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Abstract The growing self-organising map (GSOM) has
recently been proposed as an alternative neural network
architecture based on the traditional self-organising map
(SOM). The GSOM provides the user with the ability to
control the spread of the map by defining a parameter
called the spread factor (SF), which results in enhanced
data mining and hierarchical clustering opportunities.
When experimenting with the SOM, the grid size
(number of rows and columns of nodes) can be changed
until a suitable cluster distribution is achieved. In this
paper we highlight the effect of the spread factor on the
GSOM and contrast this effect with grid size change
(increase and decrease) in the SOM. We also present
experimental results in support of our claims regarding
differences between GSOM and SOM.

1 Introduction

The growing self-organising map (GSOM) has been
proposed as a dynamically generating neural map which
has particular advantages for data mining applications
[1, 4]. Several researchers have previously developed
incrementally growing SOM models [5, 6, 8]. These
models have similarities to and differences from each
other, but they all attempt to solve the problem of pre-
defined, fixed structure SOMs. A parameter called the
spread factor (SF) in the GSOM provides the data
analyst with control over the spread of the map. The
ability to control the spread of the map is unique to the
GSOM and could be manipulated by the data analyst to
achieve progressive clustering of a data set at different
levels of detail. The SF can be assigned values in the
range 0 to 1 which are independent of the dimensionality
of the data set. Thus the SF provides a measure of the

level of spread across different data sets. The spread of
the GSOM can be increased by using a higher SF value.
Such spreading can continue until the analyst is satisfied
with the level of clustering achieved or until each node is
identified as a separate cluster.

A data analyst using the SOM experiments with dif-
ferent map sizes by mapping the data set to grids (gen-
erally two-dimensional) of different sizes. In this paper
we highlight the difference between such grid size change
in traditional SOM usage with controlled map spreading
in the GSOM. We describe the SF-controlled growth of
the GSOM as a technique for more representative fea-
ture-map generation where the inter and intra-cluster
relationships are better visualised. The fixed structure
SOM forces distortion on its mapping because of its
inability to expand when required.

The traditional SOM does not provide a measure for
identifying the size of a feature map with it’s level of
spread. Therefore the data analyst using the SOM can
only refer to the length and width of the grid to relate to
map size. We show that the shape or size of the SOM
cannot be meaningfully related to the spread of the data
without accurate knowledge of the distribution of the
data set. The use of the SF in the GSOM provides a single
indicator with which to dictate map spread and also the
ability to relate a map to a particular level of spread.

The identification of clusters in a map will always
depend on the data set being used and on the needs of
the application. For example, the analyst may only be
interested in identifying the most significant clusters for
one application. Alternatively, the analyst may become
interested in more detailed clusters. Therefore the clus-
ters identified will depend on the level of significance
required by the analyst at a certain instance in time. In
data mining-type applications, because the analyst is not
aware of the clusters in the data, it is generally necessary
to study the clusters generated at different levels of
spread (detail) to obtain an understanding of the data.
Attempting to obtain different sized SOMs for this
purpose can result in distorted views due to the need to
force a data set into maps with pre-defined structure.
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Therefore we describe the number of clusters shown in a
map also as a variable which depends on the level of
significance required by the data analyst. We present the
SF as our technique for providing the level of signifi-
cance as a parameter in the map-generation process.

In Sect. 2 we provide a description of the GSOM and
SF techniques. Section 3 explains the workings of the
spreadout effect in the GSOM with the SF as a param-
eter. Here we also compare the GSOM and SOM in
terms of the spreading-out effect. In Sect. 4 we describe
experimental results to clarify our claims. Section 5
provides the conclusions to the paper.

2 Controlling the GSOM spread with the spread factor

2.1 Growing self-organising map

The GSOM is an unsupervised neural network which is
initialised with four nodes and grows nodes to represent
the input data [2, 3]. During the node growth, the weight
values of the nodes are self organised according to a
similar method as the SOM.

The GSOM process is as follows:

1. Initialisation phase

(a) Initialise the weight vectors of the starting nodes
(4) with random numbers.

(b) Calculate the growth threshold (GT) for the gi-
ven data set according to the user requirements.

2. Growing phase

(a) Present input to the network.
(b) Determine the weight vector that is closest to the

input vector mapped to the current feature map
(winner), using Euclidean distance (similar to the
SOM). This step can be summarised as:
Find q¢ such that c v� wq0

�
�

�
� � v� wq

�
�

�
� 8 q 2N

where v, w are the input and weight vectors,
respectively, q is the position vector for nodes,
and N is the set of natural numbers.

