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Introduction

Observation: Large-scale, Internet-based distributed
system are hard to manage.

— For example: For a resource-sharing system, its challenges lie in:
* Ad-hoc network
* Intermittent resource participation
» Large and variable scale

* High failure rate, etc.
Problem: How to optimize such systems?

Solution: To (1) understand their user behavior, and
then (2) design efficient mechanisms.




Intuition

» Observations from real networks:
— The popularity of Web pages follows a Zipf distribution

— Node degrees of many networks are distributed according to a
power law

— Many networks form small-world topologies

 Intuitive questions:

— Q1: Are there any patterns in the way scientists share resources
that could be exploited for designing mechanisms?

— Q2: Are these patterns typical of scientific communities or are they
more general?

The Data-Sharing Graph

» The data-sharing graph captures the virtual relationship
among users who request the same data at around the same
time. Specifically,

» Definition: The data-sharing graph is a graph where nodes
are users and an edge connects two users who have similar
interests in data.

 Criterion for similarity: the number of shared requests
between to users within a specified time interval




Three Data-Sharing Communities

» The DO experiment: a high-energy physics collaboration
» The Web observed from the Boeing traces

» The Kazaa peer-to-peer file-sharing system
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Fig. 1. Left: Number of file requests per project in DO. Right: File
popularity distribution in DO
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Fig. 2. Left: Number of file requests per day in DO. Right: Number
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of files (total and distinct) asked by each user during the 6-month
interval.




The Web
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Fig. 3.  Left: Activity level (averaged over 15-minute intervals).
Right: Number of requests per Web user.
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Fig. 4. Left: Activity level (averaged over 100 s) in Kazaa; Right:
Number of requests per user in KaZaa
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Fig. 5. The file popularity distributions in Kazaa follows Zipf's law.
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Small-World Data-Sharing Graphs

« As compared to a random graph, a small-
world graph has:
— Larger clustering coefficient
— Smaller average path length

— Loosely connected collections of highly
connected sub-graphs
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General observations:

Data-sharing graphs with different durations and similarity criteria are small-worlds

Well connected clusters exists in the communities concerned

There is a small average path length between any two nodes in a data-sharing graph
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Human Nature or Zipf Law

Q3: Are the small-world properties consequences of previously
documented characteristics or do they reflect a new observation
concerning users’ preferences in data?

— To examine whether the large clustering coefficient is a natural
consequence of the data-sharing graph definition

— To analyze the influence of time and space locality in file access
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Affiliation Networks

» Definition: an affiliation network is a social network where
participants (nodes) in the same interest groups (e.g.,
clubs, the authors of a paper) are connected.

Users Groups

() One-mode
project

Fig. 15. A bipartite network (left) and its unipartite projection (right).
Users A-G access files m-p. In the unipartite projection, two users 13
are connected if they requested the same file.

*  Comparison: properties of data-sharing graphs, measured and modeled as unimodel
projection of affiliation networks

Clustering Average degree

Interval | Users Files | Theory | Measured | Theory | Measured

Do 7 days 74 28638 | 0.0006 0.65, | A242% 33
28 days 151 | 67742 § 0.0004% {06447 7589.6% i 60%

Web 2 min | 3385 39423 § 0.046 :0.63 5004 i226
30 min | 6757 | 240927 § 0016 i < 1453.1 {| = B04.1
Kazaa Lhi 1629 3393 R OS5 S 106007y 2.9 247
8h | 2497 9224 | 9,30 Q48 | . 95 “8.7

e Observations: The large clustering coefficient is not caused by the definition of the data-
sharing graph as an one-mode projection of an affiliation network with non-Poisson
degree distribution
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Zipt Law and Time Locality

» Large clustering coefficient vs. Zipf law and time and
space locality

— Time locality: an item is more popular during a limited interval

* Q4: Are the properties we identified in the data-sharing
graph, especially the large clustering coefficient, an
inherent consequence of these well-known behaviors ?

* Means: generate random trances preserving the
documented characteristics but break the user-request
association:

(3) User-request  (2) request-time

user | | File request | | Request times | D/Y—\l

ser | | File request | | Request times | | user | | File request | | Request times |

c

user | | File request | | Request times |
| | | | | (1) User-time 15

traces I

* Three experiments:
— ST1: Break relationships (1), (2), and (3)
— ST2: Break relationships (1) and (3) /maintain request-time relationship
— ST3: Break relationships (1) and (2) // maintain user-time relationship

1.8 T T T T T
Real »

o 1.6 ST1 o -
= ST2 &
g 14 ST3 o
'ED 1.2 -
2 1 . -
= .
3 08 .
2 06 E
<

0.4 b -

0.2 i i i i H
1 2 3 4 5 6

Clustering coefficient ratio

~

Fig. 20.  Comparison of the small-world data-sharing graphs as
resulted from the real and synthetic DO traces.

* Observation: The synthetic data-sharing graphs are still small-worlds
(although they are less “small-worldy”.)
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