

Overview

Introduction

- Existing probability based classifier fusion methods rely on certain assumptions
 - □ Features are conditionally independent [1].
 - □ *Normal* distribution assumption [2].
 - Product formulation with assumption that posteriors will not deviate very much from the priors [3].
- These assumptions may not be true in practice.
- Optimal weighting methods [4] [5] do not fully make use of probabilistic properties.
- Classifier fusion by modeling dependency based on probabilistic properties.

Contributions

- Prove equivalent condition to independent assumption
- Develop a novel framework for dependency modeling by analytical function.
- Propose Reduced Analytical Dependency Modeling (RADM) for classifier fusion.
- Advantages of the proposed method
- Distribution-free.
- Without product formulation assumption.

Test	Digit	Flower	CMU PIE	FERET	Weizmann	KTH
BestFea	94.77	70.39	88.87	83.33	82.22	78.70
Sum [1]	96.23	85.39	91.75	86.11	84.44	84.72
IN [2]	95.63	85.49	93.32	88.19	85.56	84.26
DN [2]	94.93	84.22	93.91	87.73	84.44	83.80
LCDM [3]	96.79	86.27	93.01	88.81	85.56	85.19
LP-B [4]	96.57	85.49	92.00	87.65	84.44	85.19
RM [5]	96.71	85.39	94.14	90.05	84.44	88.43
RADM	96.84	88.04	94.34	90.97	85.56	90.28

Recognition accuracies (%) of fusion methods on different databases.

RADM outperforms other classifier fusion methods.

Reduced Analytical Dependency Modeling for Classifier Fusion Andy J Ma and Pong C Yuen

Department of Computer Science, Hong Kong Baptist University, Hong Kong

Motivation

- Given scores
 - Independen

 $\Pr(\omega_l | \vec{x}_1, ...$

Linear Class

 $\Pr(\omega_l | \vec{x}_1, \dots$

Analytical Depe

• Consider h as

$$\Pr(\omega_l | \vec{x}_1, \dots \vec{x}_M) = P_0$$

By Bayes' rule

Ses
$$s_{lm} = \Pr(\omega_{l} | \vec{x}_{m})$$

and $Fusion [1]$
 $\dots, \vec{x}_{M}) = P_{0} \left(L^{M-1} \prod_{m=1}^{M} s_{lm}^{m} \right) = P_{0}h_{Product}(s_{l1}, \dots, s_{Ml})$
Dependency can be
modeled by choosing
a suitable function h
 $\dots \vec{x}_{M}) = P_{0} \left(\sum_{m=1}^{M} a_{m}s_{lm} + \frac{1-M}{L} \right) = P_{0}h_{LCDM}(s_{l1}, \dots, s_{lM})$
Deendency Modeling
is analytical function
 $\vec{x}_{M}) = P_{0} \sum_{\substack{n_{1}+\dots+n_{M} \mid =0}}^{\infty} a_{l(n_{1},\dots,n_{M})} \prod_{m=1}^{M} s_{lm}^{n_{m}}$
le and properties of marginal distributions,
 $s_{lm} = \sum_{r=0}^{\infty} G_{lmr}(\vec{\alpha}_{lmr})s_{lm}^{r}$
is a function on $\vec{\alpha}_{lmr}$.
assumption is equivalent to the solution to
equation system is trivial.
 $, G_{lm0} = 0, G_{lm2} = 0, \dots, G_{lmr} = 0, \dots$
other by setting non-trivial solution.

Reference
1. J. Kitter, M. Hafel, R. P. W. Duin, and J. Matas. On
containing classifiers. $TPMM_{2}(2)(2):22e-23s, 1996.$
2. O. R. Terrades, E. Valew, and S. Tabbone. Optimal
classifier tusion and S. Tabbone. Optimal
classifier tusion and tarure
compare the best four fusion algorithms on CMU PIE
mpare RADM and RM [5] with different parameters.
Our method is robust to model or during a disatifiers. $TPMM_{2}(2)(2):22e-23s, 1996.$
3. K. A. Toh, W. Y. Yau, X. Jang, A reduced multivatiate
prompare RADM and RM [5] with different parameters.
Reference
1. J. Kitter M. Hafel, R. P. W. Duin, and J. Matas. On
containing classifier. $TPMM_{2}(2)(2):22e-23s, 1996.$
3. A. Man AP, C. Yuen. Linear dependency
modeling tor classifier fusion and tarure
combination. $TPMM_{2}(2)(2):22e-23s, 1996.$
3. A. J. Ma and P, C. C. Yuen, Linear dependency
modeling tor classifier fusion and tarure
combination. $TPMM_{2}(2)(2):22e-23s, 1996.$
3. K. A. Toh, W. Y. Yau, X. Jang, A reduced multivationate
three substainter fusion and trainic
and the fusion multimodal biometerics and
Reference
1. J. Kitter M. Hafel, R. P. W. Duin, and J. Matas. On
containing classifier. $TPMM_{2}(2)(2):22e-23s, 1996.$
3. A. Matabas. C. C. Yuen, Linear dependency
modeling tor classifier f

where G_{lmr} is

- Independent a the following e $G_{lm1} = 1$,
- Model depend

Experiments

Reduced Analytical Dependency Modeling

- classifiers fusion. TCSVT, 14, 224–233, 2004.