ARTICLE IN PRESS

S0004-3702(01)00174-6/FLA AID:1872 Vol.eee(eee) A I J1872 P.1(1-44)
ELSGMLTM(ARTINT) :mla 2001/12/17 Prn:18/12/2001; 8:37 by:violeta p. 1

Artificial

! _ Intelligence

2 = 2

3 Artificial Intelligence eee (eeee) coe—see 5

. www.elsevier.com/locate/artint .

5 5

6 6

7 - - - - - 7

s Multi-agent oriented constraint satisfaction s

9 9

10 - . -, - 10

Jming Liu*, Han Jing, Y.Y. Tang

11 11
12 Department of Computer Science, Hong Kong Baptist University, Kowloon Tong, Hong Kong 12
13 13
14 Received 31 May 2001, received in revised form 2 August 2001 14
15 15
16 16
17 Abstract 17
18 This paper presents a multi-agent oriented method for solving CSPs (Constraint Satisfaction 18
1 Problems). In this method, distributed agents represent variables and a two-dimensiona grid-like 9
20 environment in which the agents inhabit corresponds to the domains of the variables. Thus, the 2°
21 positions of the agents in such an environment constitute the solution to a CSP. In order to reach 2!
22 asolution state, the agents will rely on predefined local reactive behaviors, namely, better-move, 22
23 least-move, and random-move. While presenting the formalisms and algorithm, we will analyze 23
24 the correctness and complexity of the algorithm, and demonstrate the proposed method with two 24
25 benchmark CSPs, i.e., n-queen problems and coloring problems. In order to further determine the 55
06 Cffectiveness of different reactive behaviors, we will examine the performance of this method in ¢
,; deriving solutions based on behavior prioritization and different selection probabilities. 0 2002 .,
- Published by Elsevier Science B.V. -
29 Keywords: Constraint satisfaction; Multi-agent; Reactive moving behaviors; Behavior prioritization; Behavior 29
30 selection; Experimenta validation 30
31 31
32 32
33 33
a4 1. Introduction 34
35 35
36 1.1 CSPs 36
37 37
% Many problems in Artificial Intelligence (Al) as well as in other areas of computer %
39 . . . - 39
o Science and engineering can be trandated into a certain type of constraint satisfaction 0
a problem (CSP) [20,30]. Some examples of such problems include: spatial and temporal "
i planning, qualitative and symbolic reasoning, diagnostics, decision support, computational o
43 43

IS
IS
IN
IS

* Corresponding author.
E-mail address: jiming@comp.hkbu.edu.hk (J. Liu).

I
a
IS
a

0004-3702/02/$ — see front matter [2002 Published by Elsevier Science B.V.
Pll: S0004-3702(01)00174-6

ARTICLE IN PRESS

50004-3702(01)00174-6/FLA AID:1872 Vol.eee(eee) A I J1872 P.2 (1-44)
by:vi

ELSGMLTM(ARTINT) :mla 2001/12/17 Prn:18/12/2001; 8:37 oleta p. 2
2 J. Liu et al. / Artificial Intelligence eee (e0ee) eoe—eee

1 linguistics, scheduling, resource allocation and planning, graph problems, hardwaredesign 1

2 and verification, configuration, real-time systems, and robot planning. 2

3 3

4 Déefinition 1.1. A constraint satisfaction problem (CSP) consists of: 4

5 5

6 (1) Afiniteset of variables, X = {X1, X», ..., X} 6

7 (2) A domain set, containing afinite and discrete domain for each variable: 7

8 D={D1,Dy,..., Dy}, Vi €[1,n], X; € D;. 8

9 9

10 (3) A congtraint set, C = {C(R1),C(R2),...,C(Ry)}, Where each R; is an ordered
1 subset of the variables, and each constraint C(R;) is a set of tuples indicating the ,
1 mutually consistent values of the variablesin R;. 1
13 13
14 Déefinition 1.2. The solution, S, for a CSP is an assignment to all variables such that the ,
15 assignment satisfies all given constraints. Specifically, 15
16 16
17 (1) Sisanorderedset, S = (v1,v2,...,v,),S€ D1 X D2 X -+ X Dy. 17
s (@ (Vjellm]) 38 S S A(S €C(R)))istrue. S isasoan ordered set. 18
19 19
20 In this paper, we will focus our discussion on binary CSPs where each constraint is 5
o1 €ither unary or binary [20]. A binary CSP has the same definition as Definition 1.1, except 5,
2» R = Dj1 x D;>. It is possible to convert a CSP with n-ary constraints to an equivaent ,,
»3 binary CSP[20,35]. ”
” Let us now take alook at two typical CSP examples as follows: 21
25 25
,s Example 1.1. The n-queen problem is a classical CSP. It is generally regarded as
,, @ benchmark for testing algorithms and has attracted a lot of attentions in the CSP .,
,s community [39]. This problem requires one to place n queens on an n x n chessboard, g
,o SO that no two queens are in the same row, the same column, or the same diagonal. There g
i Existsolutionsfor then-queen problemswith n greater than or equal to 4 [2,39] (seeFig. 1). 5,
5 Theequivaent CSP can be stated as follows: a1
82 x={X1,X2,...,Xn}. 82
33 4 33
34 D={D1, Do,...,D,}, Vi, D;i=[1,n]. s
35 C={C(Ru)|\7’i,j€[l,n],C(Ru)={(b,c)|b€D,~,c€Dj,b7éc,i—j7é 35
36 b—c,i—j;«éc—b}}. 36
37 37
38 O 38
39 39
40 O 40
41 O 41
42 9 42
43 O: queen 43
44 44

N
o

Fig. 1. A solution for a4-queen problem.

IS
a

© 0 N OO g b~ W N P

A B B B B B WOW W W W W W W WWNNNDNDNDNDNDNDNDNERE PR R B P P P PP
a b W N P O ©W 0 N O O B W N P O ©W 0 N O O b W N P O O 0 N O O B W N B O

ARTICLE IN PRESS

50004-3702(01)00174-6/FLA AID:1872 Vol.eee(eee) A I J1872 P.3 (1-44)
by:vi

ELSGMLTM(ARTINT) :mla 2001/12/17 Prn:18/12/2001; 8:37 oleta p. 3
J. Liu et al. / Artificial Intelligence eee (eeee) eoe—eee 3
Vi

Fig. 2. An example solution for a coloring problem.

Example 1.2. The (vertex) coloring problem that is found in avariety of applications can
readily be modeled as a CSP. In this problem, we need to color each vertex or node of
a graph by a certain color (from a set of colors, suppose to be m colors), such that no
two nodes incident to any edge have the same color. The equivalent CSP will represent
each of the nodes in the graph into a variable. The domain of the variable corresponds
to the given set of m colors. For each pair of nodes incident to an edge, there is a
binary constraint between the corresponding variables that disallows identical assignments
to these two variables. Here is an example: X = {V4, Vo, V3}, D1 = {green, red}, Dy =
{red, blue}, D3 = {blue}, where constraints are: V1 £ Vo, V1 # V3, and Vo # V3, O
C = {{(green, red), (green, blue), (red, blue)}, {{(green, blue), (red, blue)}, {(red, blue)}}.
Fig. 2 presents a possible solution to this problem.

1.2. Related work

General methods for solving CSPs include generate-and-test (GT) and backtracking
(BT) methods[20]. GT generates each possible combination of the variablessystematically
and then checks to see whether it is a solution, i.e., whether it satisfies all the constraints.
Onelimitation of thismethod isthat it hasto consider all instances of the Cartesian product
of al the variable domains. In this respect, BT is more efficient than GT, as it assigns
values to variables sequentially and then checks constraints for each variable assignment.
If apartia assignment does not satisfy any of the constraints, it will backtrack to the most
recently assigned variable and repeat the process again. Although this method eliminates
a subspace from the Cartesian product of al the variable domains, its computational
complexity for solving most nontrivial problemsremainsto be exponential.

Many studies have been conducted to investigate various ways of improving the above-
mentioned BT method. In order to avoid thrashing [16,20] in BT, consistency techniques
(Arc Consistency and k-Consistency) have been developed by Mackworth and other
researchers[6,18,20,26,29], which are able to removeinconsistent valuesfrom the domains
of the variables. In order to avoid both thrashing and redundant-work [20] in BT, a
dependency-directed backtracking scheme and its improvements have been proposed [3,
20,34,40]. Other ways of increasing the efficiency of BT include the use of search order for
variables, values, and consistency check [33]. Nevertheless, even with such improvements,
BT isstill unableto solve nontrivial large-scale CSPs in a reasonable runtime.

© 0 N O g b~ W N P

AOD DM B DA DWW W W W W WWWWNDNDNDNDNDNDNDNDNDNDNR R R B PR R R R
a b W N P O © 0 N O O b W N P O ©W 0 N O O b W N P O ©W 0N O O b W N+ O

ARTICLE IN PRESS

S0004-3702(01)00174-6/FLA AID:1872 Vol.eee(eee) A I J1872 P.4 (1-44)
ELSGMLTM(ARTINT) :mla 2001/12/17 Prn:18/12/2001; 8:37 by:violeta p. 4

4 J. Liu et al. / Artificial Intelligence eee (e0ee) eoe—eee

For the GT method, there have been some research efforts on making the solution
generator smarter. The representatives of such efforts are stochastic and heuristic
algorithms. Along this direction, one of the most popular ideas is to perform local
search [17,20]. For large-scale n-queen CSPs, it gives better results than a complete, or
even incomplete, systematic BT method. There are three key elementsin local search [1],
they are:

(1) Configuration: one possible assignment of all variables, not required to be a solution.

(2) Evaluation value: the number of dissatisfied constraints.

(3) Neighbor: the configuration obtained by changing one variable’'s assignment of the
current configuration.

© 0 N OO g b~ W N P
© 0 N O g b~ W N P

[
o
=
o

=
N e
e
[

[
w
[
w

Loca search generates an initial configuration and then incrementally uses “repair”
or “hill climbing” to modify the inconsistent configuration to move to a neighborhood
configuration that has the best or better evaluation value among its neighbors, until a
solution is found. In order to avoid faling into the local optima, it sometimes performs
random-walk and tabu search [13]. As related to the idea of local search, other heuristics
have also been developed, such as hill-climbing [1], min-conflicts [28], MCRW (Min-
Conflicts-Random-Walk) [42], and GSAT (GSAT is a randomized local search procedure
for solving propositional satisfiability problems) [37,38].

[N
IS
[
IS

NN R R R e
B O © ©® N o O
NN R R R R
P © © © N o O

nN
N
N
N

1.2.1. Min-conflicts heuristics

Repair-based heuristics were originally used in Al problem-solving systems to debug
and modify initial solutions. Minton et al. [28] extended this approach to solving large-
scale constraint satisfaction problems, and proposed a value-ordering heuristic, called min-
conflicts heuristic. The min-conflicts heuristic attemptsto select anew value that minimizes
the number of outstanding constraint violations after each step.

They argued that the effectiveness of the min-conflicts heuristic is largely due to the
repair of a complete but inconsistent assignment that is moreinformativein guiding search
than an incrementally constructed partial assignment as in the traditional backtracking
methods [28]. They also noted that the performance of this sequentially executed heuristic
isremarkably comparableto that of a parallelly implemented Guarded Discrete Stochastic
(GDS) network for solving constraint satisfaction problems (e.g., the Hubble Space
Telescope scheduling problem). The two implementations employed the same heuristic (in
fact, as stated in [28], the min-conflicts approach was intended to replicate the behavior of
the GDS network): the network reassigns a value for a variable by choosing the value that
violates the fewest constraints (i.e., flipping the neuron whose output is most inconsi stent
with its current input).

Our multi-agent approach utilizes the idea of inconsistency reduction over a complete
initial assignment. However, our approach differs from the min-conflicts approach in a
number of ways. For instance, our approach explores heuristics in addition to violation
minimization, and relays on the combination of prioritized heuristics in order to improve
computational efficiency. A more detailed discussion on the distinctions between the two
approachesis provided in Section 5.

nN
w
N
w

A A B B B W OW W W W W W W W WNNNNNN
A W N P O © © N O O & W N P O © © N O O »
A A B B B OWOW W W W W W W WWN N NDNDNDN
A W N P O © ©® N O U B W N P O © © N O o b

I
a
IS
a

ARTICLE IN PRESS

50004-3702(01)00174-6/FLA AID:1872 Vol.eee(eee) AIJ1872 P.5 (1-44)
ELSGMLTM(ARTINT) :mla 2001/12/17 Prn:18/12/2001; 8:37 by:violeta p. 5

J. Liu et al. / Artificial Intelligence eee (eeee) eoe—eee 5

Other methodsfor solving CSPs have been based on Neural Networks[27] and Genetic
Algorithms[19].

The above-mentioned methods and techniques have their advantages and drawbacks,
and no single algorithm has been found to be suited to solving all CSPs. For small-size
problems, we may use BT to readily find a solution, whereas for large-scale problems
we may use local search. The efficiency of local search for solving n-queen problemsis
reported to be very efficient, among other algorithms [39]. However, we cannot prove that
it can find solutions for every case every time as it is stochastic in nature, while on the
other hand BT's performance is more stable and complete. Furthermore, local search is
not suitable for problems other than n-queen. It requires that the problems have a clear
neighborhood structure.

© 0 N OO g b~ W N P
© 0 N O g b~ W N P

[
o
=
o

=
N e
e
[

[
w
[
w

1.3. Multi-agent systems

[N
IS
[
IS

[
o
=
(&)

Agent-based computation has been studied for some years in the field of artificial
intelligence and has been widely used in other branches of computer science. Multi-agent
systems are computational systems in which several agents interact or work together in
order to achieve goals. Agentsin such systems may be homogeneousor heterogeneous, and
may have common goals or distinct goals [22]. Previous work on multi-agent systems has
generally focused on areas such as simulations of social and biological systems, problem
solving, communication, collective robotics, and electronic commerce on the Internet.

[
o
=
(2]

N NN B
N P O © 0 N
N NN B PR
N B O © © N

nN
w
N
w

1.3.1. Distributed constraint satisfaction

A distributed constraint satisfaction problem (distributed CSP) is a constraint satisfac-
tion problem in which variables and constraints are semantically partitioned (or distrib-
uted) into sub-problems, each of which isto be solved by an agent. When multiple agents
areinvolved in solving adistributed CSP, the agents have to comply with certain constraints
among them. Thus, finding a solution to a distributed CSP requires that all agentsfind the
values for their variables that satisfy not only their own constraints but also interagent
constraints. Examples of distributed CSP research efforts include distributed scheduling,
planning, and reasoning [5,7,32,36].

Yokoo et a. [43-46] have made significant contributions in the area of distributed
CSP. They developed an agorithm called asynchronous backtracking that guarantees the
completeness, and then later extended this agorithm into a more efficient asynchronous
weak-commitment search algorithm, by introducing dynamic ordering among agents.
Furthermore, they also proposed a multi-agent real-time-A* algorithm with selection to
solve an n-puzzle problem [46]. In those algorithms, the agents are individual solvers for
obtaining partial solutions.

[N
i
)
IS

W W W W W W W W wWwwWw NN NDNN
© 00 N O o0~ W N P O © 0 N o O,
W W W W W w W W ww NN DN DNDN
© 0 N o o0 b~ W N P O © 0 N O O

I
o
IS
o

1.3.2. Swarmtlike systems

In addition to the above-mentioned distributed constraint satisfaction approaches, it is
worth mentioning aspecial instance of multi-agent systemsfor applicationsin computation
and simulation; namely, swarm[41].

Swarmis aformulation for simulating distributed multi-agent systems, which involves
three key concepts: living environment, agents with reactive rules, and a schedule serving

IS
hiy
IN
a

e
A W N
E
A wWN

I
a
IS
a

ARTICLE IN PRESS

50004-3702(01)00174-6/FLA AID:1872 Vol.eee(eee) AIJ1872 P.6 (1-44)
ELSGMLTM(ARTINT) :mla 2001/12/17 Prn:18/12/2001; 8:37 by:violeta p. 6

6 J. Liu et al. / Artificial Intelligence eee (e0ee) eoe—eee

as a timetable to update the changes and dispatch agents' actions. Based on thisidea, Liu
et a. [24,25] developed an evolutionary autonomous agent system to adaptively extract
image features and segments. Recently, Liu and Han [23] proposed an energy-based
artificial-life model for solving n-queen problem.

