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ABSTRACT
Distributed problem solving by a multiagent system represents a
promising approach to solving complex computational problems.
However, many multiagent systems require certain degree of plan-
ning, coordination and negotiation to achieve the given goal. This
paper presents a multiagent framework for tackling global opti-
mization tasks inspired by diffusion in nature. The framework is
designed for situations where agent communication must be kept
to a minimal. Hence, complicated coordination and negotiation is
not possible. Distributed agents in this framework share the com-
mon goal of finding the global optimal solution. They cooperate
to achieve this common goal by sharing and updating a common
belief that captures their estimation of the whereabouts of the op-
timal solution. To facilitate this, agents are naturally organized in
familieswith a parent and its offsprings as members. This paper
also presents an algorithm called Evolutionary Diffusion Optimiza-
tion, which is implemented base on the proposed agent framework.
Experimental results on some benchmark problems are presented
together with performance comparison with a simulated annealing
algorithm.

Categories and Subject Descriptors
I.2.11 [Distributed Artificial Intelligence]: multiagent systems;
I.2.8 [Problem Solving, Control Methods, and Search]: heuristic
methods

General Terms
Algorithms, Experimentation, Theory

Keywords
Diffusion model, multiagent system, optimization,autonomy ori-
ented computation

1. INTRODUCTION
Consider a function F(x) where x = {x1, x2, ..., xn}T is an n-

dimensional vector representing the parameters of function F . The
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optimal solution is represented by F(x∗) such that

F(x∗) ≤ F(x) ∀x (1)

The search for x∗ can be viewed as the minimization of function
F . Turning the sign in Equation 1 around makes the search for
x∗ a maximization task. They can collectively be called global
optimization tasks [29].

Many algorithms have been developed over the years to tackle
the challenging task of global optimization [14, 15, 23]. In the
absence of prior knowledge about the search landscape, stochas-
tic approaches, such as simulated annealing[18] and population-
based incremental learning[3, 4], have been proved to be effective.
They attempt to locate the optimal solution by generating sampling
points probabilistically. Methods inspired by nature that are equally
successful include evolutionary algorithms[2, 12, 13, 27], bac-
terial chemotaxis[24], differential evolution[28], particle swarm
optimization[17], cultural algorithm[26] and ant colony optimiza-
tion [9].

There are several challenges any search algorithm must face.
Firstly, the landscape of the function to be optimized is unknown.
Unimodal functions can be monotonic in nature and the search
is easy once the downhill direction is found. However, finding
the direction of the search landscape is not a simple task. Multi-
modal functions, on the other hand, have many suboptimal solu-
tions where a search algorithm is likely to be trapped.

Secondly, there is usually no linear relationship between changes
made to the function variables and the corresponding change in the
function value. This assignment of credit problem confuses, if not
misleads, the search algorithm.

Thirdly, search algorithms do not normally jump directly to the
optimal solution but making incremental changes in small steps in-
stead. Making big steps is not always a better strategy, especially
when the optimal solution is close by. In contrast, infinitesimal
changes are detrimental to the effort to escape from a local opti-
mum. Therefore, it is crucial to choose a step size appropriate to
the situation prevalent during the search.

Fourthly, a population-based search algorithm needs to maintain
a sufficient diversity during the whole course of the search so that
the search space is adequately sampled.

Lastly, the advent of grid and cluster computing technology, search
and optimization tasks will not be restricted to a single machine or
locally connected machines. For example, the aim of the Euro-
pean project Crossgrid [1] is to “develop, implement and exploit
new Grid components for interactive compute and data intensive
applications”. It is essential when tackling large scale optimization
problems to have a mechanism for computational entities running
on different machines to collaborate without requiring extensive
communication or planning.



This paper proposes an agent framework inspired by diffusion
in natural and artificial systems. The framework consists of a so-
ciety of agents where they cooperate to perform an optimization
task. The challenge is that the agents have to search for the op-
timal solution in a distributed manner and in the absence of com-
plete information about the search landscape; only a partial view is
available. Moreover, there is no central planner that coordinates the
agents during the search. Essentially, the agents have to collaborate
in order to complete the task. However, minimal communication
bandwidth is available.

