Reinforcement Learning for

Selfish Load Balancing in a

Distributed Memory Environment

Stephen M. Majercik and Michael L. Littman

20 December 1996

Abstract

Load balancing is a difficult problem whose solution can
greatly increase the speedup one achieves in a paral-
lel distributed memory environment. The necessity for
load balancing can arise not only from the structure
or dynamics of one’s problem, but from the need to
compete for processor time with other users. Given
a lengthy computation, the ability to exploit changes
in processor loads when allocating work or deciding
whether to reallocate work is critical in making the com-
putation time-feasible. We show how this aspect of the
load balancing problem can be formulated as a Markov
decision process (MDP), and describe some preliminary
attempts to solve this MDP using guided off-line Q-
learning and a linear value-function approximator. In
particular, we describe difficulties with value-function
approximator divergence and techniques we applied to
correct this problem.

1 Introduction

In order to use multiple processors efficiently, we need
to be able to balance the workload on these processors
such that the fewest number of processors are idle at any
given time while there is still work to be done. This load
balancing can be viewed from three perspectives. The
first, which we call altruistic load balancing, is an oper-
ating systems perspective. Given a distributed memory
environment, such as a network of workstations, and the
arrival of a series of processes with varying interprocess
communication needs, the goal is to schedule the pro-
cesses on the network in order to minimize the time to
completion of all processes.

The second perspective, which we call solipsistic load
balancing, is essentially a scientific computation per-
spective. This viewpoint assumes that one computa-
tionally intensive, parallelizeable computation has ex-
clusive use of all the processors on the system, and the
goal is to distribute the computation on these proces-
sors in order to minimize the time to completion of this
single computation.

The need for such load balancing generally arises

when a problem is defined on a domain whose subdo-
mains have very different computational costs associ-
ated with them. These differences can be the result
of a problem decomposition driven by the physics of
the problem or by the use of multiple computational
methods, or may arise as the solution is computed if
the dynamics of the problem concentrate the necessary
computations into a particular subdomain.

Both altruistic and solipsistic load balancing have an
extensive literature. There is, however, another reason
for load balancing scientific computations which has not
been explicitly considered in the literature. This third
perspective, which we call selfish load balancing, shares
with solipsistic load balancing the focus on completing
one particular computation as fast as possible but, like
altruistic load balancing, recognizes that there are other
jobs on the system and that no one job has exclusive use
of the processors. The aim of this type of load balanc-
ing is to distribute a particular computation such that,
given the varying demands of other jobs on the system,
we minimize the time to completion of this computa-
tion.

For computations which would consume relatively
small amounts of wall-clock time on a dedicated pro-
cessor (several hours or less), the gain in parallel time
from this type of load balancing may not be worth the
overhead incurred by the balancing process. But for
computations that would take months, or even years,
of wall-clock time, such as large molecular dynamics
simulations, the benefits of load balancing can greatly
outweigh the costs.

2 Mbolecular Dynamics

We will focus on selfish load balancing for the Molec-
ular Dynamics Multipole Algorithm (MDMA), an effi-
cient multipole-based algorithm for computing accurate
nonbonded forces among particles in a molecular dy-
namics (MD) simulation [1]. This focus is appropriate
since the calculation of nonbonded forces consumes ap-
proximately 90% of the execution time in an MD simu-
lation [2].

The MDMA constructs a tree based on a hierarchi-
cal decomposition of the simulation space. Starting at
the root, levels of the tree represent increasingly fine
decompositions of the simulation space. For example,
the root represents the entire simulation space while the
eight children (in 3-D) of the root represent the eight
octants obtained by dividing the volume evenly along
all three dimensions.

Once the tree has been constructed, a time step
in the simulation is accomplished by an upward pass
through the tree, during which multipole expansions
are computed, and a downward pass, during which the
multipole expansions are translated and accumulated.
Given the total force acting on each molecule computed
by the previous phase, the MDMA can now update the
velocity and position of each molecule.

We will make certain assumptions that allow us to
focus on load balancing due to imbalances arising from
other jobs on the system rather than imbalances arising
from the molecular dynamics.

e We assume a uniform distribution of molecules
throughout the simulation, and that the occasional
particle that needs to be transferred to another
cell does not represent a significant communication
cost. Thus, we always have a balanced tree with the
appropriate level of granularity, so we never have
to rebuild the tree. (If a buffer zone is constructed
around the simulation volume, the tree usually does
not need to be rebuilt for hundreds or thousands of
time steps [1], making this assumption somewhat
realistic.)

e We assume that the distributed system is small
enough to allow a centralized load balancer, i.e.
the overhead associated with collecting the proces-
sor information necessary to load balance is signif-
icantly smaller than the potential gain from load
balancing.

Given this simplified molecular dynamics problem, most
interprocessor communication is eliminated if cells from
the third level of the oct-tree (along with all their de-
scendants) are assigned to the available processors [1].
Thus, load balancing for 64 or fewer processors means
allocating the 64 subtrees rooted at the level-3 cells to
the processors so as to minimize the time spent in sim-
ulating the motions of the molecules or, equivalently, to
maximize, for each unit of system time, the number of
processors that have a portion of our simulation in their
run queue.

