
Reinforcement Learning for
Selfish Load Balancing in a

Distributed Memory
Environment

Presented by: Hoi Fung Lam

Based on the paper: S. M. Majercik and M. L. Littman.,

“Reinforcement learning for selfish load balancing in a distributed

memory environment,” in Proceedings of the International Conference

on Information Sciences, pp. 262–265, 1997.

Reinforcement Learning for Selfish Load Balancing in a Distributed Memory Environment – p. 1/8



Introduction
1. Perspectives on load balancing

2. Simulation model

3. Simulation algorithm

4. MDP formulation

5. MDP solving

Reinforcement Learning for Selfish Load Balancing in a Distributed Memory Environment – p. 2/8



Perspectives
• Altruistic load balancing — given a series of processes

with varying interprocess communication needs, the goal
is to schedule the processes on the network in order to
minimize the time to completion of all processes.

• Solipsistic load balancing — assumes that one
computation has exclusive use of the whole system, and
the goal is to distribute the computation in order to
minimize the time to completion of this single

computation.

• Selfish load balancing — focus on completing one
particular computation as fast as possible, but also
recognizes that there are other jobs on the system and
that no one job has exclusive use of the processors.

Reinforcement Learning for Selfish Load Balancing in a Distributed Memory Environment – p. 3/8



Molecular Dynamics Simulation Model
• Given n processors and t MD steps to compute, an

agent allocates the MD work among the processors at
the beginning of each MD step.

• Agent monitors the processor loads and the progress.

• At each processor time step, the agent decides whether
to let the computation continue or to intervene and
reallocate the work, losing all the computation done so
far on this MD step.

• The amount of work allocated to each processor was
quantify by estimating the total dedicated processor time
needed to calculate the MD step.

Reinforcement Learning for Selfish Load Balancing in a Distributed Memory Environment – p. 4/8



MD Simulation Algorithm
1. Update the size of the processor run queues assuming

Poisson arrivals with varying means, exponential service
time with a specified mean that does not vary.

2. Calculate fi, the fraction of the quantum available for
the MD computation on processor pi:

fi = e−βiri

where βi is a constant and ri is the number of jobs in
the run queue of pi. The amount of work get done in a
quantum, wi is:

wi = fiq

where q is the wall-clock duration of a quantum.

3. Advance wall-clock time a single quantum.

Reinforcement Learning for Selfish Load Balancing in a Distributed Memory Environment – p. 5/8



Load Balancing as an MDP
state vector = (~L, ~D, ~J,H,M,Q,R,B)

• ~L = Li, load expressed as number of jobs in the run
queue of the processor i

• ~D = Di, amount of MD work allocated at processor i

• ~J = Ji, amount of MD work remaining at processor i

• H : M = 24-hour wall-clock time

• Q number of quanta used so far in an MD step

• R binary scalar indicating whether we are at the
beginning of an MD step

• B bias feature

Reinforcement Learning for Selfish Load Balancing in a Distributed Memory Environment – p. 6/8



Load Balancing as an MDP (cont.)
action

• even allocation

• allocation according to Boltzmann distribution, processor
pi gets a fraction of the total work equal to
exp(−ri)/(

∑
i exp(−ri)) where ri is the number of jobs

in the run queue of pi.

• repeat the previous action

• do nothing

cost and reward

• explicit: 1 or 10 for each action, 1000 when the entire
sequence of MD steps has been computed

• implicit: time needed to poll the processors to obtain
Boltzmann distribution cost a delay of 5 quanta

Reinforcement Learning for Selfish Load Balancing in a Distributed Memory Environment – p. 7/8



Solving the MDP
The MDP is solved using guided off-line Q-learning with
linear function approximation. Actions are chosen with a bias
toward the naively correct action. The update equation for
the linear-function coefficient ci is:

ci = ci + αxi sigmoid(dv)

where α is the learning rate, xi is the ith feature of the current
state vector, and dv is the difference between the target value
and the value of the current state. Sigmoid function is used
because some features quickly become substantially larger
than others and tend to dominate the state.

Reinforcement Learning for Selfish Load Balancing in a Distributed Memory Environment – p. 8/8


	Introduction
	Perspectives
	Molecular Dynamics Simulation Model
	MD Simulation Algorithm
	Load Balancing as an MDP
	Load Balancing as an MDP (cont.)
	Solving the MDP