(c) The weight vector adaptation is applied only to
the neighbourhood of the winner and to the
winner itself. The neighbourhood is a set of
neurons around the winner, but in the GSOM the
starting neighbourhood selected for weight
adaptation is smaller than the SOM (localised
weight adaptation). The amount of adaptation
(learning rate) is also reduced exponentially over
the iterations. Even within the neighbourhood
weights which are closer to the winner are adap-
ted more than those further away. The weight
adaptation can be described by:

wjðkþ 1Þ ¼ wjðkÞ; j 62 Nkþ1
wjðkÞþLRðkÞðxk �wjðkÞÞ; j2 Nkþ1

�

where the learning rate LRðkÞ; k 2N is a se-
quence of positive parameters converging to zero

as k fi ¥. wj(k), wj(k+1) are the weight vectors
of node j, before and after the adaptation, and
Nk+1 is the neighbourhood of the winning neuron
at (k+1)th iteration. The decreasing of LR(k) in
the GSOM, depends on the number of nodes
existing in the network at time k.

(d) Increase the error value of the winner (error va-
lue is the difference between the input vector and
the weight vectors).

(e) When TEi‡GT (where TE is the total error of
node i and GT is the growth threshold), grow
nodes if i is a boundary node and distribute
weights to neighbours if i is a non-boundary node.

(f) Initialise the new node-weight vectors to match
the neighbouring node weights.

(g) Initialise the learning rate (LR) to its starting
value.

(h) Repeat steps b to g until all inputs have been
presented, and node growth is reduced to a
minimum level.

3. Smoothing phase

(a) Reduce learning rate and fix a small starting
neighbourhood.

(b) Find winner and adapt weights of winner and
neighbours in the same way as in the growing
phase. Therefore, instead of the weight adaptation
in the original SOM, theGSOMadapts its weights
and architecture to represent the input data.
Therefore in the GSOM a node has a weight
vector and two-dimensional coordinates which
identify its position in the net, whereas in the SOM
the weight vector is also called the position vector.

2.2 The spread factor

As described in the algorithm, theGSOMuses a threshold
value called the GT to decide when to initiate new node
growth. GT will decide the amount of spread of the fea-
ture map to be generated. Therefore if we require only a
very abstract picture of the data, a largeGTwill result in a
map with fewer nodes. Similarly a smaller GT will result
in the map spreading out more. When using the GSOM
for data mining, it might be a good idea to first generate a
smallermap, showing themost significant clustering in the
data only, which will give the data analyst a summarised
picture of the inherent clustering in the total data set.

The node growth in the GSOM is initiated when the
error value of a node exceeds the GT. The total error
value for node i is calculated as:

TEi ¼
X

Hi

XD

j¼1
ðxi;j � wjÞ2 ð1Þ

where H is the number of hits to the node i and D is the
dimension of the data. xi,j and wj are the input and
weight vectors of the node i respectively. For new node
growth:
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TEi � GT ð2Þ

The GT value has to be experimentally decided
depending on our requirement for map growth. As can
be seen from Eq. 1 the dimension of the data set will
make a significant impact on the accumulated error (TE)
value, and as such will have to be considered when
deciding the GT for a given application. The SF was
introduced to address this limitation, thus eliminating
the need for the data analyst to consider data dimen-
sionality when generating feature maps. Although exact
measurement of the effect of the SF is yet to be carried
out, it provides an indicator for identifying the level of
spread in a feature map (across different dimensionali-
ties). The derivation of the SF has been described else-
where [4]. The formula used is:

GT ¼ �D� lnðSFÞ

Therefore, instead of having to provide a GT, which
would take different values for different data sets, the
data analyst has to provide a value SF, which will be
used by the system to calculate the GT value depending
on the dimensionality of the data. This will allow the
GSOMs to be identified with their spread factors, and
will be a basis for comparison of different maps.