1.4. The proposed approach

As inspired by the previous models of swarm, in this paper we will present a new
approach called ERA (i.e., Environment, Reactive rules, and Agents) to solving CSPs. The
CSPs considered here will not be limited to distributed CSPs. This approach isintended to
providean aternative, multi-agent formulation that can be used to handle general CSPsand
to find approximate solutions without too much computational cost. The key idea behind
ERA liesin adistributed multi-agent system, having the same architecture as swarm, i.e.,
an environment, agents with moving behaviors, reactive rules, and a schedule. This system
self-organizesitself, when each individual agent followsits behavioral rules, and gradually
evolvestoward aglobal solution state.

From the point of view of solving CSPs, the proposed approach may be regarded as an
extended GT approach, somewhat like local search. However, the main difference between
ERA and local search isthat the evaluation value of ERA is not the number of dissatisfied
congtraints for the whole assignment as in local search, but the number of dissatisfied
constraints for the value of each variable—these numbers constitute an environment in the
ERA system.

If there exists a consistent solution, the ERA system will eventually find it. On the other
hand, if there is no complete solution, the ERA system can still generate an approximate
solution. Asto be presented in this paper, our approach can solve both n-queen problems
and coloring problems. Furthermore, our experiments will show that ERA is efficient
in finding exact as well as approximate solutions to CSPs in few time steps. Generally
speaking, it is more efficient than the BT algorithms and more readily to solve different
CSPs than the local search algorithm.

© 0 N OO g b~ W N P
© 0 N O g b~ W N P

[
o
=
o

W N NN NN NN DN NN B P PR R R R R
O © 0 N O U A W N P O © 0 N O 0 b W N BB
W NN NN NN NN NN P PR R R R R R
© © © N o U b W N PP O © 0 N O g b W N PP

w
s
w
ey

1.5. Organization of the paper

w
N
w
N

wW
w
w
w

The remainder of this paper is organized as follows: Section 2 describes the basic
ideas behind this distributed multi-agent oriented method. Section 3 discusses how to use
this method to find an approximate solution. Section 4 describes saveral experiments and
observations. Section 5 discusses the features of the proposed ERA approach and compare
them with the existing major approachesin thefield. Finally, Section 6 concludesthe paper
by highlighting the contribution of thiswork and some future extensions.

W
I
w
=

B W W W W W
O © 0 N o O
AW W W oW W
o © © N o O

IS
hiy
IN
a

2. The multi-agent model

P
w N
P
@w N

IS
IS
IN
IS

In this section, we will describe the basic formulation and algorithm for our proposed
multi-agent model. Specifically, we will provide the definitions as well as formalisms for

I
a
IS
a

ARTICLE IN PRESS

50004-3702(01)00174-6/FLA AID:1872 Vol.eee(eee) A I J1872 P.7 (1-44)
by:vi

ELSGMLTM(ARTINT) :mla 2001/12/17 Prn:18/12/2001; 8:37 oleta p. 7
J. Liu et al. / Artificial Intelligence eee (eeee) eoe—eee 7

1 agent environments, mgjor policies for agent-environment interaction, reactive behaviors, 1

2 and abasic ERA agorithm. 2

3 3
4 2.1. ERAfundamentals 4

5 5

6 Problemsolving isan areathat many multi-agent-based applicationsare concerned with. €

"1t includes the following subareas: distributed solutions to problems, solving distributed 7

8 problems, and distributed techniques for problem solving [10,22]. In this paper, we will 8

® introduce an application of distributed techniquesfor solving CSPs. In our case, thedomain ~ °
10 of a CSP is represented into a multi-agent environment. Thus, the problem of findinga *°
1 solution to the CSP is reduced to that of local behavior-governed moves within such an !
12 environment. 12
13 Specifically, the notions of agent and multi-agent system can be defined as follows: 13
14 14
iz Definition 2.1. An agent, a, isavirtual entity that essentially has the following properties: iz
7 (1) Beabletoliveand act in the environment. Y
¥ (2) Beableto senseitslocal environment. 18
¥ (3) Bedriven by certain objectives. 19
ZZ (4) Have some reactive behaviors. zj
Z Definition 2.2. A multi-agent system is a system that contains the following elements: Z
z: (1) Anenvironment, E, a space in which the agentslive. 2:
. (2) A set of reactive rules, R, governing the interaction between the agents and their .
7 environment. They are the laws of the agent universe. 27
s (3) Asetof agents, A ={a1, a2, ..., an}. 28
29 29
30 The goal of thiswork isto examine how exact or approximate solutionsto CSPscanbe 30
a1 self-organized by a multi-agent system, consisting of {E, R, A}. 31
32 32

wW
w
w
w

2.1.1. Overview of the ERA multi-agent formulation

The ERA method is meant to be a framework for interacting agents to achieve a global
solution state. In ERA, the environment records the number of constraint violations of the
current state for each valuein the domains of al variables. Each agent representsavariable
and the position of the agent correspondsto the value of the respective variable. The agent
can move locally within arow and has its own reactive moving behaviors. Its objectiveis
to move to a position whose constraint violation number is zero, we call it zero-position
(for detail see Definition 2.3(2)). An exact solution state in ERA is reached when every
agent (variable) finds its zero-position. The reactive rules correspond to the schedules for
dispatching agents and updating the environment.

In this paper, we will first present the basic formulation and algorithm for the ERA
method, and then focus on the effectiveness of some extended ERA techniques that utilize
combined reactive behaviors as well as different selection probabilities.

W
I
w
=

A A B B B W W W W W
A W N P O © ©® N O O
DA DD DWW W oW W
A W N P O © ©® N O O

I
a
IS
a

ARTICLE IN PRESS

50004-3702(01)00174-6/FLA AID:1872 Vol.eee(eee) A I J1872 P.8 (1-44)
by:vi

ELSGMLTM(ARTINT) :mla 2001/12/17 Prn:18/12/2001; 8:37 oleta p. 8
8 J. Liu et al. / Artificial Intelligence eee (e0ee) eoe—eee

1 x[1]2]3 5]6] 1
2 X1 ()34 2
3 ;O 2]3]4]5] 3
4 4
5 Fig. 3. Anillustration of agent model for Example 2.1. 5
6 6
7 7
8 In the following paragraph, we will use an example to illustrate how a CSP can be 8
9 trandated into an ERA multi-agent system. 9
10 10
11 Example2.1. A CSPisgiven asfollows: H
12 12
13 X ={X1, X2, X3}, n=3 13
. D={(D1, D2, D3}, Di1={1,2,3,4,56), Dy={1,2 34}, -
16 D3=1{1,23,4,5}. 16
Y C={X1+# X2, X1 > X3s}. Y
18 18
19 19
20 Example 2.1 can be modeled as a multi-agent system as follows: The latticesrepresent
, anenvironment, where each row correspondsto avariable’sdomain and the length of each ;
,, row is equal to the domain size. In each row, there exists only one agent. In this case, ,,
,; thehorizontal coordinate of the agent represents the corresponding variable’'svalue. Asin =~ ,
,, Fig. 3, there are three agents all residing at zero-positions. The numbers that these agents
,s occupy correspond to the values within the domains of the three variables. Fig. 3 showsa .
. Solutionstateof S = (4,2,1). %
27 27
28 2.1.2. Environment 28
29 An environment, E, has n rows corresponding to the number of variables. For all 2
30 I €[1,n], row; has |D;| columns. It records two kinds of values. the domain value and 3o
31 theviolation value. 31
32 32
33 Definition 2.3. The data structure of E can be defined as follows: 33
34 34
5 (1) Size 35
36 e 1 IOWS & n variables. E = (rowy, rowo, ..., Fow,). 36
37 e Vie[l n], 37
38 row; < domainof X; < D;, sorow; has|D;| columns. 38
39 row; = (latticey;, latticey;, . . ., lattice|p;);). 39
40 e Eisanarray of size) | Dil. e(i, j) refersto the position of lattice;; . 40
41 (2) Vaues 41
42 e Domain value: e(i, j).value records the ith value of domain D;. 42
43 e Before we introduce e(i, j).violation, let us first define the notion of ‘attack’ 43
44 between position; and position,. 44

IS
a

45 We use (x1, y1) to represent position; and (x2, y2) to represent position;. So,

ARTICLE IN PRESS

50004-3702(01)00174-6/FLA AID:1872 Vol.eee(eee) A I J1872 P.9 (1-44)
by:vi

ELSGMLTM(ARTINT) :mla 2001/12/17 Prn:18/12/2001; 8:37 oleta p. 9
J. Liu et al. / Artificial Intelligence eee (eeee) eoe—eee 9
1 ; i1 23 456 1
2 1 [] x|1]2]3]4]5]6])
3 2 LQI\ x[1[2[3[4 ;
. 3 I x;[1]2]3]4]5] .
Agent
5 at (1,2) 5
6 6
7 (a) (b) 7
8 8
9 a 9
o o &[]] X[2 [[1[2)0] o
11 X2 l X2/ 0 010 11
X 1| 1]1) T

. 3 l xk,ooogll b
13 13
14 (c) (d) 14
15 15
16 Fig. 4. Anillustration of the agent environment. (@) the position of an agent, (b) the representation of domain 4
17 values, and (c)—(d) violation numbers marked in the environment. 17
18 18
19 AttaCk((x1, y1), (x2,)’2)) 19
20 true, if thereis constraint C(R;) between X 1 and X > 20
2t = and (e(x1, y1).value, e(xz, y2).value) ¢ C(R,), Lo =
22 . 22
»s false, otherwise. »s
24 e Violation number: e(i, j).violation records in the current state how many agents 24
25 whose positions attack position (i, j), i.e., e(i, j).violation = m means there are 25
26 m agents whose assignments dissatisfy the assignment of X; = e(i, j).value. The 25
27 e(i, j).violation values are dynamically modified since the agents keep on moving 27
28 and their corresponding state is changing. The violation numberswill beupdatedby 2s
29 applying an updating-rule, which will be described in Section 2.1.5. 29
30 e zero-position: position (i, j), in which e(i, j).violation = 0. That means all other 30
31 agentsagreeon X ; = (i, j).value, according to constraintsrelated to X ;. 31
32 32
33 Fig. 4(a) presents the position of an agent at (1, 2). Fig. 4(b) shows the domain value 33

34 of each lattice. row; contains values in domain Dy = {1, 2, 3,4, 5, 6}, row> represents
35 Dy ={1,2 3 4}, and rows represents D3 = {1, 2, 3, 4, 5}. Fig. 4(c) shows that if agent
3 ap Staysat (3, 1), meaning X1 = 3, according to the constraints of X3 # X» and X1 > X3,
37 itwill violate X» = 3, X3 =1, X3 =2, and X3 = 3. Therefore, it will contribute 1 to the
38 violation number at position (3, 2), (3, 3), (4, 3), and (5, 3). Fig. 4(d) presents a snapshot
39 forthe state of the system with the violation numbers. Since all agentsare at zero-positions,
40 the state correspondsto an exact solution.

41

42 2.1.3. Agents

43 All agentsinhabit in an environment, in which their positions indicate values of certain
44 variables. During the operation of the system, the agents will keep on moving, based on
45 certain reactive moving behaviors. At each time step, the positions of the agents provide a

A D D D D DWW W W W W
a b W N P O ©W 0 N O O b

ARTICLE IN PRESS

50004-3702(01)00174-6/FLA AID:1872 Vol.eee(eee) AIJ1872 P.10 (1-44)
ELSGMLTM(ARTINT) :mla 2001/12/17 Prn:18/12/2001; 8:37 by:violeta p. 10

10 J. Liu et al. / Artificial Intelligence eee (eeee) eoe—eee

consistent or inconsistent assignment for all variables. The agents are trying to find better
positions that can lead them to a solution state.

Hereisasummary of some major policesfor agent-environment interaction in the ERA
model:

(1) Vi € [1,n], a; represents X;. As shown in Fig. 4(d), three agents, a1, a2, and a3
represent X1, Xo, and X3, respectively.

(2) Agent a; moves locally in row;. It can only move to its right or left, but not up
and down. a;.x represents its x-coordinate. So the position of a¢; can be denoted as
(a;.x,i).

© 0 N OO g b~ W N P
© 0 N O g b~ W N P

=
» O
e
SRS

i
N
P
N}

Example 2.2. In Fig. 4(d), a2 livesin rows, and it can move freely to position (1, 2), (2,
2), (3, 2), or (4, 2) in one step, but not to other positions.

B
AW
B
N oW

i
al
P
a

In this paper, we use function ¢ to define an agent’s move.

B
~N o
IR
~N o

i
©
I~
©

Definition 2.4. ¢ :[1,n] x [1, |D;|1 — [1, |D;]]. ¥ (x, y) gives the x-coordination of the
new position of agent a;, after it moves from position (x, y). So the new position can be
represented as (v (x, y), y).

i
©
B
©

NN
= O
NN
= o

nN
N
N
N

(3) In any state of the system, the positions of all agents form an assignment for all
variables. Vj € [1,7], X; = e(a;.x, j).value. It may not be a consistent assignment,
i.e., not an exact solution.

If an assignment satisfies all the congtraints, i.e., Vj € [1, n], e(a;.x, j).violation=0,
it isan exact solution, S = (e(a1.x, 1).value, e(az.x, 2).value, ..., e(a,.x, n).value).

(4) Agent g; isableto ‘perceive’ the violation number for each lattice in row;. Here, we
define a function ¢ (i) for returning a position (x-coordination) with the minimum
violation number in row; .

nN
w
N
w

W N NNNNN
o © o N o g b
W NN NN
© © © N o U b

w
s
w
ey

Definition 2.5. A minimum-position is the position of (x, j) such that j € [1,n] A (Vi €
[1,|D;ID, e(x, j).violation < e(i, j).violation.

w
N
w
N

w W
PN
w W
S~ W

w
(&
w
(4]

Definition 2.6. The function for finding the first minimum-position for agent a; in row; is
defined as follows:

¢:[1,n]— [1, max(|D;])], (@) = x | (x,i) isaminimum-position A(Vj € [1,x))(j, i)
is not a minimum-position.

w
o
w
(&2}

W W W
© o N
w W w
© o N

I
o
IS
o

(5) In order to achieve a goa state, each agent uses its local reactive behaviors. Agents
attempt to move toward zero-positions at each time step. But, in most cases, they
cannot, or only some lucky agents can, find zero-positions, simply because some rows
do not contain such positions at a certain time step. In such cases, the agents will have
to perform other behaviors.

IS
hiy
IN
a

e
A W N
E
A wWN

I
a
IS
a

ARTICLE IN PRESS

S0004-3702(01)00174-6/FLA AID:1872 Vol.eee(eee) A I J1872 P.11 (1-44)
ELSGMLTM(ARTINT) :mla 2001/12/17 Prn:18/12/2001; 8:37 by:violeta p. 11

J. Liu et al. / Artificial Intelligence eee (eeee) soe—eee 11
X1

2 (0) o]
x|o[1)olo x:{0{0)o]o
1 0

X;[0 1) 1] x;lo0]ofofo) 1]

Fig. 5. The violation numbers are updated, when agent a; moves to a new position by executing a least-move
behavior.

x,[12Y1]1]o]o]

2.1.4. Local reactive behaviors

In order to reach a solution state, the agents will select and execute some predefined
loca reactive behaviors, namely, better-move, least-move, and random-move. Later in
Section 4, we will investigate the effectiveness of these reactive behaviors by examining
the performance of the ERA system with behavior prioritization and/or different selection
probabilities.

© 0 N OO g b~ W N P
© 0 N O g b~ W N P

[
o
=
o

=
w N e
I el
w N P

[N
IS
[
IS

2.1.4.1. least-move. An agent moves to a minimum-position with a probability of least-
p. If there exists more than one minimum-position, we let the agent choose the first one on
the left of the row. The least-move behavior can be expressed as follows:

Vo (x,y) =1). %)

Note that in this function, the result will not be affected by the current x, and the number
of computational operationsto find the position for each i is|D;|.

NN R R R e
B O © ©® N o O
NN R R R R
P © © © N o O

nN
N
N
N

Example 2.3. Fig. 5 shows that when agent a1 performs aleast-move, it will first compute
v—_1(2,1) = ¢(1) =5, and thereafter moveto (5, 1).

nN
w
N
w

[N
i
)
IS

N
o
N
(&)

2.1.4.2. better-move. An agent moves to a position that has a smaller violation number
than its current position with a probability of better-p. It will randomly select aposition and
then compareits violation number to decide whether or not it should moveto this position.
We use function Random(k) to get a random number between 1 and k. This behavior can
be defined using function y_:

N
o
N
(<2}

W NN
o © 0 N
W N NN
o © o ~N

w
s
w
ey

X, when e(Random(| D, |), y).violation > e(x, y).violation,
Random(| Dy|), when e(Random(|D,|), y).violation < e(x, y).violation.
3

Although it may not be the best choice for the agent, the computational cost required
for thisbehavior is much less than that of least-move. Only two operationsare involved for
deciding this move, i.e., producing a random number and performing a comparison. This
behavior can readily find a position to move to especially when the agent is currently at a
larger violation position.