There are several special aspects about the optimization agents:

• the agents communicates sparingly and selective based on
the organizational structure;

• the agents are homogeneous in the sense that they have the
same set of behaviors;

• all the agent’s behaviors are local in nature - itself or agents
in close neighborhood;

• the agents are rational only to certain degree, which means
behavior selection does not strictly follow the same rule ev-
ery time;

• there is no explicit division of labor for the search;

• the agents cooperative via sharing of belief rather than by
negotiation or competition;

• the agents may not survive the whole search process if they
cannot provide their worth.

1.1 Organization of This Paper
The next section will describe some observations that motivated

the agent diffusion framework. This is followed by a formal de-
scription of the agent diffusion framework. An example algorithm
that implemented the proposed framework will then be described
together with some experimental results. This paper concludes with
a summary of the proposed framework and a brief discussion of
possible extensions.

2. BACKGROUND AND RELATED WORK
Diffusion in nature and the successful application of diffusion

model to image segmentation [21] have inspired the multiagent dif-
fusion framework, which attempts to tackle the task of optimizing
multi-dimensional functions. This section describes in more detail
a diffusion model observable from nature. Some research works on
agent model and distributed problem solving will then be discussed
in order to highlight the major innovations in the proposed frame-
work. Lastly, a computational paradigm called autonomy oriented
computation(AOC) [22] that is relevant to the current work will be
introduced.

2.1 Human Migration Study
The study of human geography categorized reasons for human

migration into pushfactors and pull factors [5, 7]. Push factors re-
late to undesirable conditions such as poor living conditions, lack
of job and overcrowding. Pull factors are those positive factors
that attracts people to relocate, such as jobs and better living con-
ditions. Two forms of migration can also be identified. Step mi-
gration refers to a series of local movements, such as moving from
village to town, then to city. Chain migrationrefers to a more dras-
tic change beyond the local region and is usually assisted by peo-
ple who have already emigrated. The availability of information

seems to be an important factor that helps people to decide when
and where to migrate.

The important lesson to learn for optimization is that once the
landscape of the target function is known, finding the optimal solu-
tion becomes trivial. The question is how to capture the trend. A
search algorithm will need past experience to inform it of the pos-
sible successful moves (push factor) and unsuccessful moves (pull
factor). In addition, whoever has captured the trend of the search
space can help others to make better moves by sharing their expe-
rience.

2.2 Agent Models and Distributed Optimiza-
tion

Rao and Georgeff have proposed the most widely-used Belief-
Desire-Intention(BDI) agent model [25]. Beliefrepresents the state
of the environment that an BDI agents roams. Desire represents
the motivational aspect of an agent-oriented system. Intentionrep-
resents the course of action taken by an agent. While the general
principles for constructing an agent system have been explained
with examples, the BDI architecture does not give any indication
for multiagent interaction.

Chainbi et. al. picked up the interaction issue and proposed the
Belief-Goal-Role(BGR) agent model [6], which stresses the fact
that agents can have different local goals and roles in achieving a
common global goal. In the context of optimization, we argue that
agents have the common goal of finding the global solution. Hence,
global and local goals are indistinguishable. However, this does not
preclude the agents from playing different roles (two in our case)
during the search. In fact, having agents to assume one of the two
roles is a crucial feature our framework that facilitates cooperative
collaboration.

Liu et. al. [20] proposed an Environment-Reactive rules-Agents
(ERA) agent model for tackling constraint satisfaction problems.
The ERA model describes competitive collaboration among agents,
highlights the ‘survival-of-the-fittest’ principle and demonstrated
the importance of having randomized strategies. In the proposed
framework, we model agent interactions and the formation of agent
society as a cooperative collaboration process.

Durfee [11] has outlined the major steps in distributed search by
a multiagent system as: task decomposition, task allocation, ac-
complishmentand result synthesis. Negotiationand contract are
two of the important mechanisms to achieve coordination. Our
agent framework views an optimization task completely from the
bottom up and the solution emerges as a result of agent interaction.
In other words, no central coordination and planning (both implicit
and explicit) is in the system. This is the design of a new compu-
tational paradigm called autonomy oriented computation(AOC),
which is outlined below.

