Nonlinear models of intermittent dynamics

Presented by Tingting Wang

Based on Vince Darly, Chapter 4, Towards a Theory of Autonomous, Optimizing Agent, PHD thesis, Department of Economics, Harvard University, June 1999

Available at:

http://www.santafe.edu/~vince/pub/dissertation.pdf

Introduction

 Two types of non-linear analysis to the models in Chapter 3:

- Predictive choice process used by each agent.
 - Complicated dynamics
 - Investigate and prove: chaos and strange attractors
 - Analyze predictors in high dimensionality

Statistical physics – to demonstrate different regimes of behaviors

Summary of analysis(1)

Systems, in which each agent adaptively searches for a good model of its environment, exhibit persistent dynamics, cyclic oscillations between low and high complexity states.

Two assumptions:

- Dispersed Interaction: The action of any given agent depends upon:
 - Anticipated actions of other limited agents
 - Aggregate state of these agents
- Continual Adaptation: behaviors, actions, strategies, and products are revised based on experiences.

Summary of analysis(2) Analytical goals: to understand the process which causes the coordination between agents' strategies The meta-stable equilibrium which leads to complex oscillatory dynamics Two approaches: Adaptively rational agents Statistical physics

Basic equations

Assume we have a market with a single product. Let the price at time t be p_t . Both supply and demand curves are linear functions of the price: Supply: S(p)=bp • Demand: D(p)=A-Bp• p* is the unique steady state equilibrium: $S(p^*)=D(p^*)$

An ARED model

Consider the state of the system in its transition from date *t*-1 to date *t*:

- Using model *j*, at time *t*-1, quantity $S_{j,t} = bH_{j,t} = bp_{j,t}^{e}$
 - $p_{j,t}^{e}$ means the expected price of model *j* at time *t*

• Hence the total supply is : $S = \sum_{j} n_{j,t-1} S_{j,t}$

• The utility of each model $U_{j,t}(p_t, S_{j,t})$ can not be directly observed

• Agents observed utilities $\tilde{U}_j = U_j + \tilde{\epsilon}_j$. The probability using model *j* is: $\operatorname{Prob}(j) = \frac{\exp \beta U_{j,t}}{\sum_j \exp \beta U_{j,t}}$

The fraction of agents using model j is:

 $n_{j,t} = \frac{\exp \beta U_{j,t}}{\sum_j \exp \beta U_{j,t}}$

Modifications to the ARED model

• To observe the details of the dynamical process, the ARED model is extended to include a system inertia. That is, at each date t, each agent makes an adjustment to its model with probability: λ , so with 1- λ , agents retain its old model. So the fraction of agents are: $n_{j,t} = (1 - \lambda)n_{j,t-1} + \lambda \frac{\exp \beta U_j}{Z}$, where *Z* is a usual normalizing term.

Some analysis:

- Small λ → system has high inertia: small numbers of agents may change their model
- If $\lambda \approx 1$, system if fluid, changes in population occur instantaneously.

Simplify the model

We consider a model with 2 predictors: H₁ and H₂. Let m_t = n_{1,t}-n_{2,t}, and assume:
H₁ is a more sophisticated predictor, and charge costs C≥ 0.
H₂ is free.

So we have:

 $p_{t+1} = -\frac{b}{2B} \{ (1+m_t)H_1(p_t,\ldots) + (1-m_t)H_2(p_t,\ldots) \}$

Simple short memory predictors

Let H₁ =p*=0, H₂ =p_t. That means, some agents know that the equilibrium price is 0, but they need to pay a cost C, the others predict that today's price will be the same as yesterday's price. So the update map is :

$$p_{t+1} = f(p_t, m_t) = -\frac{b}{2B} (1 - m_t) p_t$$
$$m_{t+1} = g_\beta(p_t, m_t) = (1 - \lambda)m_t + \lambda$$
$$\times \tanh \frac{\beta}{2} \left\{ \left(\frac{b}{B}[1 - m_t] + 1\right)p_t^2 - C \right\}$$

Figure 4.1: The attracting set, $\lambda = 0.15$. The horizontal axis is price, and the vertical axis the population fraction difference m, defined in the text. Since $m = \pm 1$ are the only states in which all agents use the same predictor, the attracting set represents a complex, fluctuating balance between the two predictors, with neither having an overwhelming advantage.

(a) $\lambda = 0.95$

(b) $\lambda = 0.15$

Figure 4.2: Price timeseries. The equilibrium price has been arbitrarily fixed at zero.

Why use these simple models?

- Many properties of this simple model appear to be followed by more complicate predictors
- It exhibit the same dynamics as the more reasonable pairs of predictors we examine later, and the reasons are the same
- Strong empirical similarities dynamics and mechanisms which drive the dynamics.

Root idea:

- If all agents use H₁, then this drives the system to equilibrium, then H₂ is effective too;
- So agents switch to cheaper model H₂.
- Then system becomes unstable and fluctuate, which will encourage agents switch back to H₁
- This analysis provides analytical insights into the characteristics of the predictors.

Some results for this model(1)

• The shape of unstable manifolds for $\beta = \infty$, which means 'unboundedly rational'.

(a) The unstable manifold for $\lambda = 0.65, \beta = \infty$, where we have included the discontinuous line segments (which are part of the manifold for $\beta < \infty$)

(b) Using a logarithmic scale to show more detail of the return path; each denser region contains a switchback in the path

Some results of this model(2)

• There exists significant parameter ranges, with $\lambda c < \lambda < 1$, for which a horseshoe map exists.

Figure 4.4: The unstable manifold of the unique equilibrium point for varying λ , and $\beta = \infty$. Other parameters are: b = 1.35, B = 0.5, C = 1. The horizontal axis representes the price p, and the vertical axis the model proportion $m \in [-1, 1]$. These trajectories are calculated exactly using the results of Theorem 1.

To be continued

This presentation is just a part of Chapter 4. Further analysis and more complicate models will be introduced.
What we should learn is the analytical method, from simple to complicate, from ideal to realistic.