3 The spreading-out effect of the GSOM compared
with the traditional SOM

3.1 The relationship between the shape of the SOM
and the input data distribution

Figure 1 shows the diagram of a SOM with four clusters
A, B, C, and D which can be used to explain the spread
of clusters due to the change of grid size in a SOM. As
shown in Fig. 1a the SOM has a grid of length and
width X and Y, respectively. The intra-cluster distances

are x and y as shown in Fig. 1a. In Fig. 1b a SOM has
been generated on the same data but the length of the
grid has been increased (to Y¢>Y) while the width has
been maintained at the previous value (X=X¢). The
intra-cluster distances in Fig. 1b are x¢ and y¢. It can be
seen that inter-cluster distances in the y direction have
changed in such a way that the cluster positions have
been forced into maintaining the proportions of the
SOM grid. The clusters themselves have been dragged
out in the y direction due to the intra-cluster distances
also being forced by the grid. Therefore in Fig. 1
X:Y�x:y and X¢:Y¢�x¢:y¢. This phenomenon can be
considered in an intuitive manner as follows [7]:

Considering two dimensional maps, the inter and
intra-cluster distances in the map can be separately
identified in the X and Y directions. We simply visualise
the spreading-out effect of the SOM as the inter and
intra-cluster distances in the X and Y directions pro-
portionally being adjusted to fit in with the width and
length of the SOM.

The same effect has been described by Kohonen [7] as
a limitation of the SOM called the oblique orientation.
This limitation has been observed and demonstrated
experimentally with a two-dimensional grid, and we use
the same experiment to indicate the limitations of the
SOM for data mining.

Figure 2a shows a 4·4 SOM for a set of artificial data
selected from a uniformly distributed two-dimensional
square region. The attribute values x, y in the data are
selected such that x:y=4:4 and as such the grid in
Fig. 2a is well spread out, providing an optimal map. In
Fig. 2b the input value attributes x:y „ 4:4 while the
input data demands a grid of 4:4 or similar proportions.
As such it has resulted in a distorted map with a crushed
effect. Kohonen has described oblique orientation as
resulting from significant differences in variance of the
components (attributes) of the input data. Therefore the
grid size of the feature map has to be initialised to match
the values of the data attributes or dimensions to obtain
a properly spread out map. For example, consider a two
dimensional data set where the attribute values have the
proportion x:y. In such an instance a two-dimensional
grid can be initialised with n·m nodes where n:m=x:y.
Such a feature map will produce an optimal spread of
clusters maintaining the proportionality in the data. But
in many data-mining applications the data analyst is not
aware of the data attribute proportions. Also the data
are mostly of very high dimensions, and as such it be-
comes impossible to decide a suitable two-dimensional
grid structure and shape. Therefore initialing with an
optimal grid for SOM becomes a non-feasible solution.

Kohonen has suggested a solution to this problem by
introducing adaptive tensorial weights in calculating the
distance for identifying the winning nodes in the SOM
during training. The formula for distance calculation is:

d2½xðtÞ;wiðtÞ� ¼
XN

j¼1
w2

i;j½njðtÞ � li;jðtÞ�2 ð3ÞFig. 1 The shift of the clusters on a feature map due to the shape
and size
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where nj are the attributes (dimensions) of input x,
the li,j are the attributes of wi, and wi,j is the weight of
the jth attribute associated with node i. The values of
Wi,j are estimated recursively during the unsupervised
learning process [7]. The resulting adjustment has been
demonstrated using artificial data sets in Fig. 3.

The variance of the input data along the vertical
dimension (attribute) versus the horizontal one is varied
(1:1, 1:2, 1:3, and 1:4 in Figs. 3a–d, respectively). The
results for the unweighted and weighted maps are shown
on the left and right, respectively, in Fig. 3.

We interpret the oblique orientation as an occurrence
due to the map attempting to fit in with a pre-defined
network, and resulting in a distorted structure. The
tensorial weights method attempts to reduce the oblique
orientation while still keeping within the network bor-
ders, thus forcing the shape of the network on the data.
This is opposite to the ideal solution, because it is the
data which should dictate the size and shape of the grid.
By changing the size of the grid in the SOM, the map is
forced to fit in with a new network size and shape. If the
data attributes are not proportionate (in the x and y
directions) to the network grid, a distorted final map can
occur.

3.2 Effect of the spread factor on the GSOM

In GSOM, the map is spread out by using different SF
values. According to the formula presented in Sect. 2, a
low SF value will result in a higher GT. In such a case a
node will accommodate a higher error value before it
initiates a growth. Therefore we can state the spreading-
out effect (or new node generation) of GSOM as follows.