Applications running on the grid have emerged in recent years.
A software called DisOpt [8] for solving large scale optimization
problems in distributed environments. However, it relies on task de-
composition and coordination, which requires in-depth knowledge
on the problem nature. We propose that the agents under our formu-
lation are able to organize themselves to tackle the given problem.

2.3 Autonomy Oriented Computation
This paper will describe an algorithm called Evolutionary Diffu-

sion Optimization(EDO) based on the proposed multiagent diffu-
sion framework. In computational system term, EDO belongs to a
class of computational methods called Autonomy Oriented Compu-
tation (AOC) [22]. There are three main classes of AOC methods:

• AOC-by-fabrication methods aim at replicating certain self-
organized behavior observable in the real-world to form a



general-purpose problem solver. The operating mechanism
is more or less known and may be simplified during the mod-
eling process. Research in Artificial Life is related to this
AOC approach up to the behavior replication stage. Nature-
inspired techniques such as genetic algorithmand ant colony
optimizationare typical examples of such an extension.

• AOC-by-prototyping methods aim at understanding the op-
erating mechanism underlying a complex system to be mod-
eled by simulating the observed behavior, through charac-
terizing a society of autonomous entities. Examples of this
approach include the study of Internet ecology, traffic jams
and Web log analysis. This AOC approach relates to multi-
agent approaches to complex systems in distributed artificial
intelligence.

• AOC-by-self-discovery methods aim at the automatic dis-
covery of a solution. The trial-and-error process of an AOC-
by-prototyping algorithm is replaced by autonomy in the sys-
tem. In other words, the distance measure between the de-
sired emergent behavior and the current emergent behavior
of the system in question becomes part of the environmental
information that affects the local behavior of an entity. Some
evolutionary algorithms that exhibit self-adaptive capability
are examples of this approach.

EDO belongs to the class of AOC-by-self-discovery methods as
it has mechanisms to automatically fine-tune its parameters when
finding solutions to hard computational problems.

3. AGENT DIFFUSION
The multiagent diffusion framework describes how a population

of autonomous agents decide for themselves what to do regarding
a search task. Following the formulation in the ERA model [20],
three key concepts forms the core of the proposed framework, namely,
environment, reactive rulesand agents. To reflect the nature of the
reactive rules, they are called local behaviors hereafter. The fol-
lowing section describes these three key concepts. It is followed
by detailed descriptions of the framework and local behaviors of an
optimization agent.

3.1 The Fundamentals

Definition 1 (Environment)
The environment E of an optimization task is the task-dependent
computational system on which a group of agents work. It can be
static or dynamic in nature, depending on the task. It is capable of
evaluating the set of numbers that an agent owns, via a functional
form F of the optimization task such as Equation 1, and provide
feedback in the form of a scalar value. The environment also acts as
the placeholder for global information Ig that every agent requires.
Formally, E =< F , Ig >.

Definition 2 (Local Behaviors)
Every agent in a multiagent optimization system is capable of ex-
hibiting a set of local behaviors L. In the current framework, a com-
mon set of behaviors is defined for all agents in the system. These
behaviors can be categorized into three subsets that will either: (i)
enact upon an agent itself to change its internal state (Li), (ii) af-
fect the organizational structure of the multiagent system (Lo), or
(iii) cause direct communication with another agent to occur (Lc).
However, none of them will enact upon other agents directly. For-
mally, L = {Li,Lo,Lc}.

Definition 3 (Agents)
The basic functional entity in a multiagent optimization system is
an agent x. It is capable of selecting one or more of the reactive
rules based on information it receives alone.

The above definitions are suffice to define an optimization sys-
tem with only one agent and one with many agents.

Definition 4 (A single-agent optimization system)
A single-agent optimization system AS1 is the tuple< E ,Li, x >.
There is no organizational changes and inter-agent communication
for the obvious reason.

Example 1
The classical simulated annealing algorithm maintains a single so-
lution at all times. A single new test case is generated by making
some changes to the set of numbers maintained by the agent. The
new case will be adopted by the agent according to a probability
distribution. There is no other agents in the system.

