during replacement requires ADC to search a
linked list element by element. Insertion and deletion at the ordered
multiple-table is mostly operated by binary search algorithms. Both ac-
cess schemes are extremely time consuming and a better data structure
is needed to provide speed-ups in the future versions of this algorithm.
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Constant paging and context switches occur frequently during the
experiments due to limited amount of memory and causes significant
delay. Algorithms like MD5 [24] could be used in future to reduce the
amount of memory required for storing the URLs in the mapping tables.

5. Conclusions

We have presented in the article the new design of the algorithm
called Adaptive Distributed Caching, which aims to allow a system of
proxy servers to self-organize without the need for central coordination
or complicated communication protocol. Based on the experiments
we conducted using two artificial (but quite realistic) data files, it
is confident that ADC is able to achieve the same level of perfor-
mance as a well-known hashing algorithm. The extra effort required
is just one to two more hops, which can be considered small amount
of network latency comparing to the latency incurred on the Internet.
We also presented evaluation results regarding various parameters like
caching-, multiple- and single-table sizes. We can conclude that a three-
table setup only requires a small storage overhead, as small single- and
multi-table are required.

The results further show that ADC requires a learning period before
it can match the performance of the common hashing algorithm. The
strength of ADC should be further studied in the situations where
changes both in the proxy system infrastructure and different traffic
pattern such as the Wisconsin proxy benchmark [2]. Additionally, we
plan to implement the ADC algorithm in a real proxy system such as
the freely available Squid server 3.

Acknowledgements

This project is partially funded by grants from the Hong Kong Baptist
University (FRG/01-02/I-37 & FRG/02-03/II-39).

Notes

1 Polygraph website: www.web-polygraph.org
2 source: http://www.measurement-factory.com/results/public/cacheoff/N04/pm4-

phases.png
3 Squid website: www.squid-cache.org
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