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More sophisticated predictors

Examine 2 predictors: 
Hypothetical perfect predictor: H7(pt,…)=pt+1
Static predictor: H2(pt,…)=pt

Why?
In some cases, we believe a neoclassical perfectly 
rational agent could predict perfectly, we need to 
observe the dynamics of the ARED model.
We have examined a simple extreme case, if more 
complex and adaptive ones exhibit chaotic dynamics, and 
then those intermediate, more realistic cases follow 
many of the properties of the two extremes, then we can 
prove these cases also exhibits chaotic dynamics.
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Analysis

The equations of predicted price and the 
population file are:

The way we proceed to analyze the 
dynamic of above equations is:

1. Examine the homogenous population
2. Reduced dynamic when m is fixed
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Dynamics for the perfect-predictor vs. 
static expectations binary choice system. 
The straight lines in the center figure 
represent the cross-over in preferred 
model. Horizontal axes are price, and 
vertical axes the model choice proportion 
m.
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Analysis:

Keep m dynamically-fixed, we get:

Then, when m>-B/b, i.e., when sufficiently agents using the 
more sophisticated model, convergence occurs.
Explanation: When m is near –1, Eq.4.35 are similar to 
Eq.4.24, that we have introduced before, so the oscillations 
occurs. When m is near 1, the numerator is very small, so pt
will convergence towards 0, the equilibrium state.
Conclusion: H7-H2 dynamics are very similar to H1-H2 case.
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More complex, adaptive predictor 
choices

Introduce predictive models which are the same as those in 
Chapter 3 in the following aspect:

Varying complexity
Same functional form
Contain an adaptive element
Agents adapt their model using observed data from the 
previous T price-lags.

Difference with NR models in Chapter 3:
Agents consider EITHER the complexity or the number of lags, 
not BOTH.
Agents predict the behavior of the entire system.

Process:
The simpler case of agents which choose a number of lags: 
averaging ones, equivalent to the complexity zero models of 
Chapter 3
The model-complexity choice process
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Averaging predictors over 
varying histories

For a given number of lags, the averaging predictor Hav
T is:

We will consider pairs of these predictors, using T1 and T2
lags respectively:

So the update equations for pt, mt are:
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Cont.

Equations 4.43 and 4.44 can be transformed by introducing:

If we solve 4.47, we will find the case which separates the 
stable from unstable regimes.
Conclusion:

For homogenous populations( all using T1 : for a fixed market-
instability b/B, the system if unstable if b/B>4(T1 +2), and 
stable if b/B<4(T1+2)
For General case: let α =(b/B)/4(T1 +2). So α <1 for stability, 
and v>1 for instability in the T1 only case. 
Recall the C is the cost of using T1(long-history predictor) 
relative to the cost of using T2, Let T2 < T1, consider the α <1 
case, we get: T2<b/4B-2, the combined system is unstable.

1,,1 −=−=−= νενλ vv
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Adaptive predictor choice
Now consider the more intricate case of the complexity-choice 
process. For a given complexity c, the adaptive predictor Hc

adapt is:

where the predictive coefficients                               are functions 
of the past time series. 
Finally we need to solve the equations:

Lemma: the more complex models will be more sensitive as we near
equilibrium: the effect on their predictions of a small change in one 
of the time series terms actually increases with c, for time series 
sufficiently near equilibrium.
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Dynamics of predictors of 
varying complexity

Now consider a comparison between models with 
different complexities:

Lemma:
For any pair of predictors, Hadapt

C1, Hadapt
C2,,the steady 

state is unstable for sufficiently large b/B, when all 
other parameters are fixed. And, the predictor with 
larger complexity is more unstable.
Any population of agents choosing between a pair of 
predictors like these will yield the usual metastable 
equilibrium state. More complex predictors will predict 
worse as we approach equilibrium.
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Conclusions(I)

The two-predictor A.R.E.D models have complex dynamics by 
introducing inertia.
From the simpler models, the conflicting need of agents are:

Predict accurately
Live cheaply

This conflict can lead to very complicated dynamics
The authors examined predictors of varying complexity, and 
showed that, the more complex a predictor and agent 
chooses, the larger the sensitivity (and thereby instability) 
of the model as it neared equilibrium.
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Conclusions(II)

The remaining differences between the systems 
we have analyzed and those of Natural Rationality:
NR dealt with local prediction, which little 
different to the global prediction we have used 
here
In ARED models, there is a global, unique 
equilibrium, and a global price. In NR multiple 
equilibria exist because of the lack of global price.
The complex models’ in NR have time series which 
appear to be somewhat richer, while the chaotic 
dynamics of the simpler ARED models can contain 
attractors with at most 2 dimensions. 
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Comments

In this chapter, the author introduce the ARED 
model, and try to analyze the dynamics of the 
phenomena in Chapter 3 by using this model. He 
proceed the analysis step by step:

The simple predictors H1 and H2.
Introduce the inertia λto describe the nonlinear degree 
of the system
Analyze how λinfluence the simple predictors
Introduce more sophisticated predictors H7
Then the adaptive predictor by adding price lags
Finally add the complexity to the predictors, then 
observe the dynamics.

This should give us a suggestion about how to 
analyze a complicate system
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