Definition 5 (A multiagent optimization system)
A multiagent optimization system ASm is the triplet either of the
form< E ,L,A >,< E ,L\Lo,A >, or< E ,L\Lc,A >, where
A is the set of agents A = {x1, x2, . . . , xn}.

Example 2
Genetic algorithm (GA) is an example of a multiagent optimiza-
tion system. It has a population of agents representing a group of
candidate solutions. The mutation operator in GA corresponds to
the local behavior Li. The recombination operation corresponds to
the local behavior Lo. There is no inter-agent communication and
there are behaviors that are not local to a particular agent, e.g. the
selection process.

3.2 An Optimization Agent
An agent x can be described by the tuple < B,S >, where B

is the belief of an agent and S is the state of an agent. The set of
agents A are structurally organized into familiesto facilitate inter-
agent collaboration and communication. It should be pointed out
that all agents share the same goal, i.e. find the optimal solution to
the optimization task.

Definition 6 (Agent Belief)
The belief B of an optimization agent is its set of estimates of the
likelihood of finding the optimal solution in a certain direction with
respect to a particular position on the search landscape. This is
shared among members of the same agent family. Agent belief
should not be treated as global information as it is sensitive to the
context (i.e. position in the solution space).

Definition 7 (Agent State)
The state S of an optimization agent can be represented by the tuple
< a, s, f,V,M > where a is the age of an agent since it was
created, s is its status (active, inactive, or dead), f is its fitness with
respect to the optimization task, V is a set of values used to obtain
the fitness and M is a set of modifications made to V since last
communication was performed.

Definition 8 (Agent Family)
An agent family Af consists of a parent agent and its offspring
agents. All the agents of the same family share the same beliefand
the offspring agents provide information for belief revision to the
parent agent. Therefore, the set of agents A can be represented by
the set of agent families {Af1,Af2, . . . ,Afx}.



3.3 Agent Behaviors
The set of behaviors associated with the agents in the multiagent

system consists of three categories. The internal state modifying
behaviors Li concern the set of values V , the belief B and the age
a of an agent. The organizational modifying behaviors Lo change
the role of an agent under certain situation and creates a new family
of agents as a result. This framework also allows the removal of an
agent from the system when its lifespan expires. The inter-agent
communication behaviors Lc concern feeding information from an
offspring agent to its parent agent for the purpose of updating the
family belief. We will describe the behaviors below and present
them formally using the following notation:

var behavior−−−−−−→ var′ (new var)

Definition 9 (Modify Value Set)
The value set maintained by an agent is a candidate solution to
the optimization task. To explore a different candidate solution,
an agent modifies one or more of these values to reach a different
point in the solution space. This process is called diffusion as it
involves minute changes to the value set and is analogous to a local
search strategy. The direction of change is selected after consulting
the belief of the familyto which the agent belongs. The diffusion
process τ , which will only be performed by offspring agents, can
be represented as:

V τ(B)−−−−−→ V ′

A special case of diffusion is when the belief is not consulted. In
this case, directions of change are selected randomly. The random
diffusion process, or random walk, τrw can be represented as:

V τrw({})−−−−−→ V ′

One of these two strategies is selected every time diffusion is to
be enacted. The selection process σ will base it decision on some
of the state information of an agent, such as age and/or fitness.

{τ, τrw}
σ(Sxi

)−−−−−→ τj : τj ∈ {τ, τrw}
No matter what kind of diffusion has taken place, the changes

are recorded in the modification set M.

M τ ′(V,V′)−−−−−→ M′

Definition 10 (Revise Agent Belief)
The belief of an agent (or rather an agent family) is an estimation of
the whereabouts of the optimal solution based on past experience.
It has to be updated continuously and using the current context. The
belief revisionprocess ψ relies on the change information, as well
as an indication whether the changes have been successful or not,
feed back to the parent agent from its offspring agents. The result
is a set of new estimates, which will be used by all offspring agents
in the family to perform future diffusion. It should be noted that
only a parent agent will perform this behavior.

B ψ(Mxi
,+|−)−−−−−−−−→ B′

where Mxi is the modification set of agent xi.