As will be shown in Section 4, the better-move behavior plays an important role in
bringing down the number of global constraint violationsin afew time steps.

w
N
w
N

-

A B B W W W W W W W
N P O © © N O O & W
AR B W OW W W W W W
N P O © © N O O & W

I
@
I
w

Example 2.4. Fig. 6 shows that when agent a; performs a better-move, it will com-
pute ¥_(2,1). Suppose that Random(6) = 3(|D1| = 6). Thus, ¥_»(2,1) = 3, since
e(2,1).violation > e(3, 1).violation. The new assignment will become (3, 2, 4). Although

IS
IS
IN
IS

I
a
IS
a

ARTICLE IN PRESS

50004-3702(01)00174-6/FLA AID:1872 Vol.eee(eee) A I J1872 P.12 (1-44)
ELSGMLTM(ARTINT) :mla 2001/12/17 Prn:18/12/2001; 8:37 by:violeta p. 12

12 J. Liu et al. / Artificial Intelligence eee (eeee) eoe—eee

x[1[2)1]1][o]o] x,[1[1 {0y 1]o]o]
IO 0 er-m » X:{o o) 1 0
xlolt[1)1] x;[ofol 1 ()1]
Fig. 6. The violation numbers are updated, when agent a1 moves to a new position by executing a better-move
behavior.

x[12)1]1]o]o] x{)2]1]1]o]o]

x|o{1)o]o x:[1{0)o]o

xlol 1 [1) 1] A NRNRONn

Fig. 7. The violation numbers are updated, when agent a1 moves to a new position by executing a random-move
behavior.

© 0 N OO g b~ W N P
© 0 N O g b~ W N P

=
N B O
PR e
N P O

[N
w
=
w

this assignment is not an exact solution, it is a better approximate solution than the as-
signment of (2, 2, 4) asin Fig. 5, because the new state has only one constraint, X1 > X3,
dissatisfied.

N
~
=
~

B
o o
=
o o

[
~
o
~

2.1.4.3. randomrmove. An agent moves randomly with a probability of random-p.
random-p will be relatively smaller than the probabilities for selecting better-move and
least-move behaviors. It is somewhat like a random-walk in local search. For the same
reason as in local search, random-move is necessary because without randomized moves
the system will get stuck in local-optima, that is, al the agents are at minimum-positions,
but not all of them at zero-positions. In the state of local-optima, no agent will moveto a
new position if using the behaviors of better-move and least-move alone. Thus, the agents
will lose their chance of finding a solution if without any techniquesto avoid getting stuck
in local-optima.
random-move can be defined using function ¢ _,:

¥, (x, y) = Random(| Dy |). (4)

i
©
I~
©

NN NN NN NN NN
© 0 N O U b~ W N B O ©
N N NN N NN NN DN P
© © N o g b~ W N BB O ©

w
o
w
o

Example 2.5. Fig. 7 shows that when agent a3 performs arandom-move, it will randomly
produce a number. If Random(6) = 1, it will move to (1, 1). If Random(6) = 3, it will
moveto (3,1).

w
s
w
ey

W W
w N
w W
w N

W
I
w
=

2.1.5. Systemschedule

The multi-agent system proposed in this paper is concurrent and discrete in nature, with
respect to its space, time, and state space. In the present simulated implementation, the
system will use a discrete clock to synchronizeits operations, as shown in Fig. 8. It works
asfollows:

w
(&
w
(4]

w W
~N O
w W
~N O

wW
@
w
oo

39
40 o timestep = 0: The systemisinitialized. We place n agents onto the environment, a1 in

5w
o ©

41 rows, az inrowo, ..., a, in row,. The simplest way to place the agentsisto randomly 41
42 select positions. That is, for a;, we set a position of (Random(| D;|),). 42
43 e timestep « timestep + 1: For each time step, which means one unit increment of 43
44 the system clock, all agents will have a chance to decide their moves, that is, whether 44

IS
a

45 to move or not and where to move, and then move synchronously.

ARTICLE IN PRESS

S0004-3702(01)00174-6/FLA AID:1872 Vol.eee(eee) AIJ1872 P.13 (1-44)
by:vi

ELSGMLTM(ARTINT) :mla 2001/12/17 Prn:18/12/2001; 8:37 oleta p. 13
J. Liu et al. / Artificial Intelligence eee (eeee) soe—eee 13
EEINC o«] [T = & .
X2 @ X2 @ X2 © Xo © Solution state

2 x o ! X;) X; S X S End 2
3 3
4 I | | > 4
5 0 1 2 3 ' 5
6 time step 6
7 Fig. 8. Distributed agent-environment interaction at different time steps. 7
8 8
9 9
10 It should be pointed out that in the simulation, the multi-agent system dispatchesthe 10
11 agents one by one. The order of dispatching is based on a random or a predefined 11
12 sequence. 12
13 After the move of an agent from (x1, y) to (x2, y), the violation number of the 13
14 environment will be updated according to the following two update-rules: 14
15 (1) update-rule1l: Removefrom (x1, y) 15
16 16
17 (Vx/ € [1’ |Dy|]) (Vy/ € [1’ n]) (AttaCk((xlv y)7 (x/’ y/)))v 17
iz executee(x’, y').violation < e(x’, y').violation — 1. iz
20 (2) update-rule2: Addto (x2, y) 20
21 21
2 (Vx' € [1,|Dy[]) (¥y' € [1,n]) (Attack((x2, y), (', ¥))), 22
23 23
" executee(x’, y).violation < e(x’, y).violation + 1. "
zz e End: After the moves of agents at each time step, the system will check whether all zz
”” agents are at zero-positions and whether its clock exceeds a time threshold (i.e., time ””
»s alowed). If one of these conditionsist r ue, the system will stop its operations and »
s return either an exact or an approximate solution. s
22 Another way to terminate the operationsis when ¢ agents are staying at zero-positions. ZS
32 . . 32
33 2.2. Thebasic ERA algorithm 33
34 34

w
(&

Now let us consider the basic ERA algorithm, from which a number of ERA properties
and extended methodswill be derived in the following sections.

Fig. 9 presents a function for initializing individual agents and then adding them
to the environment randomly. This function also initializes the probabilities for better-
move, least-move, and random-move. Fig. 10 provides the RemoveFrom function that
updates environment numbers, according to update-rule 1 when removing an agent
from the environment. Fig. 11 shows the function of AddTo that updates violation
numbers, according to update-rule 2 when adding an agent to the environment. Function
SelectBehavior in Fig. 12 selects a reactive behavior, according to the probabilities for
various behaviors.

The complete listing of the basic ERA algorithmis givenin Fig. 13.

A A B B B W W W W
A W N P O © ©® N O
DA DD DWW W oW W
A W N P O © ©® N O O

I
a
IS
a

ARTICLE IN PRESS

50004-3702(01)00174-6/FLA AID:1872 Vol.eee(eee) A I J1872 P.14 (1-44)
by:vi

ELSGMLTM(ARTINT) :mla 2001/12/17 Prn:18/12/2001; 8:37 oleta p. 14
14 J. Liu et al. / Artificial Intelligence eee (eeee) eoe—eee
1 Input: g 1
Output: the probabilities of a;.
2 1. a.random-p =py; 2
3 2. aleast-p = py; 3
4 3. abetter-p = p3; 4
4. a;x = Random(ld)) ;
5 5. AddTo(a;.x, i); 5
6 6
7 Fig. 9. Function Initialize. 7
8 8
9 Input: position (x, y) 9
10 Output: updating violation numbers according to update-rule 1 while removing a from (x, y). 10
1. For all position (i, j) € environment do
1 2. If Attack((i, j), (x, y)) then e(i, j).violation « e(i, j).violation -1 u
12 3. End for 12
13 13
14 Fig. 10. Function RemoveFrom. 14
15 15
16 Input: position (x, y) 16
17 ?utput: updating violation numbers according to update-rule 2 while adding « to (x, y). 17
.oax=x'
18 2. For all position (i, j) € environment do 18
19 3. If Artack((i, j), (x, ¥)) then e(i, j).violation « e(i, j).violation +1; 19
20 4 End for 20
21 21
2 Fig. 11. Function AddTo. 22
23 23
24 Input: i 24
25 Output: y 25
1. p = Random(a,random_p + a;.least_p + a;.beter_p);
26 2. if (p <a.random-p) then return y.,; 26
27 3. if (p <a.random-p + a;.least-p) then return y; 27
28 4. return y,; 28
29))) 29
20 Fig. 12. Function SelectBehavior. 30
31 31
32 2.3. Properties of the basic ERA algorithm 32
33 33
34 2.3.1. Termination 34
35 After each move, the ERA system will check whether all agents stay at zero-positions. 35
36 Generally speaking, the termination condition for an exact solution can be stated as 36
37 follows: 37
38 . . . 38
29 condition-1: (Va; € A)e(a;.x, i).violation= 0. 39
40 For an approximate solution, we can employ certain termination conditions as *°
41 mentioned in Section 2.1.5, such as athreshold of time step. In this case, thealgorithmwill ~ #*
42 terminate if the clock exceeds r-max. Thus, the termination condition for an approximate ~ #2
3 solution can be stated as follows: 4
44 44
45 condition-2 : time step z-max. 5

ARTICLE IN PRESS

S0004-3702(01)00174-6/FLA AID:1872 Vol.eee(eee) AIJ1872 P.15 (1-44)
by:vi

ELSGMLTM(ARTINT) :mla 2001/12/17 Prn:18/12/2001; 8:37 oleta p. 15
J. Liu et al. / Artificial Intelligence eee (eeee) soe—eee 15
1 Input: n variables, domains of variables, and constraints. 1
) Output: an (approximate) solution.)
3 Section-1. Initialization of the system: 3
4 1. time step = 0; 4
2. For all position (i, j)€ e do
5 3 e(i, j).value = the corresponding i" value of domain Dj; 5
6 4 e(i, j).violation=0, 6
7 5. End for 7
6. For all ¢;€A do
8 7 Initialize(a;); 8
9 8. End for 9
10 Section-2.Running of the system: 10
9. While (true) do
1 10. Forall g€ A do 1
12 11. W = SelectBehavior(Random-Move, Least-Move, Better-Move); 12
13 12. New position (x’, i) = (¥ (a;.x, i), i); 13
13. If current-position (a;.x, i) = (x’, i) then stay
14 14. Else 14
15 15. RemoveFrom(a;.x, i); 15
16 16. AddTo(a;.x, i), 16
17. If current-state can satisfy us GoTo 21;
17 8. End for 1
18 19. time step ++; 18
20. End while
19 Section-3. Output solution: 19
20 21. For all ¢;,€ A do 20
21 22. X; = e(a;.x, i).value, 21
2 23. End for 2
23 Fig. 13. The basic ERA agorithm for solving CSPs. It should be noted that the parallel operations of distributed 23
24 agents are here simulated by means of sequentially dispathing agents and allowing them to sense the present state 24
25 of their environment, containing violation numbers, and then decide where to move. In so doing, the movements 25
26 of the agents will not interfere with each other. That is, their decisions will be independent. Thisisbecause in our 26
o7 implementation the sequentially updated violation numbers as aresult of each agent's movement will be copied -
g B the next state of the environment only after all the agents have been given the chance to move. -
29 29
2 2.3.2. Correctness 0
- We now givethe correctness theoremsfor the basic ERA algorithm. Detailed proofsfor — ;
s> thetheoremscan befoundin Appendix A. 2
3 Note that when the system terminates at condition-1, all agents are at zero-positions. 3
34) o) _) _ 34
s Theorem 2.1 If (x,y) is a zero-position, i.e., e(x, y).violation = 0, the following 4
3¢ assertionistrue: (Va; € A,i #y) (At e[l m]) (C(R) € C)A (R, =D;xDy) — 3
a7 {e(aj.x,i).value e(x, y).value) € C(R;). 37
38 38
39 Theorem 2.2. Theassignment of S = (X1, X2, ..., X)), X; = e(a;.x,i).value isanexact 39
40 solution when the system terminates at condition-1. 40
41 41
42 2.3.3. Complexity 42
43 Now let us discuss the complexity of the basic ERA algorithm. 43
44 44
45 45

Theorem 2.3. The space complexity of the basic ERA algorithmis O(>_| D;|).

ARTICLE IN PRESS

50004-3702(01)00174-6/FLA AID:1872 Vol.eee(eee) AIJ1872 P.16 (1-44)
ELSGMLTM(ARTINT) :mla 2001/12/17 Prn:18/12/2001; 8:37 by:violeta p. 16

16 J. Liu et al. / Artificial Intelligence eee (eeee) eoe—eee

Proof. The main contribution to the space complexity is from the storage for environment
e. e hasn rows, each row; has | D;| lattices. So the total number of latticesin e is)| D;]|.
For each lattice, it records 2 values, i.e., the domain value and the violation value. It
requires 2> | D;| unitsto record environment e. Another contribution to the spaceisfrom
the storage for n agents. For each agent, it records the current x-coordinate and three
probabilities for better-move, least-move, and random-move, respectively. So it requires
4n space unitsin total for n agents. If all the agents have the same probabilities for better-
move, least-move, and random-move, it needs only n + 3 units in total for n agents. In
conclusion, the space complexity isO(} | D;|). O

© 0 N OO g b~ W N P
© 0 N O g b~ W N P

[
o
=
o

[
[N
o
[

Theorem 2.4. The time complexity of the initializationis O(>_| D; |).

[
N
o
N

[
w
[
w

Proof. For lines2-5in Fig. 13, there arein total > | D;| lattices to be initialized with the
domain values and the violation numbers. So it needs2) " | D; | operators. And for lines 6—
8, there are n agentsto be initialized. For each agent, there are 3 operatorsfor initializing
the probabilities of three behaviors. There are in total 3n operations. So the complexity of
initializationisO(}_|D;|). O

[N
IS
[
IS

B R R e
©® N o o
Bk R e
© N o ua

[
©o
[
©

Theorem 2.5. The time complexity of each time step in the basic ERA algorithmis bounded
by O(n Y| D;|) in the worst case.

N
o
N
o

N
[
N
[

nN
N
N
N

Proof. The main contribution to the time complexity is from the agent’s move, including
the modification of violation numbers in the functions of RemoveFrom and AddTo, and
the checking of the solution state. The number of operations in RemoveFrom and AddTo
is > |D;| in the worst case that there exists a constraint between every two agents. And
for the checking of a solution state, it needs n checks in the worst case. Now for each
agent’s move, the total operation number is > | D;| + n. So the complexity is bounded by
O _|Di| + n) inthe worst case. In conclusion, for n agents, in the worst case, the time
complexity is bounded by O(nx (3. | D;| +n)) = On Y.|D;| +1n2) =0n Y. |D;]). O

nN
w
N
w

W W W NN NNNN
N P O © © N O U »
W W W NN NN NN
N P O © © N O U b

wW
w
w
w

3. Approximate solution

W
I
w
=

w
(&
w
(4]

One of the major motivationsfor devel oping the ERA multi-agent method isto be able
to find an anytime solution, although it may be approximate, within the time allowed. In
this section, we will discuss some properties of the basic ERA method, with respect to the
goal of deriving approximate solutions:

w
o
w
(&2}

W W W
© o N
w W w
© o N

I
o
IS
o

(1) Each state represents an approximate solution.
In the BT method, variables are assigned with values sequentially. Unless the first &
variables' assignments satisfy constraints, the (k + 1)th variable's assignment will not
be considered. Thus, we cannot get an assignment for all variableswhen the solutionis
not found. That isto say, in the process of BT, we cannot get an approximate solution.
However, in the ERA method, every state, including the initial state, represents an

N
ey
N
ey

e
A W N
E
A wWN

I
a
IS
a

ARTICLE IN PRESS

S0004-3702(01)00174-6/FLA AID:1872 Vol.eee(eee) A I J1872 P.17 (1-44)
ELSGMLTM(ARTINT) :mla 2001/12/17 Prn:18/12/2001; 8:37 by:violeta p. 17

J. Liu et al. / Artificial Intelligence eee (eeee) soe—eee 17

assignment to all variables, even though it may not be an exact solution. Therefore,
ERA is ableto provide an approximate solution at anytime.
This property isuseful for real-time systemsthat require asolution within afixed time
interval while being not so demanding on the optimality of the solution.

