Natural Rationality

Presented by Bingcheng Hu

Based on Vince Darly, Chapter 3, Towards a Theory of Autonomous, Optimizing Agent, PHD thesis, Department of Economics, Harvard University, June 1999

available at:

http://www.santafe.edu/~vince/pub/dissertation.pdf

A Predictive System

Dynamics Update Rule

Methodology of observation

Forward predictive scenario

- Natural, obvious predictive method
- Predict neighbor's action and determine its own behavior using utility
- Predictions are recorded as history.
- Stabilized scenario
 - Adjust their models using predictions
 - Predictions are then forgotten
 - Iterative refinements

History and Complexity Issues

- Short histories Not enough data to specify the model accurately
- Long histories Neighbors may already change their models
- Too simple (low complexity) will not be able to predict time-series
- Too complex (high complexity) may not have enough data to specify the model, also prone to over-fitting

Stabilized Scenario

• X: Disturbance size

Y: Number of Occurrences

Errors are decreasing to the Rounding errors – limit of errors

- First transitory phase gradually removes randomly generated past
- The behaviors of agents easily changed coherence has not been established among neighbors
- Its duration depends on the degree of correlation between that past and natural dynamics of the system
- In this case, around 50 steps are needed to settle down

- After the presence of past disappeared, the system ran into relatively fixed scenario (regime 1), although occasional consecutive adjustment can reach to one hundred steps
- High coherence between neighbor's outputs and widely varying spectrum of adjustment lengths
- Spatially the adjustment lengths are clustered together
 - Temporally a power-law distribution in the size of adjustments (avalanches)

- The dynamics become largely random
- Spatial coherence disappeared
- Temporal characteristics change from power law distribution to exponential distribution
- Qualitative difference between the two distribution – in later one large avalanches virtually do not occur
- Probability of change at a single step can be calculated: 0.323+/- 0.005

- Probability is calculated via this figure
- Why self-organized → random? The output gradually settle down, and variations reach the limit of rounding errors.
- Rounding error contribute more than predictive errors