
Towards Patterns of
Web Services Composition

Presented by: Kevin Tsang

Based on a paper with the same name authored by
B. Benatallah, M. Dumas, M-C. Fauvet, F.A. Rabhi, available at:

http://citeseer.ist.psu.edu/472153.html

Introduction
The term (Web) service denotes an abstraction of a set of
computational and/or physical activities intended to fulfill a
class of customer needs or business requirements
It provide an interface to access functionalities offered by
information systems, application programs, and business
process
Enterprises are continuously discovering new opportunities to
form alliances with other enterprises, in order to share their
costs, skills and resources by offering integrated services
(composite services)
The lack of high level abstraction for Web service integration
has triggered a considerable amount of research and
development efforts
The report summarized a number of design patterns for the
definition and implementation of service integration

Review of enabling technologies

Service composition is an active area of
research and development in different fields:

Component-based frameworks
Cross-enterprise workflows
Electronic Data Interchange
XML-based B2B frameworks

Component-based Frameworks

E-commerce applications rely on distributed object
frameworks such as CORBA, DCOM, EJB and other
state-of-the art technologies such as Enterprise
Application Integration (EAI) and Enterprise Resource
Planning (ERP)

EAI suites provide standard data and application
integration facilities (e.g. pre-built application adaptors,
data transformations, and messaging services among
heterogeneous system)

ERP systems provide a single, homogenous solution for
a number of back-office applications

Cross-enterprise Workflows

Automate business processes that interconnect and
manage communication among disparate systems

New emerging service composition projects consider
loosely coupled services (CMI, EFlow, CrossFlow,
Mentor, CPM, SELF-SERV, ADEPT)

These projects consider critical requirements of B2B e-
commerce such as dynamic selection, adaptability, and
external manageability of services

Electronic Data Interchange - EDI

EDI is the interorganizational application-to-
application transfer of business documents

EDI documents are structured according to a
standard and machine-processable format (e.g.
ANSI X12 and UN/EDIFACT)

Mostly used for the automatic transfer and
processing of documents in industries which trade
on high volumes (e.g. goods transportation, food
manufacturing, and automobile production)

XML-based B2B Frameworks
Provide a common format to publish and exchange business
information over the Internet
To support B2B interoperability, describe the semantics and
structure of data and operations of services using XML &
domain ontologies
Ontology defined terms to describe entities (e.g. service
properties, operations) of a specific domain (e.g. healthcare,
finance, travel) and relationships among terms
Some organizations (e.g. RossettaNet) developed common
ontologies for different industries
E-commerce platforms that rely on XML-based standards and
protocols including IBM WebSphere, WebMethods, Sun ONE,
and BEA Collaborate

Patterns of Service Composition

Elementary Service-based Interactions
The External Interactions Gateway Pattern
The Contract-Based Outsourcing Pattern

Service Composition
Service Composition Pattern
Service Discovery Pattern

Composite Service Execution
Central Authority Pattern
Peer-to-Peer Execution Pattern

Elementary Service-based
Interactions

In the setting of B2B e-Service, it is the interaction of
Information System (IS) between service provider and
service consumer

Their IS are heterogeneous in both the managerial and
technological viewpoints

Service provider needs to make sure their IS has a
clearly defined interface to their e-service

Service consumer needs to make sure their IS interact
properly with the e-service interface

The External Interaction Gateway
Patterns

Each of the services provided by the organization has it
own interaction requirements (e.g. document formats,
data model, domain ontologies, message sequencing)

Issue arise in this situation:
For different data model and format of business document,
how the conversion between formats operated?
For different interaction protocols, how to ensure proper
interaction between applications?
For the exchange of critical business information, how to
ensure the confidentiality, integrity and non-repudiation?

The External Interaction Gateway
Patterns

Solution: using a
software entities called
as External Interaction
Gateway (EIG)

Internal architecture of
EIG:

The External Interaction Gateway
Patterns

Handling document format heterogeneity based on
separation between syntax and data model of a standard
The syntax of a document standard is specified as an
XML DTD or an XML Schema
The data model is specified in the RDF Schema
Language
Transformation of document XD (with XML standard S)
into document XD’ (with XML standard S’)

Abstraction: XD RD (data model of S)
Conversion: RD RD’ (data model of S’)
Refinement: RD’ XD’ (syntax of S’)

XD – XML Document
RD – RDF Document

The Contract-Based Outsourcing
Pattern

Contract is a planned set of actions and interactions that
need to undertaken during the delivery of a service
Contracts for a given service are abstracted into contract
templates with a set of parameters
Contract templates are included in the advertisement of
a service offer
Typical steps:

Queries service catalog(s)
Retrieves service offers with their contract templates
Instantiates the contract by providing a set of parameter
values
For special requirement, negotiation for contracts with
providers may be needed
Execute the contract through contract enactment module

The Contract-Based Outsourcing
Pattern

Known Implementations
CrossFlow – contracts are statically specified (no dynamic
negotiation) by service providers and advertised in a
service marketplace

MEMO – exchange standardized messages based on
speech-act theory, structure, sequencing and semantics of
the message exchanged during the negotiation is fixed

ADEPT – using one-to-many negotiation framework based
on multi-attribute utility theory, each agent try to
maximizes its own utility function which encodes the
preferences and business constraints of the organization

Service Composition

Fast and dynamic integration of business process is an
essential requirement for organization

Business partners with permanent (long term)
relationships

Components are known in advance and alliances are
statically defined
Static composition of service is sufficient

Business partners with temporary (short term)
relationships

Not assume an a priori trading relationship among
partners
Dynamic composition of service is needed

Service Composition Pattern

Important characteristics for static composition:
Describe interaction of services without referring to any
implementation or execution model
Support nesting of composite services
Maintain a high level specification of a composite service
while ensuring its executability

Solution: aggregation specification with control flow and
data flow specification

Service Composition Pattern

Use of statechart as a formal notations for workflow
specification
Statechart made up of states and transitions with Event-
Condition-Action (ECA) rules

Example of control flow specification of “Travel Solutions”
using statechart:

Service Composition Pattern

Known Implementations
CMI – service is modeled by state machine that specifies
the possible states of a service and their transitions

EFlow – composite service is modeled as a graph, it
defines the order of execution of service component
among the nodes (service, decision, event)

WebBIS – adopts an ECA-rule approach for defining
composite service

SELF-SERV – use a subset of statecharts to express the
control-flow of composite services

Service Discovery Pattern

Problem relates to Web-based service integration in
large, autonomous, heterogeneous, and dynamic
environments

Important characteristics for dynamic composition:
Information to identify service components at run-time
Integrate component services with a high level
specification of composite service

Solution:
automated service discovery
facility
composite service specification
allows automatically discover
of service components

Service Discovery Pattern

Known Implementations
CMI – use placeholder activity as an abstract activity that
will be replaced at runtime with a concrete activity,
selection policy is specified to choose the best
implementation

EFlow – service node contains a search recipe, it is a
query represented in a query language

WebBIS – use a concept of push-community which
describes the capabilities of a desired service, actual
service can register with one or several push-communities,
need a mapping of the operations in the community and
the actual services

Composition Service Execution

Execution of a composite service assuming that its
control and data semantics are already defined

Execution involve the activation of all its component
services hosted on a number of remote providers

Two possible execution patterns
Components are coordinated by a central scheduler
Coordinate the execution through peer-to-peer
communication

Central Authority Execution Pattern

Provider of composite service S should hold a
Composite Service Scheduler

The scheduler responsible for:
Invoke each of S’s components according to the order and
conditions in control flow specification
Receive and processes service requests
Handling and processing data according to the data
semantics of composite service

Central Authority Execution Pattern

Example of centralized execution of “Travel Solutions” service

Central Authority Execution Pattern

Known Implementations
ADEPT – a workflow can be recursively decomposed into
sub-workflows, leading to a tree structure

EFlow – execution model is based on centralized process
engine, not support recursive definition of composite
services

Peer-to-Peer Execution Pattern

Responsibility of coordinating the execution of a
composite service is distributed across the providers
A software components called coordinators are hosted
by each of the providers
Coordinator responsible for:

Initiate the execution of service components
Notify the completion of this execution to the next
coordinators
Interrupt the service execution during the occurrence of a
certain external events

Peer-to-Peer Execution Pattern

Example of distributed execution of “Travel Solutions” service

Peer-to-Peer Execution Pattern

Known Implementations
SELF-SERV – responsibility of coordinating the composite
service execution is distributed across several lightweight
software components hosted by the service providers

CPM – support the execution of inter-organizational
business processes through peer-to-peer collaboration

Mentor – partition the overall workflow specification into
several sub-workflows and distributing the execution of
the sub-workflows

Conclusion
Discussed a number of patterns for the definition and
implementation of service integration
These patterns suggest a methodology for building a new
composite service

Identify elementary services and expose them through a gateway
interface (External Interactions Gateway Pattern)
Specify control and data flow semantics of the new service based
on these elementary services or other composite services
(Service Composition Pattern)
Component services can be identified at run-time (Service
Discovery Pattern)
Coordination for the execution of composite service can be
centralized or distributed across the service providers (Service
Execution Patterns)