3 The MD Simulation Model

We constructed a simulation to model the allocation and
execution of the work required in an MD simulation in a
multiple processor environment, and applied reinforce-

ment learning techniques to optimize the behavior of an
agent controlling this allocation process.

Our simulation models the following process. Given
n processors and ¢ MD steps to compute (each of which
will take multiple processor time steps), an agent allo-
cates the MD work among the processors at the begin-
ning of each MD step. The agent monitors the processor
loads (as measured by the number of jobs in the proces-
sors’ run queues) and the progress of the processors in
completing the MD work (but only insofar as it knows
whether a given processor still has MD work, not how
much it has). At each processor time step, the agent
decides whether to let the computation continue or to
intervene and reallocate the work, losing all the com-
putation done so far on this MD step in an attempt to
correct what has become a poor allocation.

The simulation uses quantized wall-clock time as the
governing time scale (1 quantum = 5 seconds). We
quantify the amount of work allocated to each processor
by estimating the total dedicated processor time needed
to calculate the MD step. Each processor p; receives .J;
work, a fraction of that total time (proportional to the
number of subtrees that would be allocated to that pro-
cessor).

During each quantum, once the work has been al-
located and until all the MD work in the MD step has
been completed, the simulation does the following:

1. Updates the size of the processor run queues as-
suming Poisson arrivals with a specified mean that
varies across processors and according to the time
of day, and exponential service times with a spec-
ified mean that does not vary. This allows us to
simulate processors with different usage patterns
and different processing speeds.

2. Calculates f;, the fraction of the quantum available
for the MD computation on processor p;:

fi = eiﬁi”:

(1)

where (3; is a constant and r; is the number of jobs
in the run queue of p;. Thus, the amount of MD
work that gets done in a quantum, w; is:

2)

where ¢ is the wall-clock duration of a quantum.
The amount of MD work remaining on processor 4,
J;, is decremented by w;.

w; = fZQ7

3. Advances wall-clock time a single quantum.

This process of simulating an MD step is repeated until
we have simulated the number of steps required in the
MD simulation.

The decision required of the agent at each quantum
is whether to reallocate the cells of the tree to the pro-
cessors. The consequences of the decision differ depend-
ing on whether we are at the beginning or in the middle
of an MD step. If we are at the beginning of an MD step,
a decision to rebalance may incur two types of costs, a
cost due to the time needed to gather load informa-
tion from the processors and a cost to redistribute the
cells among the processors (time during which no actual
computation is being done).

If we are in the middle of an MD step, the agent
has the option of rebalancing, but only by completely
restarting the simulation of that MD step. Thus, a de-
cision to rebalance in the middle of an MD step incurs
the additional cost of the wasted computation up to
that point. Since an MD step for a 100,000 particle
simulation can take on the order of an hour [1] on a
dedicated processor, however, the decision to rebalance
in the middle of an MD step might make sense in some
situations.

4 Load Balancing as an MDP

Given the description of the simulation model in Sec-
tion 3, the MDP formulation is relatively straightfor-
ward. A state s is a vector s = (E, 5, f,H, M,Q,R,B),
where:

o [= (Ly,...,Ly,) and L; indicates the load on pro-
cessor i, expressed as the number of jobs in the run
queue of that processor,

e D= (Dy,...,D,) and D; indicates the amount of
MD work currently allocated to processor i,

e J = (Ji,...,J,) and J; indicates the amount of
MD work remaining to be done on processor ¢ in
the simulation of the current MD step,

e H : M is the 24-hour wall-clock time,

e () is the number of quanta used so far in an MD
step,

e R is a binary scalar indicating whether we are at
the beginning of an MD step, and

B is a bias feature.

If the agent were given complete freedom to allocate
and shift work among processors, the number of possible
actions would be potentially enormous. We reduce the
size of the action set by limiting the possible actions
to the application of one of two balancing heuristics —
even allocation of work among processors and allocation
according to a Boltzmann distribution. In the latter
allocation method, processor p; gets a fraction of the

total work equal to exp(—r;)/(3_,; exp(—r;)), where r; is
the number of jobs in the run queue of p;. In addition,
the agent has two other action choices. Once at least
one work allocation has been done, the agent can choose
to simply repeat the previous allocation. And, finally,
the agent can always do nothing.

From this set of actions, the agent can formulate
more complicated allocation policies, e.g. choosing to
use the less costly even allocation when the processors
are all similarly loaded and the time of day is such that
this situation is likely to continue. This idea of framing
actions as policy applications and forming a more com-
plex policy from the simpler action policies has been
used before [3], although we do not allow policies to be
mixed to form hybrid actions.

Costs are both explicit and implicit. An explicit cost
(1 or 10 in the tests conducted) is assessed for each
action taken, and an explicit reward (1000 in the tests
conducted) is awarded when the entire sequence of MD
steps has been computed.