(2) The system always evolves toward a better state in which more and more constraints
are satisfied.
Note that random-p is much smaller than better-p and least-p in most situations.
Thus, agents will have a greater chance to choose either better-move or least-move, in
order to effectively reduce the number of dissatisfied constraints. In the ERA method,
e(a;.x,i).violation records the violation number for the position at which agent q;
resides.

© 0 N OO g b~ W N P
© 0 N O g b~ W N P

[N
o
2
S)

=
N e
e
[

[N
w
=
w

Definition 3.1. A (s) representsin the current state s the sum of the violation numbers
for those positions at which agentsreside, S0 A(s) = } ;¢(1., €(@i-x, i).violation.

N
~
=
~

i
al
P
a

If state s is not a solution state, that is, the positions of some agents are not zero-
positions, then A(s) > 0. Otherwise, A(s) = O for solution state s.

i
o
B
=

B
o ~
e
© ~

i
©
B
©

Theorem 3.1. For state s, A(s) =0 < s isasolution state.

N
o
N
o

Proof. Because Vi € [1,n], j € [1,|D;|], e(a;.x,i).violation > 0, we have
A(s) =0 < Vi € [1,n], e(a;.x,i).violation = 0 & s is a solution state (based on
Theorem2.2). O

N
[
N
[

NN
w N
NN
w N

[N
i
)
IS

Now we can see that the process of finding a solution is essentially a process of
minimizing the value of A(s). In initial state sg, A(sg) > O for most situations.
Gradually, as the system keeps on dispatching agents to move to smaller violation-
number positions, the value of A(s) will get minimized. When A(s) reaches zero, an
exact solution is found.

N
o
N
(&)

NN NN
© 00w N O
N NN
© © N O

w
o
w
o

Theorem 3.2. When agent ¢; moves from position (x1, y) to position (x2, y), the
variation of A can be computed as follows. A, = 2x (g2 — g1) where g1 = e(x1,
y).violation, g2 = e(x2, y).violation.

w
s
w
ey

W W
w N
w W
w N

W
I
w
=

Proof. We use A, 1 to denote the variation after picking up a; from (x1, y), A2 to
denote the variation after placing a; to (x2, y). When q; is at position (x1, y), there
will be g1 agents attacking a;. When we pick up a; from (x1, y), @;’s contribution
to A is zero, and al these g1 agents violation numbers are reduced by 1. Now
A1 = —q1 —q1 x 1= —2 x g1. Then we place a; to (x2, y), a;’S contribution
to X is g2, and there will be g agents attacking a;. The violation numbers of all
these g1 agents are increased by 1, i.e., A2 =¢2 + g2 x 1 =2 x g2. SO, we have
Ay =M1+ An=-2xq1+2xq2=2x(q2—¢q1). O

w
(&
w
(4]

AR OB W W W W
N B O © ©® N &
AN D W oW W W
N B O © ® N O

I
@
I
w

Theorem 3.3. After agent a; performs better-move or least-move, A; < 0.

IS
IS
IN
IS

I
a
IS
a

Proof. Because ¥_;(x, y) = ¢@(y),

ARTICLE IN PRESS

50004-3702(01)00174-6/FLA AID:1872 Vol.eee(eee) AIJ1872 P.18 (1-44)
ELSGMLTM(ARTINT) :mla 2001/12/17 Prn:18/12/2001; 8:37 by:violeta p. 18

18 J. Liu et al. / Artificial Intelligence eee (eeee) eoe—eee

e(x, y).violation > e(x, ¢(y)).violation
(based on Definitions 2.5 and 2.6), 5)

Ay, =2 x (e(x, ¢(y)).violation — e(x, y).violation)
(based on Theorem 3.2). (6)

Thus, for least-move, A; < 0.
And since

© 0 N OO g b~ W N P
© 0 N O g b~ W N P

X, when e(Random(| D, |), y).violation
_ > e(x, y).violation
Vb= Random(|D,), when e(Randomy(|Dy|), y).violation
< e(x, y).violation

[
o
=
o

=
N e
e
[

[
w
[
w

we have

[N
IS
[
IS

[
o
=
(&)

e(x, y).violation > e(x, ¥_(x, y)).violation,)

[
o
=
(2]

[
~
o
~

Ay =2 x (e(x, Y—p(x, y)).violation — e(x, y).violation)
(based on Theorem 3.2). (8)

Thus, for better-move, Ay <0. O

[
©
o
oo

NN
= O ©
NN
» O ©

nN
N
N
N

In the process of dispatching, agents will have a much higher probability to perform
either a better-move or aleast-move. So after each move, A; < 0, which meansthat A
is decreasing and the system is improving the solution. However, A(s1) < A(s2) does
not always indicate that state s1 is better than state s,. For instance, if s1 is aloca
optimum state, which means all agents are at minimum-positions, but not all of them
are at zero-positions, it is hard for s1 to move to a new state except using a random-
move. So, A isjust one of the important criteria.
(3) After afew steps, the assignments of most variables will satisfy constraints.

Because we randomly place the agents at the initialization step, they will seldom be
placed right at good positions. In other words, they will most likely be placed at
positions that have large violation numbers. After one time step, many agents that
apply the behavior of better-move or least-move will move to positions with smaller
violation numbers, which means A, < 0. The improvement achieved at the first time
step will be very substantial because | A, | is large. While at the following time step,
the chance for finding a smaller violation position is becoming less as many agents
are aready at the minimum-positions of their respective rows. After r time steps
(to different problem r is different), the variation of A will fluctuate up and down
around a fixed value. In this state, the agents usually stay at their original positions
and only the behavior of random-move will make them move to other positions. In
such states, A is very small and the corresponding solution can satisfy most of the
congtraints. So, if we do not require an exact solution, we may stop the system and
get an approximate solution from the current state. This phenomenon can readily be
observed in the experiments of solving n-queen problemsand coloring problemsasto
be discussed in the next section.

nN
w
N
w

A A B B B W OW W W W W W W W WNNNNNN
A W N P O © © N O O & W N P O © © N O O »
A A B B B OWOW W W W W W W WWN N NDNDNDN
A W N P O © ©® N O U B W N P O © © N O o b

I
a
IS
a

ARTICLE IN PRESS

50004-3702(01)00174-6/FLA AID:1872 Vol.eee(eee) AIJ1872 P.19 (1-44)
ELSGMLTM(ARTINT) :mla 2001/12/17 Prn:18/12/2001; 8:37 by:violeta p. 19

J. Liu et al. / Artificial Intelligence eee (eeee) soe—eee 19

4. Empirical studies on extended ERA methods with behavior prioritization and
different selection probabilities

The preceding sections have presented the basic ERA formulation and algorithm,
and discussed some of their key properties. In this section, we will further examine
the extensions and performance of the ERA approach under various behavioral settings.
Specifically, the goal of this section isthreefold:

© 0 N OO g b~ W N P
© 0 N O g b~ W N P

(1) It presents several empirical results on solving different n-queen and coloring
problems.

(2) It discusses how to apply and implement this approach by choosing the probabilities
of least-move and random-move.

(3) It examines the effectiveness of prioritizing agent behaviors in order to efficiently
derive an approximate solution.

[N
o
2
S)

i~ S S =
a b W N B
e <
a ~» w N B

i
o
B
=

In the experiments, we will initidize al agents with the same set of parameters,
i.e., (better-p, least-p, random-p). Specificaly, Vi € [1, n], a;.better-p = better-p, a;.least-
p=least-p, a;.random-p = random-p.

[
~
o
~

P~
© ©
P
© ©

N
o
N
o

4.1. n-queen problem

N
[
N
[

nN
N
N
N

An n-queen problem has been stated in Example 1.1. It is required to place n queens
on an n x n chessboard so that no two queens are in the same row, or the same column,
or the same diagonal. This problem is a good benchmark because its problem size n can
vary from 4 to avery large number. Also the solution to an n-queen problem can find many
practical applications[39].

An n-queen problem can be trandated into a binary CSP as described in Example 1.1
of Section 1.1:

nN
w
N
w

NONNNNN
© ® N o o »
NONONNNN
© ® N o g »

w
o
w
o

e nqueens: X ={X1, Xo,..., Xp}.
e n x n chesshoard: D ={D1, Do, ..., D,}, Vi, D; ={1,2,...,n}.
e Placement requirement:

w
s
w
ey

w
N
w
N

wW
w
w
w

C={CR) Vi, jelln]l,C(R)={(b,c)|beD;, ceDj, b+#c,
i—j#b—c, i—j#c—Db}}.

W
I
w
=

w W
o O
W W
o o

w
N
w
N

In this CSP, each variable has the same domain [1, n] and there is a constraint between
every two variables. In the following paragraphs, we will show how to apply the basic ERA
agorithm to solve this problem.

First, we use n agentsto represent n queens (variables), a; representsvariable X;, which
isaqueenin row;. Second, we model the domains, i.e., the chessboard, as the environment
of the agents (see Fig. 14(a)). Fig. 14(b) presents an example of the multi-agent system for
a4-queen problem.

At the initialization step, the domain values will be recorded as e(i, j).value (see
Fig. 14(a)) and the violation numbers for all positions will be set to zero (see Fig. 15(a)).

wW
@
w
oo

N)
X ® N B O ©
N N Y
5 ® N B O ©

I
a
IS
a

ARTICLE IN PRESS

S0004-3702(01)00174-6/FLA AID:1872 Vol.eee(eee) AIJ1872 P.20 (1-44)
by:vi

ELSGMLTM(ARTINT) :mla 2001/12/17 Prn:18/12/2001; 8:37 oleta p. 20
20 J. Liu et al. / Artificial Intelligence eee (eeee) eoe—eee
1 X |1]2]3]4 X, (a)) X 1121 1
) X, [1]2]3]4 X, X 1313)
X X[1]2]3]4 X; (a3 X (2 1]3]1 X
X, [1]2]3]4 X, | [aa) ANTONNE
4 4
5 5
a b
. (@ (b) © 6
7 Fig. 14. (a) The representation of domain values for a 4-queen problem. (b) Four agents dispatched into the 7
8 4-queen environment. (c) Updated violation numbers corresponding to the positions of the four agents. 8
9 9
10 10
1 88 88 o[o[y 0 11
T o[1[1]1
12 olololo Place a; at (ﬂﬂiﬂ) ol 110 12
13 0l o[o]o olo[1]0 '
14 14
15 (a) (b) 15
16 16
17 Fig. 15. (a) Violation numbers at the initialization step. (b) Violation numbers updated having placed a1 at (3, 1). 17
18 18
19 19

After that, agents will be randomly placed onto different rows. For instance, if agent a1
is placed at position (3, 1), the violation numbers in the environment will be updated
accordingly, as shownin Fig. 15(b).

Fig. 16 presents a series of snapshots from an 8-queen problem experiment. Here each
circle signifies an agent. The number on the lattice gives the corresponding violation
number. The deeper the color of a lattice, the larger the violation number of that position
will be. First, in the initialization of time step O in Fig. 16(a), eight agents are randomly
placed onto the rows. In this particular case, none of the agentsis at a zero-position. Five
of them are at the positions of violation = 3. Two agents are at the positions of violation
= 2. One agent is at the position of violation = 1. Obviousdly, the assignment according to
this state is not a solution. For agent a1 at position (4, 1), we can observe that agent a, at
(3,2) and agent a3 at (2, 3) areboth in the same diagonal as aj, and agent a4 isin the same
column as a1. So the position where a1 stays has the violation number of 3. In this state of
50, A (50) =3+3+3+3+3+2+2+1=20.

Between time step 0 and time step 1, most agents can move to a better position that
reduces the violation number. At time step 1, eight agents have moved to a better position.
Nowwehave i (s1) =14+14+0+1+ 140+ 0+ 0= 4. Inthisassignment, four variables
(i.e, X3, Xg, X7, and Xg) satisfy all the constraints applicableto them. Two pairs, (X1, X5)
and (X2, X4), cannot satisfy the constraints. X1 and X5 are in the same diagonal, and X2
and X4 are in the same column. Obviously, the assignment in state s1 is much better than
the assignment in state so.

From time step 1 to time step 2, the following moves have occurred: s1 = aa stays,
as least-move to (6, 5), az stays, as Stays, az stays, a7 stays, a1 stays, and ag stays = so.
Now, A(s2) =04+ 14+0+1+0+ 0+ 0+ 0= 2. In this assignment, six variables (i.e.,
X1, X3, X5, X6, X7, and Xg) satisfy all the constraints related to them, while the pair of
(X2, X4) cannot satisfy each other.

N
o
N
o

A A B B B W OW W W W W W W WWNNNNNNDNDNDN
A W N P O © ©® N O O A W N P O © 0 N O 0 b W N B
A A B OB B OWOWWW W W W W WWN NN NN DNDNDNDN
A W N P O © © N O O & W N P O © © N O g b W N B

I
a
IS
a

ARTICLE IN PRESS

50004-3702(01)00174-6/FLA AID:1872 Vol.eee(eee) A I J1872 P.21 (1-44)
by:vi

ELSGMLTM(ARTINT) :mla 2001/12/17 Prn:18/12/2001; 8:37 oleta p. 21
J. Liu et al. / Artificial Intelligence eee (eeee) soe—eee 21

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9
10 10
11 11
12 12
13 13
14 14
15 15
16 16
17 17
18 18
19 19
20 20
21 21
22 22
23 23
24 (c) 24
25 25
o6 _Fig. 16. (8) so at_ti me step O (initialization). (b) s1 at time step 1. (C) s7 at time step 2. (d) s3 at time step 3, which 26

is an exact solution state.

27 27
28 28
29 From time step 2 to time step 3, the moves can be summarized as follows. s2 = a4 54

0 least-moveto (8, 4) but al other agents remain at the same positions = s3. Now, A(s3) =
21 0+0+0+4+0+0+0+40+40=0.Anexact solution state is reached.

32

a3 4.1.1. The effects of the least-p/random-p ratio and behavior prioritization

34 Having illustrated the process of the basic ERA system in solving an n-queen
35 problem, let us now consider the effects of behavior selection probabilities and behavior
36 prioritization on the efficiency of finding an exact solution. In the experiments, we will
37 let the system run until an exact solution is found. For the ease of comparison, we will
38 record the average runtime required for generating the solution. Based on the observations
39 made from the experiments, we will empirically show how the basic ERA method can be
40 improved by adjusting random-p and by prioritizing behaviors.

41

42 4.1.1.1. The least-p/random-p ratio. From the above sections, we know that besides
43 better-move and least-move, random-move is also necessary. If there is no random-move,
44 j.e,random-p = 0, the system may get stuck in alocal optimum and cannot find asolution.
45 Now, the question that remainsis how to set the probability ratio, least-p/random-p. It is

AN DA B D D W®OW W W W W W W W W
O F W N B O © ® N & b~ ® N P O

ARTICLE IN PRESS

50004-3702(01)00174-6/FLA AID:1872 Vol.eee(eee) A I J1872 P.22 (1-44)
by:vi

ELSGMLTM(ARTINT) :mla 2001/12/17 Prn:18/12/2001; 8:37 oleta p. 22
22 J. Liu et al. / Artificial Intelligence eee (eeee) eoe—eee

1 Table 1 1

2 Average runtime for different ratios of least-p to random-p 2

3 average runtime (s) least-p : random-p 3
2 0.5n n 1.5n 2n 2

1000 17.13 12.13 8.63 15.75

5 2000 9138 35 3L13 46.88 5

6 3000 124.88 120.75 79.75 113.13 6

7 n 4000 270.88 151.88 150.25 187.25 7

8 5000 598.25 451.13 370.75 530.38 8

. 6000 641.38 722.88 496.75 426.38 o

7000 3478.75 1476.5 1011.5 1971.5

10 10
11 11
1> hot so intuitive to see the most effective setting for solving a problem. In the following ;»
13 experiment, wewill try to empirically determine a good least-p/random-p ratio. 13
14 14
15 Experiment 4.1. n = {1000, 2000, 3000, 4000, 5000, 6000, 7000}, least-p/randomp= 15
16 {0.5n,n,1.5n, 2n},type= LR (10 runs). Notethat the reason that wetest n-queen problems 16
17 Upto 7000 queensis because beyond that number, the memory limitation of our computer ;7
18 becomesaproblem. The behavioral type of LR indicatesthat in this experiment, the agents 15
19 Will only use the least-move and random-move behaviors. 19
20 20
21 Observation 4.1. The bold and underlined numbersin Table 1 correspond to the shortest 21
22 onesamong al the ratios for each n. As shown in the table, for all n except n = 6000, the 22
23 ratio of least-p to random-p that results in the shortest runtime is 1.51. Therefore, wecan 23
24 obtain an empirical rule for setting the ratio of least-p/random-p: For n-queen problems, 24
25 thegood ratiois 1.5n. 25
26 26

N
~
N
~

4.1.1.2. The high-priority better-move. Behaviors better-move and least-move are simi-
lar: moveto aposition based on the violation number. At each time step, it would be much
easier for an agent using better-move to find a better position to move to than for the one
using least-move. This is because least-move checks all the positions in its row, whereas
better-move checks only one position. Therefore, the time complexity of better-move is
much less than that of least-move.

