

Linear Dependency Modeling for Feature Fusion Andy J Ma and Pong C Yuen Department of Computer Science, Hong Kong Baptist University, Hong Kong

Overview

Introduction

- Multiple features provide complementary information.
- Features can be combined in two levels
- □ Classifier level: Train one classifier for each feature, then combine the classifiers.
- □ Feature level: Combine the features directly to draw the conclusion.
- Problems in existing methods
- □ Features are assumed to be *conditionally independent* in [1], while this may not be the case.
- □ Feature level fusion, e.g. MKL [2], *do not* model feature dependency directly.
- Explicitly model feature dependency to improve the recognition performance.

Contributions

- Solve the problem of *independent* assumption in classifier combination.
- Prove that *linear combination* can model feature dependency under some mild assumptions.
- Develop a novel framework for dependency modeling.
- Propose two methods, LCDM and LFDM, for classifier level and feature level fusion.

Mean error rate (%) and standard deviation on synthetic data.										
Test	Sum [1]	I PRoost [3]	I P-R [4]	IN [5]	DN [5]					

Sum [1]	LPBoost [3]	LP-B [4]	IN [5]	DN [5]	LCDM
4.66±0.71	3.19±0.48	2.49±0.48	2.33±0.40	2.44±0.42	2.34±0.46
13.56±1.16	4.71±0.85	6.83±1.30	7.48±0.98	4.36±0.89	6.12±0.93
25.33±1.50	9.9±1.61	0.11±0.08	15.2±1.65	8.59±1.38	7.00±0.07
36.67±0.89	31.05±1.30	30.63±1.9	34.54±0.92	30.16±1.35	27.86±1.52
	Sum [1] 4.66±0.71 13.56±1.16 25.33±1.50 36.67±0.89	Sum [1] LPBoost [3] 4.66±0.71 3.19±0.48 13.56±1.16 4.71±0.85 25.33±1.50 9.9±1.61 36.67±0.89 31.05±1.30	Sum [1]LPBoost [3]LP-B [4]4.66±0.713.19±0.482.49±0.4813.56±1.164.71±0.856.83±1.3025.33±1.509.9±1.610.11±0.0836.67±0.8931.05±1.3030.63±1.9	Sum [1]LPBoost [3]LP-B [4]IN [5]4.66±0.713.19±0.482.49±0.48 2.33±0.40 13.56±1.164.71±0.856.83±1.307.48±0.9825.33±1.509.9±1.610.11±0.0815.2±1.6536.67±0.8931.05±1.3030.63±1.934.54±0.92	Sum [1]LPBoost [3]LP-B [4]IN [5]DN [5]4.66±0.713.19±0.482.49±0.48 2.33±0.40 2.44±0.4213.56±1.164.71±0.856.83±1.307.48±0.98 4.36±0.89 25.33±1.509.9±1.610.11±0.0815.2±1.658.59±1.3836.67±0.8931.05±1.3030.63±1.934.54±0.9230.16±1.35

LCDM outperforms others in non-normal cases.

Mean error rate (%) and standard deviation on Flower Database.

Best Feature	Sum [1]	LPBoost [3]	LP-B [4]	IN [5]	DN [5]	LCDM
70.4±1.4	85.4±3.1	82.7±0.8	85.5±2.4	85.5±1.7	84.2±1.9	86.3±2.4

Experiments

Best accuracy (%) on Weizmann and KTH databases.

Classifier level	Wei	KTH	Feature level	Wei	KTH
Sum [1]	84.44	84.72	Sum-F [1]	57.78	78.70
LPBoost [3]	83.33	83.33	MKL [2]	81.11	82.42
LP-B [4]	84.44	85.19	LPBoost-F [3]	68.89	75.93
IN [5]	85.56	84.26	LP-B-F [4]	70.00	76.56
DN [5]	84.44	83.80	IN-F [5]	68.89	77.31
LCDM	85.56	85.19	LFDM	86.67	88.43

Both Flower and Action databases convince the proposed methods, LCDM and LFDM.

LFDM outperform the others in action databases.

HoG

Classifier M

Confidence 1

. . .

. . .

. . .

Dependent Model

(Proposed):

Daffodil

Linear Dependency Modeling

0

• Given scores
$$Pr($$

 $Pr(\omega_l | \vec{x}_1, ..., \vec{x}_M)$

$$\propto \sum_{m=1}^{M} \beta_{m}^{l} [F]$$
with $0 \leq \beta_{m}^{l} \leq 2$

• Given feature vectors $\vec{x}_1, \dots, \vec{x}_M$, $\Pr(\omega_l | x_{11}, \dots, x_{MN_M})$

$$\sum_{m=1}^{M} \sum_{n=1}^{N_m} \gamma_{mn}^l$$

with
$$0 \leq \gamma_{mn}^l \leq$$

Learn Optimal Dependency Model

- imposter posterior probabilities.

Sensitivity to Density Estimation Error

Reference

- combining classifiers. TPAMI, 20(3):226–239, 1998. Grandvalet. SimpleMKL. JMLR, 9:2491–2521, 2008. Linear programming boosting via column generation. JMLR, 46(1-3):225-254, 2002. for multiclass object classification. ICCV, pages 221-228, 2009. classifier fusion in a non-bayesian probabilistic

- 1. J. Kittler, M. Hatef, R. P. W. Duin, and J. Matas. On 2. A. Rakotomamonjy, F. Bach, S. Canu, and Y. 3. A. Demiriz, K. P. Bennett, and J. Shawe-Taylor. 4. P. Gehler and S. Nowozin. On feature combination 5. O. R. Terrades, E. Valveny, and S. Tabbone. Optimal

- framework. TPAMI, 31(9):1630–1644, 2009.

Linear Classifier Dependency Model (LCDM) $(\omega_l | \vec{x}_m),$

 $\Pr(\omega_l | \vec{x}_m) - \Pr(\omega_l)] + \Pr(\omega_l)$ $0 \leq \beta_m^l \leq 2 \text{ and } \sum_{m=1}^M \beta_m^l = M.$ Linear Feature Dependency Model (LFDM) $\Pr(\omega_l | x_{mn}) - \Pr(\omega_l) + \Pr(\omega_l)$ 2 and $\sum_{m=1}^{M} \sum_{n=1}^{N_m} \gamma_{mn}^l = \sum_{m=1}^{M} N_m$. Maximize the margin between genuine and • Learn the optimal β in LCDM and γ in LFDM by solving Linear Programming problems.

• The error factors in LCDM and LFDM are $E_{c} = \frac{\sum_{m=1}^{M} \beta_{m}^{l} e_{m}^{l}}{\sum_{m=1}^{M} \beta_{m}^{l} \operatorname{Pr}(\omega_{l} | \vec{x}_{m})} \text{ and } E_{f} = \frac{\sum_{m=1}^{M} \sum_{n=1}^{N} \gamma_{mn}^{l} \epsilon_{mn}^{l}}{\sum_{m=1}^{M} \sum_{n=1}^{N} \gamma_{mn}^{l} \operatorname{Pr}(\omega_{l} | x_{mn})}.$ • The upper bound of E_f is smaller than that of E_c .