# Small-World File-Sharing Communities

Presented by: Xiaolong Jin

Based on the paper: Adriana Iamnitchi, Matei Ripeanu, and Ian Foster, Small-World File-Sharing Communities, Infocom 2004, Hong Kong, March 2004,

available at: http://people.cs.uchicago.edu/~anda/

1

## Introduction

- Observation: Large-scale, Internet-based distributed system are hard to manage.
  - For example: For a resource-sharing system, its challenges lie in:
    - Ad-hoc network
    - Intermittent resource participation
    - Large and variable scale
    - High failure rate, etc.
- Problem: How to optimize such systems?
- Solution: To (1) **understand their user behavior**, and then (2) design efficient mechanisms.

### Intuition

- Observations from real networks:
  - The popularity of Web pages follows a **Zipf** distribution
  - Node degrees of many networks are distributed according to a power law
  - Many networks form **small-world** topologies
- Intuitive questions:
  - Q1: Are there any patterns in the way scientists share resources that could be exploited for designing mechanisms?
  - Q2: Are these patterns typical of scientific communities or are they more general?

3

# The Data-Sharing Graph

- The data-sharing graph captures the virtual relationship among users who request the same data at around the same time. Specifically,
- Definition: The data-sharing graph is a graph where nodes are users and an edge connects two users who have similar interests in data.
- Criterion for similarity: the number of shared requests between to users within a specified time interval

# Three Data-Sharing Communities

- The D0 experiment: a high-energy physics collaboration
- The Web observed from the Boeing traces
- The Kazaa peer-to-peer file-sharing system

5

# The D0 Experiment

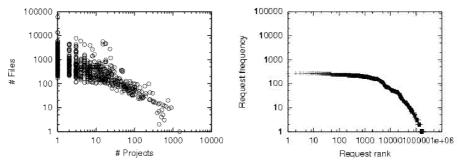



Fig. 1. Left: Number of file requests per project in D0. Right: File popularity distribution in D0

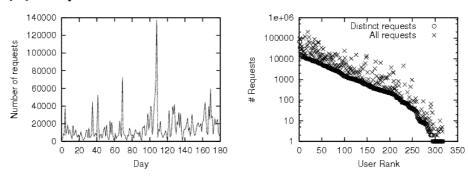



Fig. 2. Left: Number of file requests per day in D0. Right: Number of files (total and distinct) asked by each user during the 6-month interval.

#### The Web

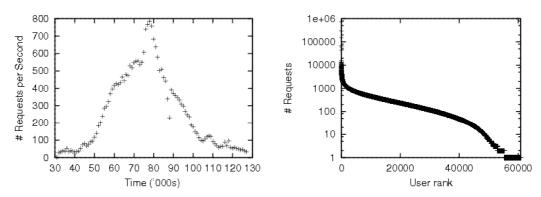



Fig. 3. Left: Activity level (averaged over 15-minute intervals). Right: Number of requests per Web user.

7

## The Kazaa System

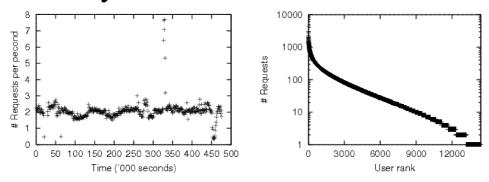
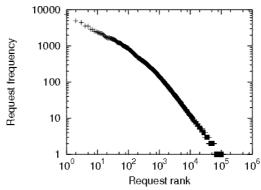
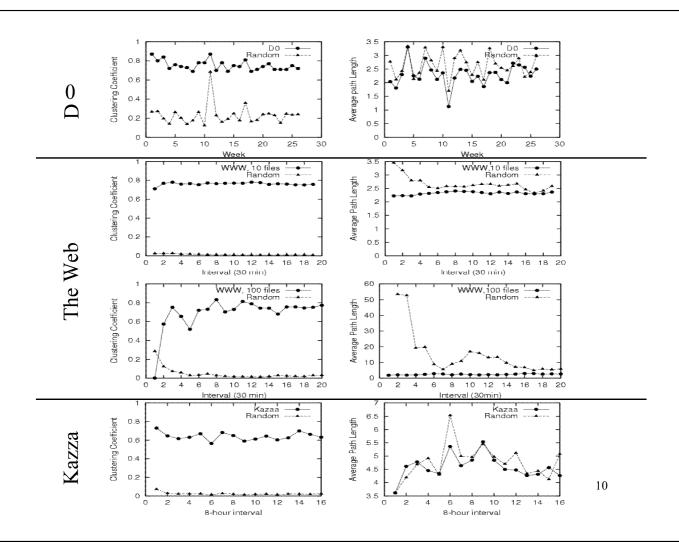
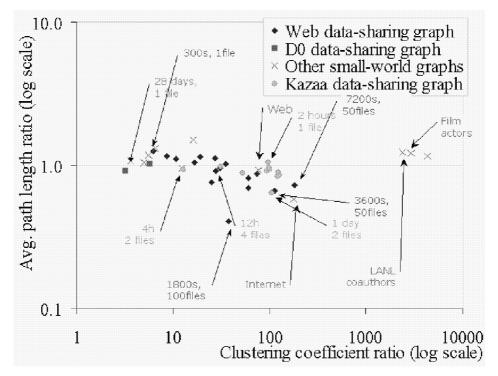