In order to take the advantage of better-move, we decide to set this behavior to the
highest priority, which means that an agent will first use better-move to compute its new
position. If it failsto find a better position to moveto, the agent will then turn to least-move.
We call this behavior better-least-move, the probability of which will be the same as that
of least-p.

Initially, most agents are at the positions with large violation numbers. The chance of
successfully finding a position to move to with better-move is quite high. Thus at the first
step, most agents will perform a better -move instead of aleast-move.

Further to the above prioritized better-move, the next question is whether more better-
move attempts will be helpful (since their complexity is |ow—a comparison operation). If
so, how many better-move attemptswill be most effective?n order to examinetheseissues,
we will introduce another better-move right after the first better-move fails in finding a
better position. For example, if a; at position (x, y) performsabetter-move, it will compute

nN
©
N
oo

A A B B B W OWWWWW W W W WN
A W N P O © ©® N O O A W N P O ©
A A B B B OWOWWWWW W W W W N
A W N P O © © N O O B W N P O ©

I
a
IS
a

ARTICLE IN PRESS

50004-3702(01)00174-6/FLA AID:1872 Vol.eee(eee) AIJ1872 P.23 (1-44)
ELSGMLTM(ARTINT) :mla 2001/12/17 Prn:18/12/2001; 8:37 by:violeta p. 23

J. Liu et al. / Artificial Intelligence eee (eeee) soe—eee 23

BetterMove Number for each step

N=100
~#-N=1000
~N=2000

© 0 N OO g b~ W N P
© 0 N O g b~ W N P

[N
o
2
S)

[
[N
o
[

o
N

[
N
o

10 20 30 40 50 60 70 80

[N
w
=
w

N
~
=
~

Fig. 17. Total better-move number vs clock step.

i
al
P
a

Y_p(x,y). If ¥ _p(x, y) =x, thenit will computey _(x, y) again. If at thistime v _, (x,
y) = x, it will then turn to least-move. We call this behavior BBLR (i.e., one better-move
and if it cannot find a better position, it will perform BLR) type of behaviors. Extending
this concept, with the probability of least- p, the agents may perform at most r times better-
move until it finds a better position to moveto. We denote this behavior prioritization rBLR
and its complexity isr.

i
o
B
=

NN R e
P O © ©
NN R e
P O © ©

nN
N
N
N

4.1.1.3. The number of better-move at each step. Now, let us examine how many better-
move attempts are needed in order to find a better position at each time step of the system.
We will test and record the total number of better-movefor all agents successfully finding a
better position with better-least-move and random-move (this type of combined behaviors
iscalled BLR). In this experiment, » = 100, 1000, and 2000, respectively.

nN
w
N
w

NN NN
N o g b
NN NN
N o o b

nN
©
N
oo

Experiment 4.2. n = {100, 1000, 2000}, least-p/random-p=n, type=BLR.

N
©o
N
©

w
o
w
o

Observation 4.2. From Fig. 17, we note that except at time step 1, the lines for n = 100,
1000, and 2000 go very smoothly without so much changes. That means better-move
enables most agentsto find better positions at the first step.

Specifically, 32 agents in the 100-queen problem, 247 agents in the 1000-queen
problem, and 541 agents in the 2000-queen problem can move to a better position by
using better-move at the first time step. And after the first step, very few agents can find
a better position with better-move. Based on the observation, we may change the type
of behavior prioritization into FBLR, which means agents will perform BLR only at the
first (F) time step and then perform LR at the following steps. So, the type of combined
behaviors changes during the process.

w
s
w
ey

AW W W W W W W W
o © 0 N O g B~ W N
AW W W W W W W W
O © © N O g & W N

IS
hiy
IN
a

4.1.1.4. rBLR. Agents will apply this type for all steps. We will test the runtime for
n=1000with r =1, 2, 3, and 5, respectively.

P
w N
P
@w N

IS
IS
IN
IS

Experiment 4.3. n = 1000, least-p/random-p = n, type = {BLR, 2BLR, 3BLR, 5BLR}
(10 runs).

I
a
IS
a

ARTICLE IN PRESS

S0004-3702(01)00174-6/FLA AID:1872 Vol.eee(eee) A I J1872 P.24 (1-44)
ELSGMLTM(ARTINT) :mla 2001/12/17 Prn:18/12/2001; 8:37 by:violeta p. 24

24 J. Liu et al. / Artificial Intelligence eee (eeee) eoe—eee

Table 2

Average runtime of n = 1000 with rBLR

BLR 2BLR 3BLR 5BLR
average runtime (s) 6.13 4.5 5.25 10.25

Table 3

Average runtime of n = 1000 with LR, rBLR, and FrBLR

average runtime (s) type

LR rBLR FrBLR
6.13 5.25
12.25 4.5 3.63
5.25 4.75
10.25 8.25

© 0 N OO g b~ W N P
© 0 N O g b~ W N P

[N
o
2
S)

[
[N

o
[

o
N

[
N
W ||| =

B
AW
B
N oW

Observation 4.3. From Table 2, we note that the system has the best performance when
r = 2. That means 2BLR will create more chance for agents to find a better position than
BLR. The runtime complexity of 2BLRislessthan 3BLRand 5BLR. So, 2BLR will be the
best setting if we want to successfully find better positions, and at the same time, have less
runtime complexity.

i
al
P
a

N R i T
S © ® N o
N e
S © ©® N o

N
[
N
[

4.1.15. LRvsrBLRvsFrBLR. Thefollowing experiment comparesthe averageruntime
among the prioritization types discussed above. LR means that an agent only has two
moving behaviors. least-move (with the probability of least- p) and random-move (with
the probability of random- p). FrBLR means that the agent will perform »BLR behavior at
thefirst step and then perform LR at all the following steps.

nN
N
N
N

NN NN
o 0~ W
NN NN
o 0 b~ W

N
~
N
~

Experiment 4.4. n = 1000, least-p/random-p=n, type= {LR BLR, 2BLR, 3BLR, 5BLR,
FBLR, F2BLR, F3BLR, F5BLR} (10 runs).

NN
© 0
NN
© o

w
o
w
o

Observation 4.4. The results given in Table 3 show that FBBLR has the best runtime
performance among all the types. For Vr € {1, 2, 3, 5}, the runtime of FrBLR is less than
that of rBLR. So, we conclude that FrBLR is better than rBLR, and rBLR is better than
LR

w
s
w
ey

W W W w
a b W N
W W W w
a b W N

w
o
w
(&2}

4.1.2. Approximate solution

In this section, we will study the performance of the system in finding an approximate
solution by tracking at each time step the total number of agent moves, the number
of agents at zero-positions, and the total number of zero-positions. The results of our
experiments consistently indicate that Vn € [100, 7000], the system will converge as
41 follows:

w
~
w
~

» B W W
N o © o
AODA D oW W
N B O © ©

I
w

43 o After 1 step, 80% agents are at zero-positions.
44 o After 2 steps, n — c1 (where c1 isaconstant, ¢1 &~ 25) agents are at zero-positions.
45 o After 3steps, n — ¢ (where ¢z isaconstant, c2 & 7) agents are at zero-positions.

P
a b

ARTICLE IN PRESS

S0004-3702(01)00174-6/FLA AID:1872 Vol.eee(eee) AIJ1872 P.25 (1-44)
by:vi

ELSGMLTM(ARTINT) :mla 2001/12/17 Prn:18/12/2001; 8:37 oleta p. 25
J. Liu et al. / Artificial Intelligence eee (eeee) soe—eee 25
1 This property enables the system to efficiently find an approximate solution: 3 steps are 1
2 needed in order to find an approximate solution, in which about n — 7 queens will not 2
3 attack each other. 3
4 4
® 4.1.2.1. Isthesystemstable? In thefollowing paragraphs, we will track the system step ~ °
® by step and show how the system performs. The measuresto be considered are as follows: ©
7 7
8 e Move-Num (number of moves): First, we observe the total number of moves that °
o al agents have performed, from the beginning of the system till the current time °
10 step (i.e., accumulative number). Before an exact solution is found, the agentsinthe *°
1 system should move to other positions to improve the current assignment. If noagent **
12 moves, the system will not improveitself. Thus, the number of moves at one time step 12
3 measures the improvement speed of the system. B
“ e Zero-Agent-Num (number of agents at zero-positions): This measure expresses how
1 good the assignment in the current state is. If Zero-Agent-Num= n, the current state
ij is an exact solution state. A larger Zero-Agent-Num means more variables satisfy the ij
congtraints.
iz e Zero-Position-Num (zero-position number in the environment): If there are a lot of iz
" zero-positionsin the environment, the agents will have agood chanceto find and move 0
to zero-positions. So, the Zero-position-Num implies the degree of difficulty to find a
21 - A . . 21
» zero-position to move to, and the difficulty for the system to improveitself. ’r
- Now let us examine the cases of n = 100, 1000, and 2000. -
25 25
.6 Experiment 4.5.n = {100, 1000, 2000}, least-p/random-p = n, type= 2BLR. %
27 27
28 Observation 4.5. 28
29 29
30 (1) Move-Num: As shown in Figs. 18 and 19, especialy in large problem sizes such as 30
31 n = 1000, the agents move more drastically at the first time step, and thereafter the a1
32 total number of moves increases sowly. This means that the agents can easily find 32
33 a better position to move to at the first step, and then the chance of finding a better 33
34 position decreases as time goes by. 34
35 (2) Zero-Position-Num: As aso shown in Figs. 18 and 19, except in small problem sizes 35
36 such as n = 100, the number of zero-positions drops sharply at the first 3 stepsand 36
37 then fluctuates at the following steps. These may explain why Move-Numincreasesat 37
38 thefirst 3 steps and then remains unchanged. More zero-positions means more chance 3s
39 for agentsto find a better position. 39
40 (3) Zero-Agent-Num: The plots as shown in Figs. 18-19 all increase at the first 3 steps, 40
41 nearly reaching n, and then dlightly fluctuate. This means that the system improves 41
42 itself quickly during thefirst 3 steps. 42
43 43

IS
=

44 4.1.2.2. Approximate solution: thefirst 3 steps. Since we have observed that the system
45 will convergeand itsimprovement will slow down after 3 steps, we can just let the system

IS
a

ARTICLE IN PRESS

S0004-3702(01)00174-6/FLA AID:1872 Vol.eee(eee) AIJ1872 P.26 (1-44)
by:vi

ELSGMLTM(ARTINT) :mla 2001/12/17 Prn:18/12/2001; 8:37 oleta p. 26
26 J. Liu et al. / Artificial Intelligence eee (eeee) eoe—eee

1 Number N=100 1

2 300 mm ——Moe-Num 2

3 250 —a—Zero-Agent-Num °

4 4

5 200 5 Zero-Position-num ‘ 5

6 : 6

; 1504 e ‘ ;

8 1001 A g agptnste. . nu gt ‘ 8

9 9
10 50 ‘‘ 10
11 0 11
12 0 35 10 15 20 O 5 12
13 13
14 Fig. 18. Move-Num, Zero-Agent-Num, and Zero-Position-Num (rn = 100). 14
15 15
e N N=1000 10
7 12000t - 7
18 18
19 10000 —e—Move-Num 19
20 8000 —s— Zero-Agent-Num 20
21 " 21
- 6000 Zero-Position-Num -
23 23
24 4000 24
25 2000 25
26 26
27 0 ' 27
o8 0 3 5 10 15 20 28
29 29
20 Fig. 19. Move-Num, Zero-Agent-Num, and Zero-Position-Num (n = 1000). 20
31 31
32 runfor 3 steps and then get an approximate solution. Experiment 4.6 examines how well 3
33 thesystem doesat thefirst 3 steps. 33
34 34
35 Experiment 4.6. n = [100, 7000], An = 100, least-p/random-p = n, type = F2BLR 35
36 (10runs). 36
37 37
38 Observation 4.6. 38
39 39
40 (1) Our experiments have shown that after the initialization, nearly 10% agents stay at 40
41 zero-positions. a1
42 (2) After the 1st step, nearly 80% x n agents stay at zero-positionswhen n islarger than 42
43 1000, as shown in Fig. 20. That means when n > 1000, there are 80% variables 43
44 assignments can satisfy the constraints. This result is desirable because it is obtained 44
45 by just one step. 45

ARTICLE IN PRESS

50004-3702(01)00174-6/FLA AID:1872 Vol.eee(eee) A I J1872 P.27 (1-44)
by:vi

ELSGMLTM(ARTINT) :mla 2001/12/17 Prn:18/12/2001; 8:37 oleta p. 27
J. Liuet al. / Artificial Intelligence eee (eeee) soe—see 27

1 n=100-7000, Step 1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9
10 10
11 11
12 0 2000 4000 6000 8000 12
13 13
14 Fig. 20. Average Zero-Agent-Num/n of the 1st step for n = 100 to 7000, An = 100. 14
15 15
16 16
17 N=100-7000, Step 2 17
18 18
19 19
20 g 20
21 Z 21

c

22 % 22
23 é 23
24 "‘:‘) 24
25 é 25
26 26
27 I n 27
28 0 1000 2000 3000 4000 5000 6000 7000 8000 28
29 29
30 Fig. 21. Average Non-Zero-Agent-Num of the 2nd step for n = 100 to 7000, An = 100. 30
31 31
32 32
33 (3) After the 2nd step, nearly n — 25 agents stay at zero-positions when n is larger than 33
34 1000, as shown in Fig. 21. That means when n > 1000, there are about n — 25 a4
35 variables' assignments can satisfy the constraints. On the other hand, there are about 35
36 25 variables' assignments cannot satisfy the constraints. Thisresult isobtained by just 36
37 two steps no matter how largen is. 37
38 (4) After the 3rd step, nearly n — 7 agents stay at zero-positions when »n is larger than 38
39 1000, asshownin Fig. 22. That meanswhen n > 1000, thereareabout n — 7 variables 39
40 assignments can satisfy the constraints. Thisis a good approximate solution obtained 40
41 in just three steps. 41
42 42

I
@
I
w

Based on Theorem 2.5, we know that the complexity for the first time step is
O(n Y | D;|). Thus, we can tell that the complexity for the approximate solution will be
bounded by O(n | D;|). For n-queen problems, | D;| = n, the complexity will be bounded

IS
IS
IN
IS

I
a
IS
a

ARTICLE IN PRESS

S0004-3702(01)00174-6/FLA AID:1872 Vol.eee(eee) AIJ1872 P.28 (1-44)
by:vi

ELSGMLTM(ARTINT) :mla 2001/12/17 Prn:18/12/2001; 8:37 oleta p. 28
28 J. Liu et al. / Artificial Intelligence eee (eeee) eoe—eee
1 N=100-7000, Step 3 1
2 2
3 3
4 E 4
5 & . . 5
(7]

: { sl :
8 E 8
9 é 9
10 z 10
11 0 1000 2000 3000 4000 5000 6000 7000 BOOB 11
12 12
13 13
1 Fig. 22. Average Non-Zero-Agent-Num of the 3rd step for » = 100 to 7000, An = 100. 14
15 15
16 16
17 i (@) 17
18 j X X X 18
19 19
20 20
”n Fig. 23. Attacking 3 positions at most. ”n
22 22
23 by O(n®). Infact, for such problems, the single time step complexity of the ERA method 23
24 isO(n?). 24
25 25
26 Theorem 4.1. The single time step complexity of the ERA method in solving n-queen 26
27 problemsis O(n?). 27
28 28
29 Proof. The total number of operations in RemoveFrom and AddTo is 6n in the worst 29
30 case. Thisis because between agent ¢; and all other agents in row;, there exist at most 30
31 3 positionsin row; (see Fig. 23), in which the agents will attack «;. So the computation 3t
32 of RemoveFrom and AddTo is 3n, in total 6n. Asfor checking a solution state, it needsn 32
33 testsintheworst case. Now for each agent’s move, the total number of operationsis7n. So 33
34 the complexity for onetime step is 7n2, bounded by O(n2), and the complexity for 3-step 34
35 gpproximatesolution findingisaso O(n?). O 35
36 36
37 4.1.2.3. Runtime for finding an approximate solution. Now let us take a look at the 3,
3g runtimein finding an approximate solution in 3 steps. 38
39 39
4 Experiment 4.7. n = {100, 500, 1000, 2000, 3000, 4000, 5000, 6000, 7000}, least-p/ 4o
41 random-p =n, type= F2BLR (10 runsfor 3 steps each). a
42 42

I
@
I
w

Observation 4.7. Fig. 24 shows that the empirical results are consistent with Theorem 4.1.
To find an approximate solution in 3 time steps, in which nearly n — 7 variables satisfy the
congtraints, the runtime complexity is O(n?).