Definition 11 (Aging)
The age, a, of an agent keeps track of the number of iteration since
being created. The agingprocess ρ increases the age by one.

a
ρ−−−−−→ a+ 1

Definition 12 (Agent Death)
An agent will remove itself from the system (or die χ) once its age
has reached a certain lifespan limit Θ unless its fitness f is above
the population average fitness f . In addition, a parent agent who
has become the only member of the family when all members have
out-lived their lifespan will also be removed.

A χ(a,f,f,Θ)−−−−−−−→ A \ xi
where xi is the agent concerned.

Definition 13 (Reproduce)
When an agent has a fitness higher than its parent, it will replicate
itself a number of times up to certain limit Ω. Each offspring agent
will then be subjected to the diffusion process. In this way, a new
agent family is born and the reproducing agent will sever linkage
with its own parent agent once the parent’s belief has been updated
and copied. This action is necessary to make sure the belief re-
main relevant to the current context of the agent concerned and its
offsprings.

A π(xi,Ω)−−−−−→ A ∪Aπ

where Aπ is the set of new agents created during the reproduction
process.

Definition 14 (Inter-agent Communication)
For the purpose of updating the belief of the agent family, all off-
spring agents in the family will communicate with the parent agent
about the result of their diffusion actions. An agent will pass to the
parent agent the changes it has made so far since the last commu-
nication and indicates whether the changes has been successful or
not. The timing of the communication is dictated by the availability
of a communication channel. However, in the event of a successful
diffusion, the agent can request the parent to communicate since
the agent needs to reproduce.

4. THE EDO ALGORITHM
This section details an implementation of the multiagent dif-

fusion framework in Evolutionary Diffusion Optimization(EDO).
Figure 1 shows the pseudocode of the major steps. A more detailed
analysis of the behavior and performance of EDO can be found
in [30].

4.1 An EDO Agent
Agents in EDO are divided into two categories. Activeagents

are those that are performing the search for the optimal solution.
They will engage in the behaviors of diffuseand revisetheir belief
negatively. In contrast, inactiveagents are those that have found a
position that is better than their parents, though not necessarily a
sub-optimal or global optimal solution. These agents will not dif-
fuse any more but will reproduceand revise their belief positively.

An agent e in the population E maintained by EDO is the tuple
(P, S) where S is the agent state and P is the probability matrix
representing the agent’s belief of the optimal solution’s location.
The agent state S is a triple (a, f, V ), where V is the object vector,
a and f are scalars representing the age and fitnessof the agent
respectively. While V contains the values of the potential solution,
P , a and f are crucial to the search process of EDO.

4.1.1 The Object Vector
The object vector V can be represented as:

V = {v1, v2, . . . , vn}, vi = [LB, UB], ∀ i
where LB and UB are the lower bound and upper bound respec-
tively. All function variables can take a value within these bounds.



WHILE (number of agents > 0) and
(number of iterations < limit)

evaluate agent
if (performance better than parent)

positive feedback
reproduce
parent becomes inactive

else
negative feedback
diffuse
aging

end-if
END-WHILE

Procedure Diffuse
if rand() > Prand walk

Random Walk
else

for each variable
select step direction and size

end-for
end-if

Procedure Reproduce
quota← f(fitness)
create new probability matrix
for each offspring

copy variables and point to new prob. matrix
Diffuse

end-for

Procedure Aging
age← age +1
if fitness < parent’s fitness * threshold or

(age > lifespanand fitness < average)
Remove

end-if

Figure 1: Pseudocode for EDO

4.1.2 Fitness
Fitness, f , in EDO measures an agent’s degree of success in the

course of the search for the optimal solution. For simplicity, the
objective function value is used as fitness in EDO if the task is
minimization.

4.1.3 Age
The age, a, of an agent in EDO means the number of iterations

this agent has survived since birth. Once an agent becomes a parent,
the age does not need to be updated any more.

