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Abstract. This paper addresses the independent assumption issue in
classifier fusion process. In the last decade, dependency modeling tech-
niques were developed under some specific assumptions which may not
be valid in practical applications. In this paper, using analytical functions
on posterior probabilities of each feature, we propose a new framework
to model dependency without those assumptions. With the analytical
dependency model (ADM), we give an equivalent condition to the inde-
pendent assumption from the properties of marginal distributions, and
show that the proposed ADM can model dependency. Since ADM may
contain infinite number of undetermined coefficients, we further propose
a reduced form of ADM, based on the convergent properties of analyt-
ical functions. Finally, under the regularized least square criterion, an
optimal Reduced Analytical Dependency Model (RADM) is learned by
approximating posterior probabilities such that all training samples are
correctly classified. Experimental results show that the proposed RADM
outperforms existing classifier fusion methods on Digit, Flower, Face and
Human Action databases.

Keywords: Dependency modeling, analytical function, classifier fusion,
pattern classification.

1 Introduction

Many computer vision and pattern recognition applications face the challenges
of complex scenes with clustered backgrounds, small inter-class variations and
large intra-class variations. To solve this problem, many algorithms have been
developed to extract local or global discriminative features such as Local Binary
Patterns [1], Laplacianfaces [2], etc. Instead of extracting a high discrimina-
tive feature, classifier fusion has been proposed and the results are encourag-
ing [3] [4] [5] [6] [7] [8] [9] [10]. While many classifier combination techniques [3]
have been studied and developed in the last decade, it is a general assumption
that classification scores are conditionally independent distributed. With this
assumption, the joint probability of all the scores can be expressed as the prod-
uct of marginal probabilities. The conditionally independent assumption could
simplify the problem, but may not be valid in many practical applications.
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In [5], instead of taking the advantage of conditionally independent assump-
tion, the classifier fusion methods are proposed by estimating the joint distri-
bution of multiple classifiers and performance is improved. However, when the
number of classifiers is large, it needs numerous data to accurately estimate the
joint density [11]. On the other hand, Terrades et al. [7] proposed to combine
classifiers in a non-Bayesian framework by linear combination. Under dependent
normal assumption (DN), they formulated the classifier combination problem
into a constraint quadratic programming problem. Nevertheless, if normal as-
sumption is not valid, the results will not be optimal. In this context, Ma and
Yuen [10] proposed a linear classifier dependency model (LCDM), which can
model dependency under the assumption that the posteriors will not deviate
very much from the priors.

Apart from the methods mentioned above, optimal weighting method [4], LP-
Boost [12] and its multi-class variants [8] aim at determining the correct weight-
ing for linear classifier combination to improve the recognition performance.
Since linear classifier combination methods are limited to linear separated sys-
tems, Toh et al. [6] developed a reduced multivariate polynomial model (RM) to
describe the nonlinear input-output relationships for classifier fusion. Although
these methods are derived without the conditionally independent assumption,
they do not take full advantages of the probabilistic properties in the specific
task of dependency modeling.

In this paper, we develop a novel framework for dependency modeling, and
propose a method, namely Reduced Analytical Dependency Modeling (RADM)
for classifier fusion. Inspired by Product rule [3] (with independent assumption)
and LCDM [10] (without independent assumption), we propose to model depen-
dency by analytical functions on posterior probabilities of each feature. With
the analytical dependency model (ADM), we give an equivalent condition to in-
dependent assumption from the properties of marginal distributions, and show
that the proposed ADM can model dependency. Since there may be infinite
number of undetermined coefficients in the ADM model, we further propose a
reduced form of ADM, based on the convergent properties of analytical func-
tions. At last, under the regularized least square criterion, the optimal RADM is
learned by approximating posterior probabilities such that all training samples
are correctly classified. The contributions of this paper are two-fold.

• We develop a new framework for dependency modeling by analytical func-
tions on posterior probabilities of each feature. It is shown that Product rule [3]
and LCDM [10] can be unified by the proposed ADM framework. On the other
hand, we give an equivalent condition when independent assumption is held from
the properties of marginal distributions, and show that the proposed ADM can
model dependency.