There is an additional implicit cost for choosing to
allocate according to a Boltzmann distribution. Allo-
cating using this method (unlike allocating work evenly,
or according to the allocation of the previous MD step)
we need to know the size of each processor’s run queue.
The time needed to poll the processors to obtain this
information is reflected in a delay of 5 quanta when
this allocation method is chosen; i.e. the work becomes
available on the processors 5 quanta after this allocation
method is chosen. (The allocation, however, is based on
the run queue information obtained when the allocation
decision was made. This reflects one of the primary ob-
stacles encountered in load balancing—obtaining and
acting on system information before it is out of date.)

5 Solving the MDP

We use guided off-line Q-learning with linear function
approximation to solve the MDP. The learning is guided
in that actions are chosen with a bias toward the naively
correct action. At the beginning of an MD step, the
agent chooses to allocate the work with a probability of
0.8 and to do nothing with a probability of 0.2. Once
the work had been allocated, the agent chooses to do
nothing with a probability of 0.9 and chooses to reallo-
cate the work (losing any work done on this MD step
so far) with a probability of 0.1. The update equation
for the linear-function coefficients ¢; is:

c; = ¢; + az;dv, (3)
where « is the learning rate, x; is the it* feature of the
current state vector, and dv is the difference between the
target value and the value of the current state (standard
delta rule).

Previous work with function approximation [4] sug-
gests that using a learning rate which decays at an ap-
propriate rate is important for ensuring convergence of
the function approximator. We used a decaying learn-
ing rate over 1000 epochs of training, where the learning
rate a,, for epoch m was a,,, = 0.001/(m+1). Although
the coefficients of the value-function approximator did
not converge within 1000 epochs, their rate of growth
steadily decreased. Tests of the resulting value func-
tions, however, indicate that a learning rate which de-
cays sufficiently rapidly to prevent divergence will also
prevent useful learning. Agents using value functions
produced with this technique are not able to direct an
MD simulation through even one step. In fact, in every
test case, the agent refrains from making even an initial
allocation for the first MD step.

When we tried training with a constant learning
rate, we found that for most reasonable settings of
the problem parameters, the coefficients of the value-
function approximator grew explosively. Again, agents
using the value functions produced were not able to
guide the MD simulation through even one step. Our
analysis indicated that the cause of this value function
divergence is the presence of three features in the state
which always, or almost always, increase during training
and whose magnitude can become large relative to the
magnitudes of the other features in the state. In par-
ticular, there are relatively long periods during training
during which all three of these variables are constantly
increasing.

Since these features quickly become substantially
larger than the other features, they tend to dominate
the value of a given state, and their tendency to increase
during the training period translates into a tendency for
the state values to increase during the training period.
Increasing state values produce larger value function co-
efficients as well which, in turn, exacerbate the increase
in the state values produced by the increasing features.
This positive feedback cycle leads to divergence.

The problem is treated more effectively by chang-
ing the update rule (Eq. 3) to include a sigmoid which
squashes dv, making the update rule:

(4)

This novel update rule has the beneficial property that
when the error dv is close to zero (as it should be if learn-
ing is successful), updates are consistent with Eq. 3,
but when errors are large, the ¢; coefficients are not
changed too drastically. Agents using the value func-
tions produced in this manner are able to direct an MD
simulation through a complete set of 4 MD steps using
a median of 40 quanta after 250 epochs of training, as il-
lustrated in Figure 1. These policies, which are reached
after approximately 200 epochs of training, are reason-

¢i = ¢ + ax; sigmoid(dv).

o
[N
o
-
o
=3
[ee]
o
TO
‘E(D
(]
>
o3
<
ol
0 50 100 150 200 250
Epochs
Figure 1: Median quanta to completion vs. training

epochs (runs above dotted line are stuck).

able in their choice of actions. When allocation of work
is needed, the agent does so and, after a brief period
during which the agent needlessly reallocates the work,
the agent does nothing, thus allowing the MD work that
has been allocated to be processed.

Our future efforts will focus on exploring the use-
fulness of the squashing technique (Eq. 4) over a wider
range of training runs and determining the empirical
limits of linear-function approximation in this problem.

References

[1] J. A. Board, Z. S. Hakura, W. D. Elliott, D. C.
Gray, W. J. Blanke, and Jr. J. F. Leathrum. Scal-
able implementations of multipole-accelerated algo-
rithms for molecular dynamics. Technical Report
94-002, Duke University, Department of Electrical
Engineering, 1994.

[2] Y. Hwang, R. Das, J. H. Saltz, M. Hodoscek,
and B. R. Brooks. Parallelizing molecular dy-
namics programs for distributed-memory machines.
IEEE Computational Science and FEngineering,
Summer:18-29, 1995.

[3] S. P. Singh, A. G. Barto, R. Grupen, and C. Con-
nolly. Robust reinforcement learning in motion plan-
ning. In J. E. Moody, S. J. Hanson, and R. P.
Lippmann, editors, Advances in Neural Information
Processing Systems 2, pages 655-662. Morgan Kauf-
mann, 1992.

[4] J. N. Tsitsiklis and B. Van Roy. An analysis
of temporal-difference learning with function ap-
proximation. Technical Report LIDS-P-2322, Mas-
sachusetts Institute of Technology, March 1996.