4.1.4 Probability Matrix
The probability matrix, P , implements the agent belief of the

proposed multiagent optimization system. Specifically, the proba-
bility matrix is an n ×m matrix representing the n function vari-
ables to be optimized and m possible steps of motion, i.e. y =
(m− 1)/2 steps towards the upper bound and the lower bound re-
spectively, and remain stationary. A global step size parameter, ∆,
governs the unit of change to all function variables and the product
of ∆ and the number of steps becomes the final modification to be
effected on V . Formally,

P = {P1, P2, . . . , Pn}

Pi = {pi,−y , · · · , pi,0, · · · , pi,y}, 0 ≤ pi,j ≤ 1

y∑
j=−y

pi,j = 1, ∀ i

At the beginning of the search, all entries are initialized to 1/m,
which means it is equally likely to make any of the possible moves.

4.2 Diffusion
Two diffusion strategies are implemented in EDO, namely ratio-

nal moveand random walk. They operate as described below.

4.2.1 Rational Move
In the majority of time, an agent modifies its object variables by

choosing randomly the number of steps to take according to the
probability matrix. The actual amount of change is the product of
current step size and the number of steps chosen:

vi = vi + δvi · ∆,∀ i

δvi = min{k|rand() <
k∑

j=−y
pi,j , k ≤ y}

where vi is the ith function variable, δvi is the amount of change
made to vi, y is the maximum number of allowable steps towards
either end of the bounds in the search space, and pi,j is the proba-
bility of vi making j step(s).

4.2.2 Random Walk
As an agent becomes older and still has not located a place better

than that of its parent, it will decide to take a random walk with
increasing probability. The probability to take random walk, Prw,
is given by:

Prw = exp [−Θ − a

α
]

where α is a scaling factor that decides the degree to which random
walk is to be exercised, Θ is the maximum lifespan of an agent, and
a is the age of an agent.

The direction of movement is first chosen uniformly between
towards the upper bound, towards the lower bound and no move.
In case a move is to be made, a new value between the chosen
bound and the current value is then selected randomly.

vi = vi + rand() · (r<l> − vi),∀ i

l = min{k|rand() <
k∑
j=1

bj , k ≤ 3}

r = {LB, vi, UB}, sj = 1/3 ∀ j
where r is the set of boundaries between which a new value will
be chosen for object variable vi, s is the set of probabilities for
choosing the entries in the set r.

4.3 Reproduce
A reproducing agent in EDO will replicate itself a number of

times according to a quota system. The new agents are then sent
off to a new location by rational move. The number of offspring to
reproduce is determined according to the following two rules.

4.3.1 Differentiation Rule
An agent is given the full quota to reproduce only if its fitness

is significantly above the population average and will gradually de-
crease as the fitness decreases. Therefore, the quota for an individ-



ual x having fitness f is:

qx =




Ω, if fx

f
≤ 0.25

Ω − 1, if 0.25 < fx

f
≤ 0.5

Ω − 2, otherwise

where f is the population average fitness.

4.3.2 Population Size Rule
Further to the above differential scheme, the reproduction quota

is subjected to further restriction to avoid overcrowding:

qx = �qx ∗ (Π − |E|)
Π

�
where |E| is the size of the population of agents, and Π is the max-
imum population size.

4.4 Aging
Aging is the process to help EDO to keep track of the unproduc-

tive moves throughout the search. By limiting the number of un-
successful moves, EDO can properly channel resource to explore
the search space. However, sufficient time should be put aside to
allow each agent to survey its neighborhood.

At the end of each iteration, the age of all agents is increased by
one. Agents whose age is greater than the lifespan limit are elimi-
nated from the system. However, it is necessary to provide excep-
tions to the rule to either retain the exceptionally good performer
or eliminate prematurely the exceptionally bad ones.

4.4.1 Extended Life
Lifespan limit of an agent is extended by one iteration when it

expires if its fitness is higher than the population average.

4.4.2 Sudden Death
An unsuccessful agent is eliminated if the agent’s fitness is less

than a certain percentage of the fitness of the parent. The threshold
is set at 80% in the experiments reported later.

4.4.3 Rejuvenate
An inactive agent is allowed to spawn new offspring if all its

offspring agents are dead but its fitness is better than the popula-
tion average. The main idea behind rejuvenateis that the inactive
agent has been receiving reinforcement signals from its offspring,
its probability matrix contains the latest information regarding the
neighborhood landscape.