• We propose a novel RADM method for classifier fusion. Since the ADM
model may contain infinite number of undetermined coefficients, a reduced form
of ADM, which can model dependency as well, is proposed from the convergent
properties of analytical functions. After that, an optimal RADM is learned by
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a new constraint quadratic programming problem, which minimizes the regu-
larized least square error to approximate posterior probabilities such that all
training samples are correctly classified.

The rest of this paper is organized as follows. We first review related works on
classifier fusion. Section 3 reports the proposed method. Experimental results
and conclusion are given in Section 4 and Section 5, respectively.

2 Related Works on Classifier Fusion

Combining classifiers is one of the strategies to improve recognition performance
in general recognition problems. According to Bayesian theory [13], under the
conditionally independent assumption, the posterior probability is given by

Pr(ωl|x1, · · · ,xM ) =
P0

Pr(ωl)M−1

M∏

m=1

Pr(ωl|xm) (1)

where ωl denotes label, M is the number of feature measurements, xm is the

m-th measurement and P0 =
∏M

m=1 Pr(xm)

Pr(x1,··· ,xM ) . Product rule was then derived by (1)

in [3]. Moreover, with the assumption that posterior probabilities of each clas-
sifier will not deviate dramatically from the priors, Sum rule [3] was induced.
Based on Product rule and Sum rule, Kittler et al. [3] justified that the com-
monly used classifier combination rules, i.e. Max, Min, Median and Majority
Vote, can be derived. Besides these combination rules developed under Bayesian
framework [3], Terrades et al. [7] tackled the classifier combination problem using
a non-Bayesian probabilistic framework. Under the assumptions that classifiers
can be combined linearly and the scores follow independent normal distribution,
the independent normal (IN) combination rule was derived [7].

Without conditionally independent assumption, the posterior probability of
classifiers can be computed by joint distribution estimation. For example, in [5],
Parzen window density estimation was used to estimate the joint density of pos-
terior probabilities by a selected set of classifiers. Since it needs numerous data to
ensure that estimation of the joint distribution is accurate [11], Terrades et al. [7]
proposed to combine classifiers by a linear model under normal distribution as-
sumption. When features are not conditionally independent, the covariance ma-
trix in the normal distribution is not diagonal. In this case, the dependent normal
(DN) rule [7] was formulated into a constraint quadratic programming problem,
which can be solved by nonlinear programming techniques [14]. Removing the
normal distribution assumption on scores, Ma and Yuen [10] proposed to add
dependency terms to each posterior probabilities, and expand the product for-
mulation as the linear classifier dependency model (LCDM) by neglecting high
order terms, i.e.

Pr(ωl|x1, · · · ,xM ) ≈ P0[(1−M)Pr(ωl) +

M∑

m=1

almPr(ωl|xm)] (2)
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where al1, · · · , alM are the dependency weights. Then, the optimal LCDM model
was learned by solving a standard linear programming problem, which maxi-
mized margins between genuine and imposter posterior probabilities in [10].

Besides the explicit dependency modeling methods [5] [7] [10], the optimal
weighting method (OWM) [4], LPBoost approaches [8] [12] and reduced multi-
variate polynomial model (RM) [6] can be used to combine classifiers with dif-
ferent kinds of features to improve the recognition performance as well. OWM
and LPBoost methods aimed at determining the correct weighting for linear
combination by minimizing the classification error and 1-norm soft margin er-
ror, respectively. In order to describe the nonlinear input-output relationships,
the reduced multivariate polynomial (RM) model was introduced in [6]. Since
the number of terms will increase exponentially with the order in the multivari-
ate polynomial, Toh et al. [6] proposed to approximate the full polynomial by
modified lumped multinomial. Then, the optimal RM model was learned by a
weight-decay regularization problem in [6].

3 Reduced Analytical Dependency Modeling

In this section, we propose a novel Reduced Analytical Dependency Modeling
(RADM) method to model dependency for classifier fusion. In Section 3.1, we
first derive the analytical dependency model (ADM) by unifying Product rule (1)
and LCDM (2), as well as give detailed explanation on how the proposed ADM
models dependency. Since ADM may contain infinite number of undetermined
coefficients, a reduced form of ADM is derived in Section 3.2. Finally, a method
to learn the optimal RADM is presented in Section 3.3.