IS
IS
IN
IS

I
a
IS
a

ARTICLE IN PRESS

S0004-3702(01)00174-6/FLA AID:1872 Vol.eee(eee) AIJ1872 P.29 (1-44)
by:vi

ELSGMLTM(ARTINT) :mla 2001/12/17 Prn:18/12/2001; 8:37 oleta p. 29
J. Liu et al. / Artificial Intelligence eee (eeee) soe—eee 29
1 n =100-7000, 3 steps 1
2 120 2
s 100 s
4 4
5 ~ 80 5
O

6] 6
7 é 50 7
8 2 0 8
9 9
10 20 10
11 0 . 11
12 0 1000 2000 3000 4000 5000 6000 7000 8000 12
13 13
14 Fig. 24. Average runtime (second) for 3 steps (n = 100 ~ 7000). 14
15 15
16 16
- 1000 n =100-7000 -
18 %04 18
19 800 19
20 5 0| ——exactsduio 20
21 é 600 i«lwapproximate solution B LG 21
22 % 500 22
23 .E- 400 23
24 : 300 24
25 200 | 25
26 100 n 26
27 0 S 27
28 0 1000 2000 3000 4000 5000 6000 7000 8000 28
29 29
20 Fig. 25. Average runtime (second) for finding an exact solution and an approximate solution (n = 100 ~ 7000). 20
31 31
32 We have also compared the runtime for deriving an exact solution with that for finding 3
33 anapproximate solution. The results are presented in Fig. 25. 33
34 34
35 4.2. Coloring problem 35
36 36
37 A coloring problem has been defined in Example 1.2. Many problems of practical 37
38 interest can be modeled as coloring problems, such as time tabling and scheduling [21], 38
39 frequency assignment [14], register alocation [4], printed circuit board testing[15], and 39
40 pattern labeling [31]. 40
41 Given an undirected graph G = (V, E), an m-coloring problem can be trandated intoa 41
42 binary CSP asfollows: 42
43 43
44 e nnodes, V: X ={X1, Xo,..., X»}, X; representsv; € V. 44
45 e mcolors: D={D1,Do,...,D,},Vi,D; ={1,2,...,m}. 45

ARTICLE IN PRESS

50004-3702(01)00174-6/FLA AID:1872 Vol.eee(eee) A I J1872 P.30 (1-44)
by:vi

ELSGMLTM(ARTINT) :mla 2001/12/17 Prn:18/12/2001; 8:37 oleta p. 30
30 J. Liu et al. / Artificial Intelligence eee (eeee) eoe—eee

1 e Coloring requirement: 1
2 2
3 C={C(Ry) |Vi,jellnl(vi,v;) €E,C(R,) ={(b.c)|be Dj,ceDj, 8
4 4
5 b# C}}' 5
6 . . i . . 6
; Inthiscasg, all variables have the same domain, [1, m], and there is a constraint between
¢ two nodes incident to an edge. An example coloring problem is given in Fig. 26. This
o instance can be colored by using three colors. Now, let us see how the ERA method works
10 Insolving this problem. 10
1n First, we use four agents to represent four nodes (variables). a; represents node v;
12 (variable X;). Second, we model thedomainsasthe environment of the agents (seeFig. 27). ;5
13 Initially, the domain values (labels of color) will be recorded as e(i, j).value (see 43
12 Fig. 27(a)) and the violation numbers for al positions will be set to zero. After that, we
15 will randomly place the agents onto different rows. For instance, if we place agent a1 a5
16 position (2, 1), the violation numberswill be updated accordingly as shown in Fig. 28. 16
17 In what follows, we will examine the performance of the ERA method in solvingaset 47
18 Of large-scale coloring problems from DIMACS (the Center for Discrete Mathematicsand 1
19 19
20 20
2 () 2
22 22
: o | e :
24 24
25 G 25
% Fig. 26. A coloring problem. %
27 27
28 28
29 X, [1]2]3 X, [[a vy.color=2 xi[1(2o 29
30 X[1]12]3 X5 ‘:> vy.color=1 X @ 210 30
a1 X;[1]2]3 X | () vs.color=2 X[1o a1
2 Xs|1]2]3 X4 vs.color=2 ANON -
33 33
4 @) (®) © 34
35 Fig. 27. (a) The representation of domain values into the environment of a multi-agent system for the coloring ~ 3°
36 problem of Fig. 26. (b) Four agents dispatched into the environment, the positions of which correspond toa 36
37 specific color assignment. (c) Violation numbers updated. 37
38 38
% 0[0]0 O %
40 0/0[0 . ol110 40
41 ololo Place ay ol 110 41
42 0/0]0 o/1]o0 42
43 (ﬁ) (b) 43
44 44

45 Fig. 28. (a) Violation numbers at theinitialization step. (b) Violation numbers updated having placed a; at (2,1).

IS
a

ARTICLE IN PRESS

50004-3702(01)00174-6/FLA AID:1872 Vol.eee(eee) AIJ1872 P.31 (1-44)
ELSGMLTM(ARTINT) :mla 2001/12/17 Prn:18/12/2001; 8:37 by:violeta p. 31

J. Liu et al. / Artificial Intelligence eee (eeee) soe—eee 31

Theoretical Computer Science) [47].1 In particular, we will use the test problems from
Donald Knuth’s Stanford GraphBase [48].

Each problem includes the information of (nodes, edges), number of optimal colors,
and source. Thus, each problem has n variables, where n isthe number of nodes, k£ values
for each domain, where k is the number of optimal colors, and m constraints, where m
is the number of edges. In the following listing, the source of SGB (from Michael Trick
(trick@cmu.edu)) refersto Donald Knuth's Stanford GraphBase:

© 0 N OO g b~ W N P
© 0 N O g b~ W N P

(1) miles250.col (128,387), 8, SGB
(2) miles500.col (128,1170), 20, SGB
(3) miles750.col (128,2113), 31, SGB
(4) miles1000.col (128,3216), 42, SGB
(5) miles1500.col (128,5198), 73, SGB
(6) anna.col (138,493), 11, SGB
(7) david.col (87,406), 11, SGB
(8) huck.col (74,301), 11, SGB
(9) jean.col (80,254), 10, SGB
(10) games120.col (120,638), 9, SGB
(12) inithx.i.1.col (864,18707), 54, REG

[N
o
2
S)

[T e S S T S S
S © ® N o U A W N P
N e T O
S © ©® N o A W N P

N
[
N
[

In the above problems, miles graphs are similar to geometric graphsin that the nodes are
placed in space with two nodes connected if they are close enough. The nodes represent a
set of United States cities and the distance between them corresponds to the road mileage
recorded in 1947. Book graphs are created where each node represents a character and
two nodes are connected by an edge if the corresponding characters encounter each other
in the book. The book graphs were created by Anna, David, Huck and Jean. games120
from Knuth represents the 1990 college football season. In games120, the nodes represent
college teams and two teams are connected by an edge if they played against each other
during the season. inithx.i.1 is a problem based on register alocation (named REG) as
contributed by Gary Lewandowski (gary@cs.wisc.edu).

nN
N
N
N

W W N NNNN NN
P O © 0 N O U » W
W W N NN NN NN
P O © © N O U » W

w
N
w
N

4.2.1. Approximate solution

In the previous experiments on n-queen problems, we have shown that the system can
get agood approximate solution after 3 steps. Similarly, for coloring problems, wewill also
test the performance of 3 steps. We will examine the runtime for 3 steps and the number of
agents at zero-positions (Zero-Agent-Num) at each time step.

wW
w
w
w

W oW W W
N 6o o A
W oW W W
N o oo A

wW
@
w
oo

Experiment 4.8. least-p/random-p = n, type= BBBLR (10 runsfor 3 steps each).

w
©
w
©

I
o
IS
o

Observation 4.8. The system can quickly find an approximate solution. As shown in
Table 4, the average runtime measurement for all problems are close to zero.

IS
hiy
IN
a

P
w N
P
@w N

IS
IS
IN
IS

1 More information can be found from the OR-Library [49] for test data sets for a variety of Operations
Research (OR) problems.

I
a
IS
a

ARTICLE IN PRESS

50004-3702(01)00174-6/FLA AID:1872 Vol.eee(eee) A I J1872 P.32 (1-44)
by:vi

ELSGMLTM(ARTINT) :mla 2001/12/17 Prn:18/12/2001; 8:37 oleta p. 32
32 J. Liu et al. / Artificial Intelligence eee (eeee) eoe—eee
1 Table4 1
2 Zero-Agent-Num for coloring problems after 3 steps 2
3 measurements miles | miles | miles | miles | miles | anna | david | huck | jean | games | inithx.i.l 3
4 250 500 750 1000 | 1500 120 4
runtime (s) 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 0.00
s zero-agent-nu 124 /124 /| 122 /] 122 /] 120 /] 134 /] 868,/ 74 /80 /] 120 /] 6042 s
j nodes 128 128 128 128 128 138 87 74 80 120 864 j
. zero-agent-num (%) | 0.97 0.97 0.95 0.95 0.94 0.97 1 1 1 1 0.7 .
9 9
10 Zero-Agent-Num/Node Num vs Step 10
11 11
12 12
13 13
14 14
15 15
16 16
17 17
18 18
19 19
20 20
21 21
22 22
23 Fig. 29. Zero-Agent-Num (%) at each time step for 11 coloring problems. The number on the horizontal axis 23
24 correspondsto an individual problem: (1) miles250, (2) miles500, (3) miles750, (4) miles1000, (5) miles1500, (6) 24
25 anna, (7) david, (8) huck, (9) jean, (10) games120, and (11) inithx.i.1. 25
26 26
z; Observation 4.9. After the first step, the system can find an approximate solution for all Z
s problems except inithx.i.1, with more than 80% variables satisfying the constraints. For the 2
0 miles problems, almost 95% variables (nodes) can satisfy the constraints after 3 steps. For 0
s the problems of david, huck, jean, and games120, the system can find an exact solution .
o within 3 steps. In fact, in this experiment, they need only 2 time steps to find an exact o
s solution (see Fig. 29). An exceptionisthe problem of inithx.i.1, where about 70% variables o
can satisfy al the constraints.
34 34
35 35
s 4211 Zero-Agent-Num at each time step. In order to study the performance of this
; System, we will record Zero-Agent-Num at each time step. The problems of david, huck,
s J€an, and games120 will be excluded from the following experiment, since the systemcan ;4
2 find an exact solution for these problems within 2 steps. 39
40 40
41 Experiment 4.9. least-p/random-p = n, type= FBBLR (1 run). a
42 42
43 Observation 4.10. The results from this experiment are shown in Fig. 30, where the 43
44 Zero-Agent-Num curves fluctuate around 120 after 3 steps. The value at the last time 44
45 step corresponds to an exact solution found. This observation has been quite consistent, 45

ARTICLE IN PRESS

50004-3702(01)00174-6/FLA AID:1872 Vol.eee(eee) A I J1872 P.33 (1-44)
by:vi

ELSGMLTM(ARTINT) :mla 2001/12/17 Prn:18/12/2001; 8:37 oleta p. 33
J. Liu et al. / Artificial Intelligence eee (eeee) soe—eee 33
1 miles-250 Agent noCollision Num miles-500 Zero-Agent-Num 1
2 140 140 2
= ==
a [0 | 100 e
5 of 80 5
6 OdlL 6 6
! 4 40 !
8 8
0 204 20 0
10 0 ‘ e 0 " " e 10
1 18 35 52 69 86 103120 137 154 171 188 205 222239 256| | 1 19 37 55 73 91 109 127 145 163 181 199 217 235 253 274

11 11
12 miles-1000 Zero-Agent-Num miles-1500 Zero-Agent-Num 12

140 140
13 13
14 120 § 14
15 100 15
16 e 16
17 60 17
18 18

40
19 19

20
20 — 20
21 0 ; : - 21
”r 1119 237 355 473 591 700 827 945 1063118112991417 1 9 17 25 33 41 49 57 65 73 81 89 97 105113 ”
z Fig. 30. Zero-Agent-Num at different time steps, obtained from the experimental studies on the miles problems. z
24 24
25 25
26 inithx.i.1 Zero-Agent-Num 26
27 27
28 1000 28
29 800 29
30 e Y o 4, @2 N 30
31 31
. 400 | 32
33 200 bl 33
34 0 : - ste 34
35 1 16 31 46 61 76 91 106121 136 151 166 181 196 211 226 241 35
36 36
37 37
38 38
a9 Fig. 31. Zero-Agent-Num at each time step in the case of inithx.i.1. 29
40 40
41 meaning that we can get an approximate solution with about 120 (95%) variablessatisfying 41
42 theconstraints at anytime after 3 steps. 42
43 43
44 Observation 4.11. In Fig. 31, Zero-Agent-Num increases during thefirst 45 stepsand then 44
45 falls down. This process is repeated for several times before it finally reaches an exact 45

ARTICLE IN PRESS

50004-3702(01)00174-6/FLA AID:1872 Vol.eee(eee) AIJ1872 P.34 (1-44)
ELSGMLTM(ARTINT) :mla 2001/12/17 Prn:18/12/2001; 8:37 by:violeta p. 34

34 J. Liu et al. / Artificial Intelligence eee (eeee) eoe—eee

solution state. The speed of convergence is not as high as that in other problems. This
indicates that not al the problems can convergeto 80% at the first step and to 95% at the
third step, while using the ERA method. The performanceis, to some extent, affected by
the structure of the problem.

5. Discussion

© 0 N OO g b~ W N P
© 0 N O g b~ W N P

In this section, we will compare the basic as well as extended ERA approach to
the existing heuristic and distributed approaches, and discuss their distinct features and
advantages.

[
o
=
o

=
N e
e
[

[
w
[
w

5.1. Comparison with min-conflicts heuristics

[N
IS
[
IS

[
o
=
(&)

The proposed ERA approach differs from the min-conflicts approach in the following
aspects:

B
~N o
IR
~N o

[
©
o
oo

(1) In the min-conflicts hill-climbing system reported in [28], the system chooses a
variable at each step that is currently in conflict and reassign its value by searching the
space of possible assignments and selecting the one with the minimum total conflicts.
The hill-climbing system can get trapped in a local minimum (note that the same
phenomenon can also be observed from the GDS network for constraint satisfaction).
On the other hand, in our approach, an agent is given a chanceto select arandom-move
behavior according to its probability, and hence it is capable of escaping from alocal
trap. In our present work, we also note that the extent to which the agents can most
effectively avoid the local minima and improve their search efficiency is determined
by the probabilities (i.e., behavior selection probabilities) of the least-move (aswell as
better-least-move) and random-move behaviors.

(2) Another system introduced in [28] is called informed backtracking. It arguments a

standard backtracking method with the min-conflicts ordering of the variables and
values. This system attempts to find a sequence of repairs, such that no variable is
repaired more than once. If there is no way to repair a variable without violating
a previoudly repaired variable, the algorithm backtracks. It incrementally extends a
consistent partial assignment in the same way as a constructive backtracking program,
however, it usesinformation from the initial assignment to guideits search.
The key digtinction between this approach and ours is that our approach does not
require backtracking. As stated by Minton et a. [28], their system trades search
efficiency for completeness; for large-scale problems, terminating in a no-solution
report will take avery long time.

(3) In both min-conflicts hill-climbing and informed backtracking systems proposed
in [28], the key isto compute and order the choice of variables and values to consider.
It requires to test all related constraints for each variable and to test al its possible
values.