4.5 Feedback
All agents in EDO pass information back to their parents every

time it has taken a good move to a better location or bad move.
This information allows the parent to update its probability matrix,
which is shared among its offspring.

4.5.1 Positive feedback
A successful move, which may happen after taking many moves,

is defined as a gain in fitness. In order to bias the future moves of
an agent’s siblings to its own successful move, we update the prob-
abilities in the parent’s probability matrix that corresponds to the
changes made in the successful agent’s object vector. The update
rule is:

pi,j =
(pi,j + β)

(1 + β)

where pi,j is the probability that relates to the ith function variable
and jth step size, and β is the learning rate.

4.5.2 Negative feedback
In order to steer an agent’s siblings away from non-optimal area

in the search space, agents will update the parent’s probability ma-
trix after each unsuccessful move using the following rule:

pi,j = pi,j · (1 − β)

where β is the same learning rate as that used in positive feedback.
Negative feedback is a finer grain update than the positive rein-

forcement signal as it happens after each step. Moreover, the use
of a multiplicative scaling factor ensures that the probability re-
mains bigger than zero at all times. The whole probability matrix
is normalized after updating within the set of probabilities for each
dimension.

4.6 The Environment in EDO
Various system-wide information has been mentioned in the pre-

vious section. They either controls the flow of the search or act as
parameters to some of the features in EDO. Below is a summary of
the global information:

• Step Size (∆): The size of a step to be taken during rational
move. It is used in combination with the probability matrix
to decide what should the actual change be. For example, if
the two steps toward the upper limit were chosen based on
the probability distribution in the probability matrix, a value
equal to two times of ∆ will be added to the function variable
in question.

• Lifespan (Θ): This is the duration, in iterations, given to an
agent to perform search. It aims at limiting the amount of
unsuccessful exploration any agent can perform before it is
eliminated.

• Maximum Offspring (Ω): This is the maximum number of
offspring any reproducing agent is allowed to spawn at one
time. It represents the amount of local exploration an agent is
allowed to perform in the neighborhood of a good solution.

• Maximum Population Size (Π): This is the upper limit of the
number of agents, both active and inactive together, an EDO
session can keep.

The step sizeparameter, ∆, is reduced according to the golden
ratio1 if the current best has not been renewed for half of Lifespan,
Θ. The rationale behind this reduction is that the agents may be in
the neighborhood of a minimum. Therefore, finer steps are required
for careful exploitation. Conversely, if the population has been im-
proving continuously for some time (in number of iterations, again
equal to half of Lifespan), the step size is increased according to
the golden ratio (division):

∆ =

{
∆ ∗ φ, if u < Θ/2, φ = 1+

√
5

2

∆/φ, otherwise

where u is the number of times the current best solution has been
renewed since the step size parameter was last updated, and φ is the
golden ratio.

4.7 Experimental Results
Four benchmark functions are chosen to test the EDO algorithm

(see references within [31]). F1 and F2 are unimodal functions

1the golden ratio is one of the roots to the equation x2 −x− 1 = 0
and many visually appealing geometry shapes in nature are having
a golden ratio dimension [10].



Table 1: Average number of function evaluations (over 50 runs) required by EDO and ASA to optimize the benchmark functions of
various complexity and the success rate of both methods

EDO ASATarget
Average Std Dev. Success Average Std. Dev. Success

F1 5 2,000 1,168 96% 5,235 2,828 100%
F1 10 3,240 5,017 94% 26,355 12,144 100%
F1 15 6,816 10,234 88% 61,209 28,316 100%
F1 20

1.0 ×10−6

17,277 31,174 84% 112,261 58,460 100%
F1 25 26,683 24,031 84% 178,062 82,119 92%
F1 30 167,094 878,892 84% 235,071 103,478 100%
F2 5 1,705 1,472 90% 13,701 72,864 100%

F2 10 7,710 11,875 96% 9,302 27,483 96%
F2 15 29,328 38,789 90% 10,725 16,801 90%
F2 20

2.0 ×10−3

103,910 141,580 94% 68,189 173,688 82%
F2 25 227,959 490,607 90% 35,689 50877 92%
F2 30 2,224,903 4,558,546 94% 91,098 181,442 82%
F3 5 1.0 ×10−6 15,687,788 5,812,865 74% 101,468 61,699 94%
F4 0.998004 12,172 48,182 90% 78,441 251,730 58%

while F3 and F4 are multimodal functions. The unimodal functions
are used to demonstrate the hill climbing capability of EDO and the
multimodal functions are used to test EDO’s ability to escape from
local minima.

f1(x) =
n∑
i=1

x2
i

f2(x) =
n∑
i=1

(
i∑

j=1

xj

)2

f3(x) =
n∑
i=1

[x2
i − 10cos(2πxi) + 10)]

f4(x) =

[
1

500
+

25∑
j=1

1

j +
∑2
i=1(xi − aij)6

]−1

aij =
( −32 −16 0 16 32 −32 ... 0 16 32

−32 −32 −32 −32 −32 −16 ... 32 32 32

)

Several forms of the functions, except function F4 (which has
only two free parameters), are tested by increasing the number of
free parameters. The intention is to test the performance and scala-
bility of EDO.

In order to benchmark the performance of EDO with some exist-
ing algorithms, some experiments were also conducted using adap-
tive simulated annealing (ASA) [16]2. The average number of steps
(function evaluations) required to reach the target over 50 runs us-
ing different random seed is shown in the Table 1 along with the
success rate, which measures the percentage of times when the
method can reach the target. Both EDO and ASA are considered
failing to reach the target by comparing the function value achieved
when they stopped, with the target. EDO stops either when the
maximum number of iterations is reached, which is set at 5,000,
or when the number of agents reaches zero. ASA stops when the
maximum number of steps is reached, which is set at 2,000,000.
The targets shown in Table 1 are extremely close to the optimal
solutions.
2source code obtained from http://www.taygeta.com/annealing

The general trend is that more complex problems requires more
time (iterations) to solve. However, multimodal functions tend to
be more difficult to solve than unimodal ones. It can be observed
from Table 1 that EDO performs better than ASA in F1, F2 with
lower dimensions and F4. As the complexity of the problem in-
creases, EDO tends to fall behind. Moreover, EDO tends to be less
robust than ASA as it fails to reach the target in more cases than
ASA. While one has to wait until the maximum number of steps is
reached to decide whether ASA has reached the target, EDO gen-
erally stops within few tens of hundreds of iterations. Therefore,
EDO allows a better chance to restart the search using another ran-
dom seed.

5. CONCLUSIONS
This paper has described a multiagent diffusion framework for

optimization based on diffusion. The agents in the framework co-
operative by forming families of agents. Through this organiza-
tional structure, agents share the same belief regarding the search
space as well as their exploration results with their parent. As a
result, they share these crucial information implicitly with their
siblings. Moreover, the proposed framework restricted communi-
cation requirement to a minimum by elimination negotiation. In
other words, the agents collaborate by self-organization.

An implemented example of this agent framework is the new
search algorithm called evolutionary diffusion optimization(EDO).
Experiments reveal that EDO is able to automatically maintain a
good balance between exploration and exploitation by maintaining
high population diversity. On the other hand, the ability to automat-
ically adapt the search step size is proved to be very useful. Results
from the experiments on four benchmark functions show that EDO
performs better than adaptive simulated annealing (ASA) in two of
them while ASA excels in the rest two.

Despite the limited success of the EDO algorithm, the proposed
agent framework need to be verified through more extensive experi-
mental work. We are currently working on another implementation
that works on combinatorial optimization problems. One of the
areas for future study is on the collaboration between families of
agents. As they are exploring the search space in close proximity,
certain niche may be identify by the families separately. It would
be useful to extend the inter-agent communication to inter-family



communication for exchange family belief. Another area worth
pursuing is to make as much global information into local informa-
tion as possible so that each agent family can perform the search
more effective. The obvious candidate for such change is the step
size parameter [19]. As agents are performing search in parallel,
they may reach a different stage during search - some may be far
away from an (sub-)optimal solution while others may be far away.
A single step size may not be useful to all.
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