Resource Allocation in the Grid
Using Reinforcement Learning

Presented by: Xiaolong Jin

Based on a paper with the same name authored by A.
Galstyan, K. Czajkowski, and K. Lerman, available at:
http://www.isi.edu/~Elerman/papers/P-243.pdf

Introduction

Grid computing: enabling sharing of numerous computing resources
over the network
Virtual organizations (VOs): associating heterogeneous users and
resources
Resource allocation: mapping users’ jobs to specific resources in order
to optimize some utility metric

— Situation: tens of thousands of users and thousands of resources

— Requirements on allocation mechanism:

* Highly scalable

* Robust to localized failures: dynamical arrival and departure of users and
resources; communication

Objective: study resource allocation from a learning and adaptation
perspective

Grid Scheduling Issues

* QObservations:

— Due to decentralized nature of the Grid:

» Different portion of the Grid may use different resource allocation strategies
» A centralized allocation scheduler is not feasible

» Users have limited real-time environmental knowledge, including resource status
information

— Understanding of the effects of different resource allocation mechanisms on global
system behavior will influence architectural decisions as well as the policies
chosen within federated VOs.

* Solution:
— Decentralized scheduling mechanism
— Not depend on the availability of the current global knowledge

The Model:

Resource Providers

» Local scheduling of Computational tasks:
— Resource characterization:
» Number and speed of the processors available
* System memory
» Storage space
— Multiple jobs can run simultaneously in the system
— Different scheduling policies:
» FCFS (First come first serve)
» LJF (Long job first)
» Authors’ setting: Simplified resource representation and local scheduler
— Resource characterization: Computation power, i.e., CPU time/unit job
— A single job run at each given time

— Jobs are prioritized according to its arrival time: FCFS

The Model:

Users

» Userroles:
— Individual agent: generate jobs, search a resource for each job v
— Resource broker: search resources for jobs on behalf corresponding users
» Users modeling:
— Feature: Heterogeneous selfish agents
— Goal: Maximize their utilities, based on:
* Waiting time: to minimize, so prefer the resource with minimal queue length
* Response time: the time elapsed between the job generation and its completion
— Depend on: the queue length, the processing capacity
+ Others, such as the accuracy of the completion time prediction
— Used utility definition: 7 = @ lw+(1—ai] L
o 1, waiting time, /... job execution time

+ 2; randomly chosen for each agent so as to account for the heterogeneity

The Model:

Resource Selection

* Problem: How the agents select resources?
* Solution: Using reinforcement learning, specifically, Q-learning

* Q-learning formulation:

— Each possible action (selecting a specific resource) <==> a Q-value, indicating the
efficiency of the resource in the past
— For anew job, choose a resource with the &-greedy rule (usually € is small):
* With (/-¢), choose the resource with the highest Q-value (ties are broken randomly)
* With g randomly and uniformly choose in the other resources
— After a job is completed, calculate its utility #:, then its reword:
pos slgn{{p ~ py)
where (¢! is the average utility among all submitted jobs.
— Update Q-Value: (Figay o Qg+ alr — Qi)
» Other selection rules for comparisons:
— Random selection: choose randomly and uniformly among all resources
— Least loaded: choose the least loaded resource to submit a job
* Requirement: the up-to-date global knowledge about the load of all resources

Experimental Results

4
Random a)
— Least Loaded ' . m
— RL
Least loaded Random

Random

foe]

[2%)
=
Average Load

Average Load

i), l'ﬁ"(*,'g
el

RL Least loaded
‘ (TEE] 200K ! 0 Iu.“!;‘ 2080
Job arrival rate P = 0.15 Job arrival rate P = 0.2
* Experimental setting:
— 1000 agents and 250 resources — Job length [10, 1000]; randomly and uniformly choose
— Job arrival rate P =[0.1, 0.2] — Resource capacity [350 650]

* Observations:
— For small job arrival rate P (Figure a): Random selection performs better?
— For large job arrival rate P (Figure b): Random selection is deteriorated!
— RL is more efficient than random selection in resource allocation

Experimental results on:

Average waiting time

Job arri\'/al rate P=0.2

Least loaded RL

(%]

i

000D 206K AN

* Observations:
— RL has a learning phase where RL performs worse than least loaded, after that
— RL performs much better than least loaded
— RL without global knowledge vs least loaded with global knowledge

Experimental results on:

Effect of dynamic agent population

Job arrival rate P =0.2

s

Average Load

L

N {66 DUHHY

* Observation: The user might dynamically join or leave a VO.
* Problem: What’s the effect of this dynamics on the RA mechanism?
* Means: 1) At each time step, an agent leaves its VO with a probability P;.
2) For each leaving agent, add a new agent, that has to start its learning from zero.
* Results: 1) For small P,, the impact is negligible;
2) For large P,, the performance was deteriorated due to the large number of new agents.

Discussion

« RL performs better than random selection, which is
commonly used, currently

« RL provides better adaptive behavior because each agent
learns from its response from the environment

Future Work

Develop some external resource discovery
system so as to identify the action space of
agents in RL

Study more complex jobs, which require co-
allocation of different resources

Problems of the Model

Probleml: if there are numerous resources, the action space of an agent is very
huge. The storage for Q-values become a problem.

Solutionl: each agent maintains Q-values for only two kinds of actions: 1) n
actions with the highest Q-values; and 2) m newly visited actions

Solution2: categorize resources into different types according to its properties
in consideration, e.g., computing power

Problem2: For each leaving agent, add a new agent who has to restart to learn.

Solutionl: maintain a profile for a user. For a new user, the corresponding
agent needs to learn from scratch. Otherwise, he/she does not need to learn
from zero.

Solution2: provide a certain form of information sharing between agents, e.g.,
the agents from the same grid node can share some of their information.