This step is similar to the RemoveFrom and AddTo operationsin our approach, except
that we only test a selected position (one value for each variable) and do not sort the

[
©o
[
©

A A B B B W OWWW W W W W WWNNNDNNNDNDN NN
A W N P O © ©® N O O A W N P O © 0 N O 0 » W N B O
A B B B B OWOWWW W W W W WWN N NNNNDNDNDNDNDDN
A W N P O © © N O O & W N P O © © N O g » W N O

I
a
IS
a

ARTICLE IN PRESS

50004-3702(01)00174-6/FLA AID:1872 Vol.eee(eee) AIJ1872 P.35 (1-44)
ELSGMLTM(ARTINT) :mla 2001/12/17 Prn:18/12/2001; 8:37 by:violeta p. 35

J. Liu et al. / Artificial Intelligence eee (eeee) soe—eee 35

variables. The use of the ordering heuristic can lead to excessive assignment evaluation
preprocessing and therefore will increase the computational cost at each step.

(4) Inour present approach, we examinethe use of afewer-conflictsrepair, by introducing
the better-move behavior, that requires only one violation number evaluation for each
variable. The empirical evidence has shown that the use of the high-priority better-
move when combined with other behaviors can achieve more efficient results. We
believe that the reason that using the currently-available min-conflicts value at each
step can compromise the systems performance is because the min-conflicts values
quickly reduce the number of inconsistencies for some variables but at the same time
also increase the difficulties (e.g., local minima) for other variables.

© 0 N OO g b~ W N P
© 0 N O g b~ W N P

=
» O
e
SRS

[
N

5.2. Comparison with Yokoo et al. s distributed constraint satisfaction

N
w

B
w N

[N
IS
[
IS

Our multi-agent approach has several fundamental distinctions from Yokoo et al.’s
distributed constraint satisfaction approach, as listed bel ow:

[
o
=
(&)

[
o
=
(2]

(1) Yokoo et a.s approach does not require a global broadcasting mechanism or data
structure. It allows agents to communicate their constraints to others by sending and
receiving messages such as ok?, and nogood. In other words, their methods handle
the violation checking among agents (variables) through agent-to-agent message
exchanges, such that each agent knows all instantiated variables relevant to its own
variables.

In our approach, the notion of agent-to-agent communication is implicit—we assume
that for violation updating, each agent (representing the value of a variable) is
‘informed’ about the values from relevant agents (representing the values of relevant
variables) either by means of accessing an n x n look-up memory table or via
pairwise value exchange—both implementations enable an agent to obtain the same
information, but the latter can introduce significant communication overhead costs
(i.e., longer cycles required [44]2) to the agents.

As the communication in Yokoo et a.'s approach is quite distributed, we believe that
their approach will work well under alarge number of constrained conditions.

(2) Intheasynchronousweak-commitment search algorithm developed by Yokooet al. [43,
44], a consistent partial solution is incrementally extended until a complete solution
is found. When there exists no value for a variable that satisfies all the constraints
between the variables included in the partial solution, this algorithm abandons the
whole partial solution and then constructs a new one. Although asynchronous weak-
commitment search is more efficient than asynchronous backtracking, abandoning par-
tial solutions after one failure can still be costly. In the case of the ERA approach, the
high-level control mechanism for maintaining or abandoning consistent partial solu-
tions does not exist.

Yokoo et al. [43] have also developed a non-backtracking algorithm called distributed
breakout, which provides a distributed implementation for the conventional breakout.

[
~
o
~

BB WOW W W W W W W WWNNNNN NN DNNDN PR
P O © 0 N O O & W N P O © 0 N O U0 » W N B O © ©
BB WOWOW W W W W W WWNN NN DN DNDNDNDNDN R
P O © © N O U & W N P O © © N O O » W N P O © ©

I
N
IN
N

43

E I
A W

44 2 As stated in [44], “one drawback of this model is that it does not take into account the costs of
45 communication”.

IS
a

ARTICLE IN PRESS

50004-3702(01)00174-6/FLA AID:1872 Vol.eee(eee) AIJ1872 P.36 (1-44)
ELSGMLTM(ARTINT) :mla 2001/12/17 Prn:18/12/2001; 8:37 by:violeta p. 36

36 J. Liu et al. / Artificial Intelligence eee (eeee) eoe—eee

Table5
Comparison (in averaged number of cycles) between ERA and Yokoo et al.'s
distribution constraint satisfaction in solving benchmark n-queen problems

Asynchronous Asynchronous Asynchronous
backtracking backtracking with weak-commitment ERA
min-conflicts heuristic

100 510 504 51 22

1,000 - 324 30 18
2,000 - - - 30

© 0 N OO g b~ W N P
=
© 0 N O g b~ W N P

[N
o
2
S)

[
[N
o
[

(3) In asynchronous weak-commitment search, each agent utilizes the min-conflicts
heuristic as mentioned in Section 5.1 to select a value from those consistent with the
agent_view (those values that satisfy the constraints with variables of high-priority
agents, i.e., value-message senders).

On the other hand, the ERA approach utilizes a combination of value-selection
heuristics that involves a better-move behavior for efficiently finding fewer-conflicts
repairs.

(4) As related to the above two remarks, the asynchronous weak-commitment search
and asynchronous backtracking algorithms are designed to achieve completeness
and thus the steps of backtracking and incremental solution constructing/abandoning
are necessary, whereas the ERA approach is aimed at more efficiently finding an
approximate solution, which is useful when the amount of time available for an exact
solutionis limited.

(5) Last but not the least, we have also systematically compared the performance of the
ERA system with that of Yokoo et a.’'s algorithms, namely, asynchronous backtrack-
ing, asynchronous backtracking with min-conflicts heuristic, and asynchronous weak-
commitment, in solving benchmark n-queen problems where n = 100, 1000, 2000,
respectively [44]. The averaged numbers of cycles used in each case are summarized
in Table 5. We can establish that as demonstrated in solving the benchmark n-queen
problems, EAR is an effective approach and the number of of cycles used in the ERA
system is competitive with those by Yokoo et al.’s approach, given that our formulation
utilizes different behavior prioritization and violation checking schemes. Note that the
‘~ symbol in the table indicates that the dataitem is presently unavailable.

i
N
P
N}

W oW W WwW NN NNRNNDNNRNRNDNERE R B B e e
E O N P O © ® N 0o O A~ WN RO © © N O 0 b
W oW oW W WNRNNNNNNRNRNDNERER B B R R s e
2 ® NP O © ® N o0 A WNRPO © ©® N O 0 b

w
(&
w
(4]

In summary, as complementary to each other, both Yokoo et al. s asynchronousapproach
and the ERA approach can be very efficient and robust when applied in the right
context. For instance, in some practical applications such as distributed telecommunication
networks, Yokoo et a.'s formulation involving agent information exchange offersa natural
way of modeling and solving the distributed CSP, whereas in CSPs that do not lend
themselves so well to partitioning variables and constraints into sub-problems, the ERA
formulation becomes straightforward to implement and execute. A distinct feature of
Yokoo et al.’s asynchronous approach is, like other standard backtracking techniques, its
compl eteness, whereasthe feature of the EAR approach liesin its efficiency and robustness
in obtaining an approximate solution within a few time steps (although it empirically
always produces an exact solution when enough time steps are allows). The ERA approach

w
o
w
(&2}

A A B B B W W W
A W N P O © © N
N A B D D W W W
A W N P O © © N

I
a
IS
a

ARTICLE IN PRESS

50004-3702(01)00174-6/FLA AID:1872 Vol.eee(eee) AIJ1872 P.37 (1-44)
ELSGMLTM(ARTINT) :mla 2001/12/17 Prn:18/12/2001; 8:37 by:violeta p. 37

J. Liu et al. / Artificial Intelligence eee (eeee) soe—eee 37

is not guaranteed to be complete since it involves random moves. Another feature of the
ERA approachisthat its strategies are quite easy to implement.

5.3. Remarkson partial constraint satisfaction

Partial constraint satisfaction is a very desirable way of solving CSPs that are either
overconstrained or too difficult to solve [42]. It is also extremely useful in situations where
we want to find the best solution obtainable within fixed resource bounds or in real-time.
Freuder and Wallace [11] are the pioneersin systematically studying the effectiveness of a
set of partial constraint satisfaction techniques using random problemsof varying structural
parameters. The investigated techniques included basic branch and bound, backjumping,
backmarking, pruning with arc consistency counts, and forward checking. Based on the
measures of constraint checks and total time to obtain an optimal partial solution, forward
checking was found to be the most effective. Also of general interest is that their work has
offered a model of partial constraint satisfaction problems (PCSPs) involving a standard
CSP, a partially ordered space of alternative problems, and a notion of distances between
these problems and the original CSP.

Our present work attempts to develop, and empirically examine, an efficient technique
that is capable of generating partial constraint satisfaction solutions. This work shares the
same motivation as that of Freuder and Wallace's work [11,42], and also emphasizes that
the costs of calculating (communicating) and accessing constraint violation information
should be carefully considered in developing a practically efficient technique. That is
aso part of the reason why much attention in our work has been paid to (1) the use of
environmentally updated and recorded violation numbers (without testing from the scratch
for each variable) and (2) the effectiveness of the better-move behavior in finding an
approximate solution.

© 0 N OO g b~ W N P
© 0 N O g b~ W N P

[
o
=
o

NNN RN NNNNER R P B B B bR
N o R W N B O © 0N o O W N e
NN N RN NNRNDNDNDR R R B B R B R R
N o R W NP O © o N o A~ W N R

nN
©
N
oo

5.4. Remarks on agent information and communication for conflict-check

N
©o
N
©

w
o
w
o

Yokoo et al.'s approach and the ERA approach have a common thread; both formula-
tions employ multiple agentsthat residein an environment of variables and constraints (al-
though in the ERA approach, the environment also contains violation information, which
isanalogousto the ‘artificial pheromone’ in an ant system [8,9]) and make their own deci-
sionsin terms of how the values of certain local variables should be searched and selected
in the process of obtaining a globally consistent solution.

Nevertheless, it should be pointed out that the present implementations of the two
approaches differ from each other in the way in which the agents record and access their
conflict-check information. The former utilizes a sophisticated communication protocol
to enable the agents representing different groups of variables and constraints to exchange
their values. By doing so, the agentsare capable of evaluating constraint conflict statuswith
respect to other rel evant agents (variables). On the other hand, our implementation utilizesa
feature of agent current-value broadcast to enable other agentsto compare with their values
and to update the violation numbersin their local environment. Although the formulations
may seem different, the objectives as well as effects of them are fundamentally similar.
The reasons that we decided to use value broadcast and sharing are threefold: First, the

w
s
w
ey

AR R A A W oW W W W W W W
E ® N B O © ® N o O & ® N
AOA D DN A W oW W oW W W oW W
5 ® NP O © ® N o O & ®N

I
a
IS
a

ARTICLE IN PRESS

50004-3702(01)00174-6/FLA AID:1872 Vol.eee(eee) AIJ1872 P.38 (1-44)
ELSGMLTM(ARTINT) :mla 2001/12/17 Prn:18/12/2001; 8:37 by:violeta p. 38

38 J. Liu et al. / Artificial Intelligence eee (eeee) eoe—eee

implementation can make use of a common storage space of complexity O(n) where n
corresponds to the number of variables and by doing so avoid introducing the same space
requirement to every agent; secondly, it can reduce the overhead costs incurred during the
pairwise information exchange, which can be quite significant; and thirdly, since our ERA
method extensively uses fewer-conflicts moves, such behaviors can be triggered based on
only one possible violation evaluation instead of n assignment evaluations, and hence the
access to such a broadcast information source is not demanding.

© 0 N OO g b~ W N P
© 0 N O g b~ W N P

5.5. Remarks on sequential-iteration implementation

=
» O
e
SRS

Theoreticaly, the ERA method using swarm-like agents can be implemented in a
paralel fashion, however, in light of our resource limitation, we used a sequential
computationimplementation to simulate the multi-agent concurrent or synchronousactions
and to test the effectiveness of our approach.

Our sequential simulation utilizes a global simulated clock, called time step. The state
of the environment as well as the agents (i.e., the positions of the agents) will be changed
only at each discrete time step. In order to simulate the concurrent or synchronous actions
of the agents at time step &, we let the individual agents perform their cycles of behavior
selection, value selection, and violation updating. In so doing, the agents are dispatched in
a sequential fashion. Once thisis completed, the state of the system will then be refreshed
with the new positions of the agents corresponding to the newly-selected values, and
thereafter, the simulated clock will be incremented to £ + 1.

Here, it is worth mentioning that apart from the fact that our implementation
simulates the operations of a paralel system, the empirical results of our sequential
ERA implementation are still comparable to those reported in [28,44], if we evaluate the
performance using the measures of number of constraint checks, asintroduced by Freuder
and Wallace [11], and space compl exity.

NN N NN NNNDNIER R P B B BB
© ® N o oA W N RBP O © ®©® N o g A~ W N
NN RN N NN NNRNDNIR B B B B B s
© ® N o U A W N P O © ®©® N o A~ W N

w
o
w
o

6. Summary

w W
NP
w W
NP

wW
w
w
w

In this paper, we have described a multi-agent oriented approach to solving constraint
satisfaction problems, such as n-queen problems and coloring problems. The key ideas
behind this approach rest on three notions: Environment, Reactive rules, and Agents
(ERA). Each agent can only senseitslocal environment (i.e., violation numbers) and apply
some behavioral rules for governing its value-selection moves. The environment records
and updates the local values that are computed and affected according to the moves of
individual agents (analogous to the idea of laying ‘artificial pheromone’ in an ant system
[8.9]).

In solving a CSP with either abasic or an extended ERA method, each agent represents
a variable and its position corresponds to a value assignment for the variable. The
environment for the whole multi-agent system contains al the possible domain values
for the problem, and at the same time, it also records the violation numbers for all the
positions. An agent can move within its row, which represents its domain. So far, we have

W
I
w
=

A A B B B W W W W W
A W N P O © ©® N O O
DA DD DWW W oW W
A W N P O © ©® N O O

I
a
IS
a

ARTICLE IN PRESS

50004-3702(01)00174-6/FLA AID:1872 Vol.eee(eee) AIJ1872 P.39 (1-44)
ELSGMLTM(ARTINT) :mla 2001/12/17 Prn:18/12/2001; 8:37 by:violeta p. 39

J. Liu et al. / Artificial Intelligence eee (eeee) soe—eee 39

introduced three reactive behaviors: better-move, least-move, and random-move. The move
of an agent will affect the violation numbers of other rowsin the environment.

While formally describing the ERA approach as well as its properties, we have aso
presented several empirical studies that examine how the basic algorithm can be extended
to effectively find a solution to an n-queen or a coloring problem. Some practical rulesfor
behavioral settings have been established foll owing our observationsfrom the experiments.

We have compared the ERA approach with some of the existing heuristic or distributed
approachesin order to highlight their main features and limitations. Some features of the
ERA approach include:

© 0 N OO g b~ W N P
© 0 N O g b~ W N P

[
o
=
o

[
[N
o
[

(1) The move of an agent will affect the whole environment. Thus, the interaction among
agentsisindirectly carried out through the medium of their environment. In this sense,
we may regard that the agents can self-organize themselvesin finding a solution.

(2) The performance of this approach in solving CSPs for approximate solutions is
efficient. It can find a reasonably good solution in just few steps. This property is
quite useful in situations where a solution is required with a hard deadline.

(3) The ERA approachis aso open and flexible: We may set or combine various reactive
behaviorsfor each agent, or modify their parameter settings.

[
N
o
N

e~ e L
© ©® N o 0 b~ W
P~ e
© © N o 0 ~ W

N
o
N
o

Although we have tested several n-queen problems and coloring problemsin our present
work, we hopethat in our futurework we will be ableto further improvethe ERA approach
by explicitly introducing communication and/or cooperation mechanisms and to discover
new properties of this approach in solving other types of CSPs.

N
[
N
[

N NN
a B~ W N
NN
a b W N

N
o
N
(<2}

Acknowledgements

N
~
N
~

nN
©
N
oo

We would like to thank the reviewers and associate editor for their valuable comments
and suggestions, which have led us to examine several related issues and at the sametime
make the paper easier to follow. Our work has been partially supported by a HKBU FRG
research grant.

N
©o
N
©

W W W w
w N B O
w W W W
w N B O

W
I
w
=

Appendix A

w W
o O
W W
o o

In what follows, we will present the proofs for the ERA correctness theorems. In the
proofs, we will adopt symbol ‘—' to represent ‘such that’ and symbol ‘=" to denote

‘imply’.

w
N
w
N

W W
© @
w w
© o

I
o
IS
o

A.1. Proof for Theorem 2.1

BB
N
el
NP

I
@
I
w

Proof. There two sections of the algorithm that will have an effect on the violation
numbers: Initialization (Section 1 in Fig. 13) and the running (Section 2 in Fig. 13).
Therefore, our proof can be divided into two sections.