Fig. 4. Left: Activity level (averaged over 100 s) in Kazaa; Right: Number of requests per user in KaZaa





Fig. 5. The file popularity distributions in Kazaa follows Zipf's law.


8

# Small-World Data-Sharing Graphs

- As compared to a random graph, a smallworld graph has:
  - Larger clustering coefficient
  - Smaller average path length
  - Loosely connected collections of highly connected sub-graphs

Ç





- General observations:
  - Data-sharing graphs with different durations and similarity criteria are small-worlds
  - Well connected clusters exists in the communities concerned
  - There is a small average path length between any two nodes in a data-sharing graph

11

# Human Nature or Zipf Law

- Q3: Are the small-world properties consequences of previously documented characteristics or do they reflect a new observation concerning users' preferences in data?
  - To examine whether the large clustering coefficient is a natural consequence of the data-sharing graph definition
  - To analyze the influence of time and space locality in file access

## **Affiliation Networks**

• Definition: an affiliation network is a social network where participants (nodes) in the same interest groups (e.g., clubs, the authors of a paper) are connected.

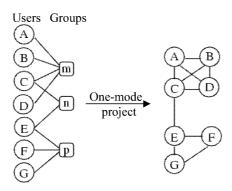
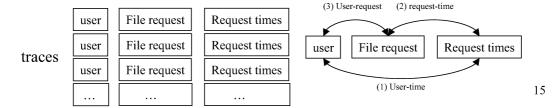



Fig. 15. A bipartite network (left) and its unipartite projection (right). Users A-G access files m-p. In the unipartite projection, two users are connected if they requested the same file.

13


• Comparison: properties of data-sharing graphs, measured and modeled as unimodel projection of affiliation networks

|       |          |       |        | Clustering |          | Average degree |          |
|-------|----------|-------|--------|------------|----------|----------------|----------|
|       | Interval | Users | Files  | Theory     | Measured | Theory         | Measured |
| D0    | 7 days   | 74    | 28638  | 0.0006     | 0.65     | 1242.5         | /3.3.    |
|       | 28 days  | 151   | 67742  | 0.0004     | (0.64    | 7589.6         | 6.0      |
| Web   | 2 min    | 3385  | 39423  | 0.046      | 0.63     | 50.0           | 22.9     |
|       | 30 min   | 6757  | 240927 | 0.016      |          | 1453.1         | > 304.1  |
| Kazaa | 1 h      | 1629  | 3393   | 0.55       | 0.60     | 2.9            | \ 2.4 /  |
|       | 8 h      | 2497  | 9224   | 0.30.      | 0.48     | 9.5            | 8.7      |

• Observations: The large clustering coefficient is not caused by the definition of the datasharing graph as an one-mode projection of an affiliation network with non-Poisson degree distribution

## Zipf Law and Time Locality

- Large clustering coefficient vs. Zipf law and time and space locality
  - Time locality: an item is more popular during a limited interval
- **Q4**: Are the properties we identified in the data-sharing graph, especially the large clustering coefficient, an inherent consequence of these well-known behaviors?
- Means: generate random trances preserving the documented characteristics but break the user-request association:



- Three experiments:
  - ST1: Break relationships (1), (2), and (3)
  - ST2: Break relationships (1) and (3) //maintain request-time relationship
  - ST3: Break relationships (1) and (2) // maintain user-time relationship

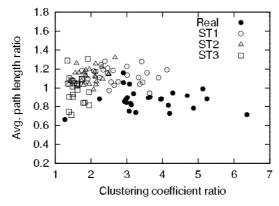



Fig. 20. Comparison of the small-world data-sharing graphs as resulted from the real and synthetic D0 traces.

• Observation: The synthetic data-sharing graphs are still small-worlds (although they are less "small-worldy".)