3.1 Analytical Dependency Modeling

Consider a combination problem that, there are M distinct feature descrip-
tors f1, · · · , fM for any object O. Denote feature measurements x1, · · · ,xM as
xm = fm(O). The objective of dependency modeling is to estimate the poste-
rior probability Pr(ωl|x1, · · · ,xM ) for better classification performance. Since
the modalities of feature measurements can be different, e.g. xm can be a vec-
tor or a set of points, direct dependency modeling in feature level is difficult.
In turn, we consider modeling dependency by posterior probabilities of each
feature, Pr(ωl|xm). Let us denote slm = Pr(ωl|xm) and sl = (sl1, · · · , slM )T .
Suppose the prior probabilities are the same, i.e. Pr(ωl) = 1

L , where L is the
number of classes. With these notations, the Product rule (1) under indepen-
dent assumption and LCDM (2) for dependency modeling can be rewritten as

Product: Pr(ωl|x1, · · · ,xM ) = P0(L
M−1

M∏

m=1

slm) = P0 · hProduct(sl)

LCDM: Pr(ωl|x1, · · · ,xM ) ≈ P0(

M∑

m=1

almslm +
1−M

L
) = P0 · hLCDM(sl)

(3)
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As indicated in (3), the Product rule and LCDM model can be formulated as two
different functions hProduct and hLCDM on posterior probabilities sl1, · · · , slM .
This implies, if we choose a function different from hProduct with independent
assumption, e.g. hLCDM, the dependency can be modeled. On the other hand,
LCDM was proposed under the assumption that posterior probabilities of each
classifier will not deviate dramatically from the priors as mentioned in [10].
However, without these assumptions, the function hl for class ωl on sl1, · · · , slM
should be different from hProduct and hLCDM. Generally speaking, hl can be
any function which models dependency between feature measurements by the
posterior probabilities sl1, · · · , slM , i.e.

Pr(ωl|x1, · · · ,xM ) = P0 · hl(sl1, · · · , slM ) (4)

Analytical functions are very popular and have been employed in Product rule
and LCDM. We follow this direction and consider hl as an analytical function.
According to the definition of analytical functions [15], hl can be expressed
explicitly by the converged power series as

hl(sl;αl) =

∞∑

|θ|=0

αlθs
θ
l (5)

where θ = (n1, · · · , nM )T , n1, · · · , nM are non-negative integers, |θ| = n1+ · · ·+
nM , sθl =

∏M
m=1 s

nm

lm and αl = (αl0, · · · , αlθ, · · · )T is weighting coefficient vector
in which 0 = (0, · · · , 0)T .

With the analytical dependency model (ADM) given by (5), we further in-
vestigate how it can model dependency from the probabilistic aspect. The ADM
model (5) can be rewritten according to the order of slm as,

hl(sl;αl) =

∞∑

r=0

glmr(s̃lm;αlmr)s
r
lm (6)

where s̃lm = (sl1, · · · , sl(m−1), sl(m+1), · · · , slM )T and glmr is an analytical func-
tion of s̃lm with coefficient vector αlmr. On the other hand, the posterior prob-
abilities can be given by the Bayes’ rule [13] as follow,

Pr(ωl|xm) =
Pr(xm|ωl)Pr(ωl)

Pr(xm)

Pr(ωl|x1, · · · ,xM ) =
Pr(x1, · · · ,xM |ωl)Pr(ωl)

Pr(x1, · · · ,xM )

(7)

Since conditional probability Pr(xm|ωl) in (7) can be viewed as the marginal
probability of the joint density Pr(x1, · · · ,xM |ωl) over random measurements
except xm [13], we get

Pr(xm|ωl) =

∫
Pr(x1, · · · ,xM |ωl)dx1 · · · dxm−1dxm+1 · · · dxM (8)
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With P0 =
∏M

m=1 Pr(xm)

Pr(x1,··· ,xM ) as mentioned in Section 2 and equations (4) (6) (7), the

conditional joint density can be written as

Pr(x1, · · · ,xM |ωl) =

∏M
m=1 Pr(xm)

Pr(ωl)

∞∑

r=0

glmr(s̃lm;αlmr)s
r
lm (9)

With notations slm = Pr(ωl|xm), substituting the probabilities Pr(xm|ωl) in (7)
and Pr(x1, · · · ,xM |ωl) in (9) into (8), we get

slm =

∫ ∏

i�=m

Pr(xi)[

∞∑

r=0

glmr(s̃lm;αlmr)s
r
lm]dx1 · · · dxm−1dxm+1 · · · dxM (10)

According to Abel’s Lemma [15], the series in (10) is uniformly converged. Thus,
it can be integrated term by term, and equation (10) becomes

slm =

∞∑

r=0

Glmr(αlmr)s
r
lm (11)

where Glmr(αlmr) =
∫ ∏

i�=m

Pr(xi)glmr(s̃lm;αlmr)dx1 · · · dxm−1dxm+1 · · · dxM .

Comparing the left and the right hand sides in (11), the following equations
can be obtained,

Glm1(αlm1) = 1, (12)

Glm0(αlm0) = 0, Glm2(αlm2) = 0, · · · , Glmr(αlmr) = 0, · · · (13)

According to the definition of (6), glmr(s̃lm;αlmr) is an analytical function sim-
ilar to hl(sl;αl) in (5) and vector s̃lm can be considered as the mappings from
feature measurements x1, · · · ,xm−1,xm+1, · · · ,xM to their posterior probabili-
ties. Therefore, the integration of

∏
i�=m Pr(xi)glmr(s̃lm;αlmr) over feature mea-

surements except xm, which is denoted by Glmr(αlmr), is a linear function on
coefficient vector αlmr. Without calculating the integration, we can observe that
αlm0 = 0,αlm2 = 0, · · · ,αlmr = 0, · · · is a trivial solution to (13). Substi-
tuting this trivial solution into (6), and under the assumption that ADM is
symmetric on each slm, we have equations hl(sl;αl) = glm1(s̃lm;αlmr) ∗ slm
for 1 ≤ m ≤ M . This implies that each term in the power series hl contains
all variables sl1, · · · , slM and the order of each slm cannot be larger than one.
In this case, there is only one non-zero term

∏M
m=1 slm in the analytical func-

tion hl. In addition, according to (12), the ADM model becomes hl(sl;αl) =

LM−1
∏M

m=1 slm, which is the Product rule under conditionally independent as-
sumption. This means independent condition is equivalent to the situation that
the solution to (13) is trivial. In other words, if the solution to (13) is non-trivial,
the dependency can be modeled. For general analytical functions, the weight vec-
tors αlm0,αlm2, · · · ,αlmr, · · · are not necessary to be zeros. Consequently, ADM
can model dependency by setting non-trivial solution to (13).
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3.2 Reduced Form of the ADM Model

The ADMmodel may have infinite number of coefficients in which direct estimat-
ing the coefficient vector αl is infeasible. In turn, we propose to approximate the
ADM model based on convergent properties of the series defined by (5) and (6).

Let us consider the equation (5) again. According to the definition of conver-
gence of series [16], for any positive number ε, there exists a positive integer K,
such that |∑∞

|θ|=K+1 αlθs
θ
l | ≤ ε. If ε tends to zero, the analytical function can

be approximated by the following equation,

hl(sl;αl) ≈ hl(sl;αl;K) =

K∑

|θ|=0

αlθs
θ
l (14)

Similarly, since the series defined by (6) is converged, hl can be approximated
by the first R+ 1 terms in (6) as follows,

hl(sl;αl) ≈ hl(sl;αl;R) =

R∑

r=0

glmr(s̃lm;αlmr)s
r
lm (15)

where R is a positive integer. According to the analysis in Section 3.1, the ap-
proximation in (15) can model dependency by setting solutions to the first R
equations in (13) as non-trivial. Therefore, the reduced form of ADM can model
dependency. Equations (14) and (15) indicate that the highest order of each term
and each variable are K and R, respectively. Combining these two equations,
the reduced analytical dependency model (RADM) is given by

hl(sl;αl;K,R) =

K∑

|θ|=0

αlθs
θ
l , s.t. θ = (n1, · · · , nM )T and 0 ≤ nm ≤ R (16)