IS
IS
IN
IS

I
a
IS
a

ARTICLE IN PRESS

50004-3702(01)00174-6/FLA AID:1872 Vol.eee(eee) AIJ1872 P.40 (1-44)
ELSGMLTM(ARTINT) :mla 2001/12/17 Prn:18/12/2001; 8:37 by:violeta p. 40

40 J. Liu et al. / Artificial Intelligence eee (eeee) eoe—eee

(1) Stage 1: Initiaization

(@) Lines1-5inFig. 13.
Before we place the agents into the environment, because there is no agent in
it, there will be no assignment. In such a case, there is no constraint for each
domain value. The precondition (Va; € A,i #y) (At € [1,m]) (C(R;) € C) A
(R =D; x Dy) isfalse, s0 (Va; € A,i # y,a; one) (3t € [1,m]) (C(R;) € C) A
(R; = D; x Dy) — (e(a;.x,i).value e(x, y).value) € C(R;) ist rue.

(b) Lines6-8.
To each agent, the Initialize function is defined in Fig. 9, and the operations on
violation are in the AddTo function. After adding a; to position (g, i), if position
(x, y) isstill azero-position, that means

Attack((g, i), (x, y)) isfalse

= At C(R,) between X; and X, v
3t C(R;) between X; and X, A
(e(g,i).value, e(x, y).value) € C(R;).

= (3 C(R,) between X; and X, —
(e(g,i).value, e(x, y).value) € C(R,)).

= (3t €[1,m]) (C(R;) €C) A (R, = D; x Dy) —
(e(g,i).value, e(x, y).value) € C(R;).

After all agentsare placed onto the environment, if 3(x, y) € environment, position
(x, y) isstill azero-position, that means:

(Va; € A,i #y) (3t €[1,m]) (C(R) € C) A (R; = D; x Dy) —
(e(g,i).value, e(x, y).value) € C(Rt))

= (Ya; € A,i #y) 3t €[1,m]) (C(R;) € C) A (R; = Dix Dy) —
(e(g,i).value, e(x, y).value) € C(R;).

So Theorem 2.1ist r ue in this section.
(2) Stage 2: Running
We need to prove: If Theorem 2.1ist r ue beforeline 15, Theorem 2.1 is still t r ue
after line 15-16. We will proveit in two steps: (1) Theorem 2.1 ist r ue beforeline
15 — Theorem 2.1 ist r ue after line 15; (2) Theorem 2.1 ist r ue after line 15 —
Theorem 2.1ist r ue after line 16.

© 0 N OO g b~ W N P
© 0 N O g b~ W N P

[N
o
2
S)

W oW oWRNNNNNNNDNNIDNRNIERER R B B B PP R
N P O © ® N~ ® 00 B ®W N B O © ® N O 0 » W N B
W oW oW RN NNNNNNNNRNIERR B B B B R s e
N B O © ® N~ o 00 B ® N P O © ® N O 0 & W N P

wW
w
w
w

[Theorem2.1ist rue.]

W
I
w
=

(@) Line 15 RemoveFrom(a;.x, i).
After remove a; from (a;.x, i), if A(x, y) € environment, (x, y) is ill a zero-
position, that means:

Attack((a;.x, i), (x, y)) isfalse
= At C(R,) between X; and X, v
3t C(R;) between X; and X, A
(e(aj.x,i).value e(x, y).value) € C(R;).
= (3t C(R;) between X; and X, —
(e(aj.x,i).value e(x, y).value) € C(R,)).
= (3t €[1,m]) (C(R;) €eC) A (R; = D; x Dy) —
(e(a;.x,i).value e(x, y).value) € C(R;). [—1]

w
(&
w
(4]

A A B B B W W W W
A W N P O © ©® N O
D A B D DWW W oW
A W N P O © ©® N O

I
a
IS
a

ARTICLE IN PRESS

50004-3702(01)00174-6/FLA AID:1872 Vol.eee(eee) A I J1872 P.41 (1-44)
by:vi

ELSGMLTM(ARTINT) :mla 2001/12/17 Prn:18/12/2001; 8:37 oleta p. 41
J. Liu et al. / Artificial Intelligence eee (eeee) soe—eee 41

1 Because during this process, other agents do not move, and Theorem 2.1istrue 1

2 before this process. So al these agents 2

3 3

y (Va;e A, j#yAj#i) @t el[l,m]) (C(R)e€C)A (R = D;xDy) .

5 — (e(aj.x,i).value e(x, y).value) € C(R;) ist rue. 5

6 Combining with [-1], we have: 6

. (Vaie A,i #y) (@31 € [Lm)) (C(R) € C) A (R, = DixDy) — :

0 (e(aj.x,i).value e(x, y).value) € C(R,)). 0

10 = (Vaije A,i#y) @tel[l,m]) (C(R)eC)A (R, =D;xDy) — 10
1 (e(aj.x,i).value, e(x, y).value) € C(R;). n
12 [Theorem2.listrue.] 12
13 (b) Line 16 AddTo(a;.x, i). 13
14 After adding g; to (a;.x, i), if A(x, y) € environment, (x, y) isstill azero-position, 14
15 that means: 15
e Attack((a; .x, i), (x, y)) isfalse 10
v = At C(R,) between X; and X, v v
18 3t C(R;) between X; and X, A 18
;Z (e(ai.x,i).value e(x, y).valug) € C(R,). z
o = (3t C(R,) between X; and X, — "
b (e(a;j.x,i).value e(x, y).value) € C(R,)). 22
v = (3t €[1,m]) (C(R,) €C) A (R, = D; xDy) — .
0 (e(aj.x,i).value e(x, y).value) € C(R;). [—1] a
25 Because during the process of AddTo(a;.x,i), other agents do not move, and 25
26 Theorem 2.1 ist r ue beforethis process. So all other agents 26
Z (Va;e A, j#yAj#i) @t el[l,m]) (C(R)€C)A (R = D;xDy) Z
2o — (e(a;.x,i).value e(x, y).value) € C(R,) ist r ue. s
30 Combining with [-1], we get: 30
> (Vaie A.i #y) (@ € [Lm]) (C(R) €C) A (R, = Dix Dy) — >
32 . 32
. (e(aj.x,i).value e(x, y).value) € C(Rt)). s

= (Vaie A,i#y) 3t €[1,m]) (C(R;) €C)A (R, = DixDy) -

34 . 7 34
N (e(aj.x,i).value e(x, y).value) € C(R;). s
36 [Theorem2.1istrue] 36
37 So during the running process, Theorem 2.1ist r ue. 37
38 38
39 Inconclusion, Theorem2.1ist rue. 0O 39
40 40
41 A.2. Proof for Theorem 2.2 41
42 42
43 Proof. Wewill proveit based on Definition 1.2 and Theorem 2.1. 43
44 44
45 (1) X;=e(aj.x,i).valuee D;, so S isann-tuplethat S € D1x DX --- X Dy. 45

ARTICLE IN PRESS

50004-3702(01)00174-6/FLA AID:1872 Vol.eee(eee) A I J1872 P.42 (1-44)
by:vi

ELSGMLTM(ARTINT) :mla 2001/12/17 Prn:18/12/2001; 8:37 oleta p. 42
42 J. Liu et al. / Artificial Intelligence eee (eeee) eoe—eee
1 (2) Foreachu e[1,m], C(R,) € C,supposedg, h €[1,n]that R, = Dgx Dy, 1
2 2
3 e(ag.x, g).violation=0 3
4 = ((Va,-e Ai#g) @te[l,m]) (C(R)eC)A (R =DixDg)— 4
5 (e(a;.x,i).value, e(a,.x, g).value) eC(R,)), 5
6 (based on Theorem2.1) 6
7 then 7
8 8
0 (C(Ry) €C) A ((Vaie Ai#g) A1 €[1,m]) 0
o (C(R)) €C) A (R, = DixDyg) — o
1 (e(aj.x,i).valug e(agy.x, g).value) e C(Rt)) n
1 = (e(an.x, h).value e(az.x, g).value) € C(R;). 1
13 We have: 13
14 . . 14
s (C(Ry,) €C) Ae(ag.x, g).violation=0— e
6 (e(ap.x, h).value, e(ag.x, g).value) € C(R;). .
17 So for 17
18 YC (Ry) € C, Ry = Dgx Dy, 18
19 ((e(ap.x, h).value, e(ag.x, g).valug) C S) A 19
2 ((e(an.x, h).value, e(ag.x, g).value) € C(R,)) istr ue. 2
21 21
22 S0 the assignment of § = (X1, Xo,..., X,), X; = e(a;.x,i).value, is an exact solution 2
23 when the system terminates at condition-1: (Va; € A)e(a;.x, i).violation=0. O =
24 24
25 25
% References 26
27 27
28 [1] R. Bartak, Heuristics and stochastic a gorithms, http://ktilinux.ms.mff.cuni.cz/~bartak/constrai nts/stochastic. 28
29 html. 29
30 [2] JR. Bitner, E. Reingold, Backtrack programming techniques, Comm. ACM 18 (11) (1991) 651-656. 30
31 [3] M. Bruynooghe, Solving combinatorial search problems by intelligent backtracking, Inform. Process. 31
2 Lett. 12 (91) (1981) 36-39. 2
[4] F.C. Chow, JL. Hennessy, The priority-based coloring method to register alocation, ACM Trans.
33 Programming Languages and Systems 12 (4) (1990) 501-536. 33
34 [5] B. Clement, E. Durfee, Scheduling high-level tasks among cooperative agents, in: Proceedings of the Third 34
35 International Conference on Multi-Agent Systems, 1998. 35
36 [6] M.C. Cooper, An optimal k-consistency agorithm, Artificial Intelligence 41 (1989) 89-95. 36
a7 [7] K. Decker, J. Li, Coordinated hospital patient scheduling, in: Proceedings of the Third International 37
a8 Conference on Multi-Agent Systems, 1998. a8
[8] M. Dorigo, G. Di Caro, L.M. Gambardella, Ant agorithms for discrete optimization, Artificial Life 5 (2)
39 (1999) 137-172. 39
40 [9] M. Dorigo, V. Maniezzo, A. Colorni, The ant system: An autocatalytic optimizing process, Technical Report 40
41 No. 91-016 Revised, Palitecnico di Milano, Italy, 1991. 41
12 [10] J. Ferber, Multi-Agent Systems: An Introduction to Distributed Artificial Intelligence, Addison-Wesley, New ,,
23 York, 1999, pp. 31-35. 4
[11] E.C. Freuder, R.J. Wallace, Partia constraint satisfaction, Artificial Intelligence 58 (1-3) (1992) 21-70.
nitd team[12] E.C. Freuder, Backtrack-free and backtrack-bounded search, in: L. Kanak, V. Kumar (Eds), Search in 4
45

45 Artificial Intelligence, Springer, New York, 1988, pp. 343-369.

ARTICLE IN PRESS

S0004-3702(01)00174-6/FLA AID:1872 Vol.eee(eee) AIJ1872 P.43 (1-44)
by:vi

ELSGMLTM(ARTINT) :mla 2001/12/17 Prn:18/12/2001; 8:37 oleta p. 43
J. Liu et al. / Artificial Intelligence eee (eeee) soe—eee 43
1 [13] P. Galinier, J.-K. Hao, Tabu search for maximal constraint satisfaction problems, in: Proceedings of CP-97, 1
2 Linz, Austria, 1997, pp. 196-208. 2
3 [14] A. Gamst, Some lower bounds for a class of frequency assignment problems, |IEEE Trans. Vehicular 3
4 Technology 35 (1) (1986) 8-14. 4
[15] M.R. Garey, D.S. Johnson, H.C. So, An application of graph coloring to printed circuit testing, |EEE Trans.
5 Circuits Systems CAS-23 (1976) 591-599. 5
6 [16] J. Gaschnig, Performance measurement and analysis of certain search algorithm, Ph.D. Thesis, Carnegie- 6
7 Mellon University, 1979. 7
8 [17] J. Gu, Efficient local search for very large-scale satisfiability problem, SIGART Bull. 3 (1992) 8-12. 8
9 [18] C.C. Han, C.H. Lee, Comments on Mohr and Henderson's path consistency algorithm, Artificial 9
10 Intelligence 36 (1988) 125-130. 10
[19] A. Homaifar, J. Turner, S. Ali, The n-queen problem and genetic agorithms, in: Proceedings of |IEEE
1 SOUTHEASTCON-92, 1992, pp. 262-267. 11
12 [20] V. Kumar, Algorithm for constraint satisfaction problem: A survey, Al Magazine 13 (1) (1992) 32-44. 12
13 [21] RT. Leighton, A graph coloring algorithm for large scheduling problems, J. Research of the National Bureau 13
14 of Standards 84 (1979) 489-506. 14
15 [22] J. Liu, Autonomous Agents and Multi-Agent Systems: Explorations in Learning, Self-Organization, and 15
Adaptive Computation, World Scientific, 2001.
16 [23] J. Liu, J. Han, ALIFE: A multi-agent computing paradigm for constraint satisfaction problems, Internat. J. 16
17 Pattern Recognition and Artificial Intelligence 15 (3) (2001) 475-491. 17
18 [24] J. Liu, Y.Y. Tang, Adaptive segmentation with distributed behavior-based agents, |IEEE Trans. Pattern 18
19 Analysis and Machine Intelligence 21 (6) (1999) 544-551. 19
20 [25] J. Liu, Y.Y. Tang, Y. Cao, An evolutionary autonomous agents approach to image feature extraction, IEEE
”1 Trans. Evolutionary Comput. 1 (2) (1997) 141-158. 01
[26] A.K. Mackworth, Consistency in networks of relations, Artificial Intelligence 8 (1) (1977) 99-118.
22 [27] J. Mandziuk, Solving the n-queen problem with a binary Hopfield-type network: Synchronous and 22
23 asynchronous models, Biological Cybernetics 72 (1995) 439-446. 23
24 [28] S. Minton, M.D. Johnston, A.B. Philips, P. Laird, Minimizing conflicts: A heuristic repair method for 24
25 constraint-satisfaction and scheduling problems, Artificial Intelligence 58 (1992) 161-205. 25
26 [29] R. Mohr, T.C. Henderson, Arc and path consistency revisited, Artificia Intelligence 28 (1986) 225-233. 26
[30] B. Nadel, Some applications of the constraint satisfaction problem, Technica Report CSC-90-008,
2 Computer Science Department, Wayne State University, 1990. 2
28 [31] H. Ogawa, Labeled point pattern matching by Delaunay triangulation and maximal cliques, Pattern 28
29 Recognition 19 (1) (1986) 35-40. 29
30 [32] S. Park, E. Durfee, W. Birmingham, Emergent properties of a market based digital library with strategic 30
2 agents, in: Proceedings of the Third International Conference on Multi-Agent Systems, 1998. a1
2 [33] V.G. Paul, Introduction to constraint satisfaction, Lecture 3: Search Order in CSPs and Solution Synthesis, 2
1997.
33 [34] W. Rosiers, M. Bruynooghe, On the equivalence of constraint satisfaction problem, in: Proceedings of 33
34 AIMSA-86, North-Holland, Amsterdam, 1989. 34
35 [35] F. Rossi, C. Petrie, On the equivalence of constraint satisfaction problems, Technical Report ACT-Al-222- 35
36 89, MCC, Austin, TX, 1989. 36
37 [36] F. Seghrouchni, S. Haddad, A recursive model for distributed planning, in: Proceedings of the Second 37
International Conference on Multi-Agent Systems, 1996.
3 [37] B. Sdlman, H. Kautz, B. Cohen, Local search strategies for satisfiability testing, DIMACS Seriesin Discrete 20
39 Mathematics and Theoretical Computer Science 26 (1996) 521-532. 39
40 [38] B. Selman, H. Kautz, An empirical study of greedy local search for satisfiability testing, in: Proceedings of 40
a1 AAAI-93, Washington, DC, MIT Press, Cambridge, MA, 1993, pp. 46-51. 41
12 [39] R. Sosic, J. Gu, Efficient local search with conflict minimization: A case study of the n-queen problem,
43 |EEE Trans. Knowledge and Data Engineering 6 (5) (1994) 661-668. "
[40] R. Stallman, G.J. Sussman, Forward reasoning and dependency directed backtracking, