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Overview Reduced Analytical Dependency Modeling

Motivation
e Given scores s;,,, = Pr(w;|x,,)
a Independent Fusion [1]
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o Linear Classifier Dependency Model [3]

Introduction
= EXIsting probability based classifier fusion methods
rely on certain assumptions

o Features are conditionally independent [1]. M

Slm) — POhProduct(Sll: T SMl)

o Normal distribution assumption [2]. Dependency can be

modeled by choosing
a suitable function h

m=1
a Product formulation with assumption that posteriors will
not deviate very much from the priors [3].
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» These assumptions may not be true In practice.

= Optimal weighting methods [4] [5] do not fully make
use of probabilistic properties.
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Analytical Dependency Modeling Model Learning

= Classifier fusion by modeling dependency based on e Consider h as analytical function o Approximate the model by
probabillistic properties. . y K
. . X X)) = "'m hi(Sy, &) = z “legzg 0=ny =R
Contributions Priwlxs, . Xu) = Fo 2 ) 1_[ “tm 670
. . . . my 4+ =0 .  m=1 . .
* Prove equivalent condition to independent assumption By Bayes’ rule and properties of marginal distributions, » Consider a special case

= Develop a novel framework for dependency modeling
by analytical function.
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e Learn the model by minimizing the

regularized least square errors
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where G;,,,- is a function on ;...

e Independent assumption Is equivalent to the solution to
the following equation system is trivial.

Glml — 1, GlmO — O, GlmZ — O, "-:Glmr — O,
 Model dependency by setting non-trivial solution.

* Propose Reduced Analytical Dependency Modeling
(RADM) for classifier fusion.

= Advantages of the proposed method
a Distribution-free.
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Where p] — %=1 Pr(f]m) / Pr(fjl, f]M) :
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a Without product formulation assumption.

Experiments
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