Since the model order should be larger than or equal to the variable order,
K ≥ R. On the other hand, if K > MR, hl(sl;αl;K,R) = hl(sl;αl;MR,R).
This means the RADM model degenerates to hl(sl;αl;MR,R) when K > MR.
Therefore, the relationship between the model order K and variable order R in
RADM is restricted as R ≤ K ≤ MR.

Denote the score vector zl = (s0l , · · · , sθl , · · · )T , where s0l , · · · , sθl , · · · are the
terms in (16). With these notations, the RADM model (16) can be written as
hl(sl;αl;K,R) = αT

l zl. The algorithmic procedure to obtain zl in RADM for
class ωl is given in Algorithm 1.

3.3 Learning the Optimal RADM Model

The optimal coefficient vector αl in (16) is determined by a learning process
from J training samples O1, · · · ,OJ and their corresponding labels y1, · · · , yJ .
Let us consider the posterior probabilities as, Pr(ωl|Oj) is equal to one, if ωl =
yj , and zeros, otherwise. This ensures that all samples are correctly classified.
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Algorithm 1. Construct the score vector zl in the RADM model.

Require: Posterior probabilities sl1, · · · , slM and model parameters K,R;
1: Set D = (0, 1, · · · , R)T and zl = (1, sl1, s

2
l1, · · · , sRl1)T ;

2: for m = 2, 3, · · · ,M do
3: Set D̃ = (D,0), where 0 = (0, · · · , 0)T with the same column dimension of D;
4: for r = 1, 2, · · · , R do
5: Update D̃ = (D̃; (D, r1)) which is the column concatenation of D̃ and (D, r1),

where 1 = (1, · · · , 1)T with the same column dimension of D;
6: Update zl = (zl; s

r
lmzl) which is the column concatenation of zl and srlmzl;

7: Delete the rows in D̃ and corresponding elements in zl such that the summa-
tions of the rows in D̃ are larger than K;

8: end for
9: Set D = D̃;
10: end for
11: return zl.

On the other hand, with equation (4), the posterior probability is computed
by P0 ∗ hl(sl;αl). Since P0 is a parameter depending on Oj , denote pj as the
parameter with respective to Oj . With these notations, we get

hl(sjl;αl) = qjl = δjl/pj, δjl =

{
1, ωl = yj

0, ωl �= yj
(17)

where sjl = (sjl1, · · · , sjlM )T , sjlm = Pr(ωl|xjm) and xjm = fm(Oj). Denote
zjl = (s0jl, · · · , sθjl, · · · )T , where s0jl, · · · , sθjl, · · · are the terms in (16). The ob-
jective function for learning the optimal RADM is given by approximating the
distribution (17) under regularized least square criterion [17] as follows

min
α,q

L∑

l=1

J∑

j=1

(αT
l zjl − qjl)

2 + b

L∑

l=1

‖αl‖2 (18)

where ‖ · ‖ denotes the L2-norm and b is a regularization constant.

As mentioned in Section 2, pj =
∏M

m=1 Pr(xjm)

Pr(xj1,··· ,xjM ) . Since estimations of probabil-

ity Pr(xjm) for each m and joint density Pr(xj1, · · · ,xjM ) are difficult, direct
computation of pj may not be feasible. Consequently, p1, · · · , pJ are treated as
undetermined variables. Thus, different from traditional least square regulariza-
tion [17], optimization problem (18) cannot be solved directly. In this context,
we rewrite the objective function (18) as follows, so that it can be solved.

According to (17), qjl = 0, if yj �= ωl. The optimization problem (18) becomes

min
α,q

L∑

l=1

[
∑

yj=ωl

(αT
l zjl − qjl)

2 +
∑

yj �=ωl

(αT
l zjl)

2] + b

L∑

l=1

‖αl‖2 (19)

Let ql = (qj1l, · · · , qjNl
l)
T , such that yjn = ωl, where Nl is the number of samples

for class ωl. On the other hand, denote Al and Bl as matrices made up by vectors
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zjl for yj = ωl and yj �= ωl, respectively. With these notations and adding a
regularization term to ql, the optimization problem (19) can be reformulated as

min
α,q

L∑

l=1

[(αT
l Al − qT

l )(AT
l αl − ql) +αT

l BlBT
l αl + b ∗αT

l αl + c ∗ qT
l ql] (20)

where c is a regularization constant for q1, · · · , qL. Since the undetermined vec-
tor tuples (α1; q1), · · · , (αL; qL) are independent with each other with respective
to index l. The problem (20) can be broken down into L independent optimiza-
tion sub-problems, and each of them is written as

min
α̃l

α̃T
l Hlα̃l, s.t. Hl =

(AlAT
l + BlBT

l + bIαl
−Al

−AT
l (1 + c)Iql

)
, α̃l = (αl; ql) (21)

where Iαl
and Iql

are identity matrices with same dimensions as αl and ql,
respectively.

In order to ensure that the probabilities are positive in the optimal RADM,
constraints need to be added to the optimization problem (21). Since qjl =

1/pj =
Pr(xj1,··· ,xjM )
∏

M
m=1 Pr(xjm)

> 0 for yj = ωl, the first constraint is set as qjl ≥ η

for yj = ωl, where η is a positive number such that η = minj,yj=ωl
qjl. On

the other hand, according to the analysis in Section 3.2, the RADM model
approximates (but is not exactly equal to) the posterior probability Pr(ωl|Oj).
This means Pr(ωl|Oj) = pj ∗ (αT

l zjl + εjl) ≈ pj ∗ αT
l zjl, where εjl represents

the reminder term close to zero. Since Pr(ωl|Oj) is positive, αT
l zjl ≥ −εjl. To

avoid introducing extra parameters εjl, we set the necessary condition that the
posterior probabilities are positive as the second constraint, i.e. αT

l zjl ≥ −ε0,
where ε0 is a small constant such that ε0 = maxj,l εjl.

With these two constraints, the optimal α̃l in the RADM model is learned by
the following optimization problem,

min
α̃l

α̃T
l Hlα̃l

s.t. i) qln ≥ η, ∀1 ≤ n ≤ Nl; ii) αT
l zjl ≥ −ε0, ∀1 ≤ j ≤ J

(22)

where α̃l = (αl; ql) and Hl is defined in (21). The solution to (22) can be
determined by any standard nonlinear programming techniques [14], e.g. active-
set, cutting plane or interior point methods. Since our experiments are performed
in the Matlab environment, a Matlab build-in function is employed to solve (22).

4 Experiments

In this section, we compare the proposed RADM with state-of-the-art classi-
fier fusion algorithms, including Sum [3], IN [7], LPBoost [12], LP-B [8], RM [6],
DN [7] and LCDM [10], in four different domains of recognition problems. In Sec-
tions 4.1 and 4.2, these combination methods are evaluated with the Digit [18]
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and Flower [19] databases, respectively. After that, the results for face recogni-
tion using CMU PIE [20] and FERET [21], and human action recognition using
Weizmann [22] and KTH [23] databases, are reported in Sections 4.3 and 4.4,
respectively. It is important to point out that the main objective of these exper-
iments is to evaluate the performance of different classifier fusion methods, but
not state-of-art digit, flower, face and human action recognition algorithms.

4.1 Digit Recognition

Multiple feature digit database [18] contains ten digits from 0 to 9, and 200 exam-
ples for each digit. Six features, namely Fourier coefficients, profile correlations,
Karhunen-Love coefficients, pixel averages, Zernike moments and morphological
features, are extracted [18]. In this experiment, we randomly select 20 samples of
each digit for training and the rest for testing. Since the probabilities are hard to
determine accurately due to the problem of limited training samples, we use SVM
classifiers [24] and normalize the SVM outputs by the double sigmoid method [25]
to approximate the probabilities. To select the best parameters, five-fold cross
validation (CV) is performed. The parameter C introduced in the soft margin
SVM is selected from {0.01, 0.1, 1, 10, 100, 1000}. The CV outputs of the SVMs
are used to train the weights for classifier combination. The RADM parameters
η and ε0 in (22) are set as follows. If features are independent, the point-wise

dependencies
Pr(xj1,··· ,xjM )
∏

M
m=1 Pr(xjm)

for 1 ≤ j ≤ J are equal to 1. Since parameter η

represents the lower bound of the point-wise dependencies, we set η = 0.5 < 1,
so that RADM includes the independent case. On the other hand, parameter
ε0 in (22) must be a small number, so ε0 is set as 0.01. Other parameters are
selected from suitable sets as follows. Regularization parameters b, c are selected
from {10−6, · · · , 10−1, 1}, the variable order R is selected from {1, 2} and the
model order K is selected from one to the number of features. For LPBoost,
LP-B and LCDM, the best parameter ν is selected from {0.05, 0.1, . . . , 0.95}.
This experiment has been repeated ten times.

The mean accuracies of the best single feature (BestFea) and different classi-
fier combination methods are reported in the second column of Table 1. From
Table 1, we can see that the proposed RADM obtains the highest recognition
rate of 96.84% on this database. Moreover, the recognition accuracies of the
classifier fusion methods are higher than that of the best single feature. This
convince that the performance can be improved by combining classifiers, and
RADM outperforms other fusion methods by better modeling dependency.

4.2 Flower Recognition

Oxford flowers database [19] contains 17 categories of flowers with 80 images per
category. Seven features including shape, color, texture, HSV, HoG, SIFT inter-
nal, and SIFT boundary, are extracted using the methods reported in [19] [26].
We evaluate the proposed method using 17 × 40 images for training, 17 × 20
for validation and 17 × 20 for testing. The best parameters are selected by the
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Table 1. Recognition accuracies (%) of different methods on all databases

�������Method
Dataset

Digit Flower CMU PIE FERET Weizmann KTH

BestFea 94.77 70.39 88.87 83.33 82.22 78.70

Sum [3] 96.23 85.39 91.75 86.11 84.44 84.72
IN [7] 95.63 85.49 93.32 88.19 85.56 84.26

LPBoost [12] 96.41 82.74 92.14 88.43 83.33 83.33
LP-B [8] 96.57 85.49 92.00 87.65 84.44 85.19
RM [6] 96.71 85.39 94.14 90.05 84.44 88.43

DN [7] 94.93 84.22 93.91 87.73 84.44 83.80
LCDM [10] 96.79 86.27 93.01 88.81 85.56 85.19

RADM 96.84 88.04 94.34 90.97 85.56 90.28

validation set similar to the procedure in Digit database. Following the settings
in [8], kernel SVMs are used in this experiment, and the kernel matrices are de-
fined as exp (−d(x, x′)/λ), where d is the distance and λ is the mean of pairwise
distances. This experiment was repeated three times using the predefined splits
of this database [19].

The third column in Table 1 shows the mean accuracies of different methods.
From Table 1, we can see that RADM obtains an improvement of 2.55% and
1.77% over the classifier fusion methods with independent assumption and those
without independent assumption, respectively. This indicates that modeling de-
pendency without specific assumptions like those in DN and LCDM helps to
improve the recognition performance.

4.3 Face Recognition

Two pubilicly available face databases, CMU PIE [20] and FERET [21], are used
for classifier fusion experiments. CMU PIE face database contains 68 subjects
with 41,368 images captured under varying pose, illumination and expression.
We used 105 near frontal face images for each individual, randomly select six
for training, four for validation and the rest for testing. In FERET database,
we select 72 individuals with six near frontal face images per person under dif-
ferent face expressions. Six images for each individual are randomly separated
into training, validation and testing sets with equal size, i.e. two images for each
set. Four features, Eigenfaces [27], Fisherfaces [27], Laplacianfaces [2] and local
binary patterns (LBP) [1] are extracted in both two databases. Inspired by the
experiments in [1] [2] [27], parameters introduced from these features are deter-
mined as follows. The dimensions of Eigenfaces, Fisherfaces and Laplacianfaces
are set as 100 and the number of nearest neighbors in Laplacianfaces is set to
be 3, while the window size is set as 16 × 12 with LBPu2

8,2. SVM outputs of the
training data are used to train the weights for classifier fusion methods. The best
parameters are selected by the validation set similar to the procedure mentioned
in Section 4.1. These experiments were repeated ten times on CMU PIE and
three times on FERET database.
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(a) (b)

(c) (d)

Fig. 1. (a) (b) CMC curves on CMU PIE and FERET face databases. (c) ROC curve
on Weizmann database. (d) Recognition rates of RADM and RM with changed model
order on KTH database.

The mean accuracies on these two databases are reported in the fourth and
fifth columns of Table 1. Same conclusion can be drawn that RADM outperforms
the other methods on both two face databases. While results in Table 1 only show
the Rank-1 accuracies, CMC curves of the top four methods on CMU PIE and
FERET databases are plotted in Fig. 1(a) and Fig. 1(b), respectively, for detailed
comparison. It can be seen that RADM outperforms IN and DN on CMU PIE,
LPBoost and LCDM on FERET database, and is slightly better than RM with
different number of ranks. This indicates that RADM with dependency modeling
gives the best performance for face recognition as well.

4.4 Human Action Recognition

In this section, we compare the classifier fusion methods on Weizmann [22] and
KTH [23] human action databases. Weizmann database contains 93 videos from
nine persons, each performing ten actions. Eight out of the nine persons in this
database are used for training, and the remaining one is used for the evaluation.
This is repeated nine times and the rates are averaged. On the other hand, there
are 25 subjects performing six actions under four scenarios in KTH database. We
follow the common setting [23] to separate the video set into training (8 persons),
validation (8 persons), and testing (9 persons) sets. Eight features including
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intensity, intensity difference, HoF, HoG, HoF2D, HoG2D, HoF3D and HoG3D,
are extracted from videos as reported in [10]. In these two databases, eight-fold
CV is performed on the training data, and the CV outputs are used to train the
weights for classifier fusion. The best parameters are selected by the CV outputs
on Weizmann and validation set on KTH database, respectively, similar to the
procedure mentioned in Section 4.1.

The last two columns in Table 1 show the recognition rates of different meth-
ods. We can see that RADM, LCDM and IN get the highest recognition rate
of 85.56% on Weizmann, while RADM outperforms other methods on KTH
database. We further compare the best three algorithms on Weizmann database
by the ROC measurement. The ROC curves in Fig. 1(c) show that RADM gives
better performance when the false positive rate is larger than 10%. And the ar-
eas under curves (AUC) are 0.8524 for RADM, 0.8472 for LCDM and 0.8424 for
IN. This also convinces that the proposed RADM is better than other classifier
fusion methods for human action recognition. At last, we compare RADM and
RM with changed model order K on KTH database. From Fig. 1(d), we can see
that RADM outperforms RM with different model orders and is less sensitive to
model order changed. This is another advantage of the proposed method.

5 Conclusion

In this paper, we have designed and proposed a new framework for dependency
modeling by analytical functions on posterior probabilities of each feature. It
is shown that Product rule [3] (with independent assumption) and LCDM [10]
(without independent assumption) can be unified by the proposed analytical
dependency model (ADM). With the ADM, we give an equivalent condition
to independent assumption from the properties of marginal distributions, and
show that ADM can model dependency. Since ADM may contain infinite number
of undetermined coefficients, a reduced form is proposed based on the conver-
gent properties of analytical functions. At last, the optimal Reduced Analytical
Dependency Model (RADM) is learned by a modified least square regulariza-
tion problem, which aims at approximating posterior probabilities such that all
training samples are correctly classified. Experimental results show that RADM
outperforms existing classifier fusion methods on Digit, Flower, Face and Human
Action databases. This indicates that RADM can better model dependency and
help to improve the performance in many recognition problems.
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