The criterion for new node generation from node i in
the GSOM is:

Ei;tot � GT ð4Þ

where Ei,tot is the total accumulated error of node i and
GT is the growth threshold. The Ei,tot is expressed as:

Ei;tot ¼
X

Hi

XD

j¼1
ðxjðtÞ � wjðtÞÞ2 ð5Þ

If we denote low SF and high SF values by SFlow and
SFhigh, respectively, and � denotes implies, then:

SFlow ) GThigh ð6Þ

SFhigh ) GTlow ð7Þ

Therefore from Eqs. 5, 6 and 7 we can say that when the
SF=SFlow, node i will generate new nodes when:

Ei;tot ¼
X

Hi

XD

j¼1
ðxjðtÞ � wjðtÞÞ2

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Rl

>GThigh ð8Þ

Similarly, when SF=SFhigh, node i will generate new
nodes when:

Ei;tot ¼
X

Hi

XD

k¼1
ðxkðtÞ � wkðtÞÞ2

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Rs

>GTlow ð9Þ

where xj2Rl and xk2Rs are two regions in the input data
space.

It can be seen that region Rl represents a larger
number of hits and accommodates a larger variance in

Fig. 3 Solving oblique orientation with tensorial weights (from
Ref. [7])

Fig. 2 Oblique orientation of
an SOM
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the input space. Similarly region Rs represents a smaller
number of hits and a smaller variance. Thus Rl repre-
sents a larger portion of the input space and Rs repre-
sents a smaller portion. Therefore we can infer that in
the case of a low SF value, node i represents a larger
region of the input space and with a high SF value, node
i represents a smaller region. By generalising i to be any

node in the GSOM it can be concluded that, with a small
SF value, the nodes in the GSOM represents larger
portions of the input space and with a high SF value, the
nodes represent smaller portions. Therefore using the
same input data, a low SF value will produce a smaller
representative map and a high SF value will produce a
larger representative map.

In the case of the SOM, the spread of the map is
pre-determined by the data analyst and the input data in
a certain direction is forced to fit into the available
number of nodes. As such, unless the analyst has a
method of (or knowledge of) assessing the proper num-
ber of nodes, a distorted map can occur. With the
GSOM, the input values dictate the number of nodes
and the SF provides global control of the spread of the
nodes. Therefore the GSOM does not result in the
oblique orientation or distorted view of the data as in
the case of SOM.

4 Experiments

In this section we present several sets of experimental
results to highlight the differences between GSOM with
the SF and the traditional SOM. Three artificial data
sets with uniform distributions of square, L-shaped and
star two-dimensional data are used. The first experiment
(Fig. 4) show the results from using the SOM on the two
data sets. The small dots in the figures represent the
input data distribution. The figures show that the shape
of the grid effects the level of match to the input data
distribution.Fig. 4 Square and L-shaped data sets mapped to the SOM

Fig. 5 Square and L-shaped
data sets mapped to the GSOM
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Figure 5 shows the same data sets mapped to the
GSOM. Because the GSOM increases the grid size using
the SF, we have shown two sets of GSOMs with 0.1 and
0.5 spread on the square and L-shaped data. These
experiments show that the shape of the GSOM grid is
decided by the input data distribution.

Figures 6, 7 and 8 show further experimental results
demonstrating the behaviour of the GSOM, controlled
with the SF, in comparison with the fixed-structure
SOM.

Figure 6 shows four SOMs with different grid struc-
tures mapping a star-shaped uniform data set. It is clearly
seen that as the grid structure becomes more and more
square shaped, the networks fits the input data better
(since the input star shape is closer in shape to a square
than a rectangle). Figure 7 shows four GSOMs with dif-
ferent SF values on the same star shaped data set. It is
clearly seen that the effect of the SF is to increase the
number of nodes, still maintaining the same two-dimen-
sional shape. Because the software used does not have the
facility of visualising maps of larger size the higher num-
ber of nodes are shown as a more dense map, instead of a
larger star shape. Anothermajor advantage of theGSOM
is reduction of map twisting; Fig. 8 demonstrates this ef-
fect. TheGSOMs infigurewere obtainedwith a single run,
while the maps in figure required several runs to obtain a
proper map without twists. Figure 8 shows several of the
twisted SOMs obtained when attempting to acquire the
8·8 SOM.

5 Conclusions

In this paper we have highlighted the advantages of
the parameter called the SF in the GSOM model. The
paper attempts to describe the difference between the
GSOM and the traditional SOM in terms of obtaining
maps which fit in to the data distributions. In the
traditional SOM the user has to experiment with dif-
ferent grid sizes to arrive at a best fitting grid. The
rows to columns ratio of the grid needs to be initialised
to match the data distribution, otherwise a distorted
map is obtained. We show that the GSOM with the
SF takes this burden of pre-defining the correct grid
size off the user. Therefore we describe the GSOM as
a better alternative in generating maps which fit the
input data distribution.
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