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Overview 
 

Introduction  
 Existing probability based classifier fusion methods 

rely on certain assumptions 
 Features are conditionally independent [1]. 
 Normal distribution assumption [2]. 
 Product formulation with assumption that posteriors will 

not deviate very much from the priors [3]. 

 These assumptions may not be true in practice. 
 Optimal weighting methods [4] [5] do not fully make 

use of probabilistic properties. 
 Classifier fusion by modeling dependency based on 

probabilistic properties. 

 

Reduced Analytical Dependency Modeling 

Recognition accuracies (%) of fusion methods on different databases. 

Contributions  
 Prove equivalent condition to independent assumption 
 Develop a novel framework for dependency modeling 

by analytical function. 
 Propose Reduced Analytical Dependency Modeling 

(RADM) for classifier fusion. 
 Advantages of the proposed method 
 Distribution-free. 
 Without product formulation assumption. 

Analytical Dependency Modeling 
• Consider ℎ as analytical function 

 
 

• By Bayes’ rule and properties of marginal distributions, 

𝑠𝑙𝑙 = �𝐺𝑙𝑙𝑙 𝛼⃗𝑙𝑙𝑙 𝑠𝑙𝑙𝑟
∞

𝑟=0

 

where 𝐺𝑙𝑙𝑙 is a function on 𝛼⃗𝑙𝑙𝑙. 
• Independent assumption is equivalent to the solution to 

the following equation system is trivial. 
𝐺𝑙𝑙𝑙 = 1,𝐺𝑙𝑙𝑙 = 0,𝐺𝑙𝑙𝑙 = 0, … ,𝐺𝑙𝑙𝑙 = 0, … 

• Model dependency by setting non-trivial solution. 

Motivation 
• Given scores 𝑠𝑙𝑚 = Pr 𝜔𝑙 𝑥⃗𝑚  
 Independent Fusion [1] 

 
 

 Linear Classifier Dependency Model [3] 

 

Experiments  
 

Test  Digit Flower CMU PIE FERET Weizmann KTH 
BestFea 94.77  70.39  88.87  83.33  82.22  78.70 
Sum [1] 96.23  85.39  91.75  86.11  84.44  84.72 
IN [2] 95.63  85.49  93.32  88.19  85.56  84.26 
DN [2] 94.93  84.22  93.91  87.73  84.44  83.80 

LCDM [3] 96.79  86.27  93.01  88.81  85.56  85.19 
LP-B [4] 96.57  85.49  92.00  87.65  84.44  85.19 
RM [5] 96.71  85.39  94.14  90.05  84.44  88.43 
RADM 96.84  88.04  94.34  90.97  85.56  90.28 
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 Compare the best four fusion algorithms on CMU PIE  
 Compare RADM and RM [5] with different parameters. 

• Our method is robust to model order changes. 

Pr 𝜔𝑙 𝑥⃗1, … , 𝑥⃗𝑀 = 𝑃0 𝐿𝑀−1� 𝑠𝑙𝑚
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= 𝑃0ℎProduct 𝑠𝑙1, … , 𝑠𝑀𝑙  
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= 𝑃0ℎLCDM 𝑠𝑙1, … , 𝑠𝑙𝑀  

Dependency can be 
modeled by choosing 
a suitable function ℎ  

Pr 𝜔𝑙 𝑥⃗1, … 𝑥⃗𝑀) = 𝑃0 � 𝛼𝑙(𝑛1,…,𝑛𝑀) �𝑠𝑙𝑙
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Model Learning 
• Approximate the model by 

ℎ𝑙 𝑠𝑙 , 𝛼⃗𝑙 = � 𝛼𝑙𝜃𝑠𝑙𝜃
𝐾

𝜃 =0

, 0 ≤ 𝑛𝑀 ≤ 𝑅 

• Consider a special case 

Pr 𝜔𝑙 𝑥⃗𝑗𝑗, … , 𝑥⃗𝑗𝑗 = 𝛿𝑗𝑗 = �
1,𝜔𝑙 = 𝑦𝑗  
0,𝜔𝑙 ≠ 𝑦𝑗

 

• Learn the model by minimizing the 
regularized least square errors 

min
𝛼,𝑝⃗

∑ ℎ𝑙 𝑠𝑙 , 𝛼⃗𝑙 −
𝛿𝑗𝑗
𝑝𝑗

2
+ 𝑏 𝛼⃗𝑙 2  

where 𝑝𝑗 = ∏ Pr 𝑥⃗𝑗𝑗𝑀
𝑚=1 / Pr 𝑥⃗𝑗1, … 𝑥⃗𝑗𝑀 . 
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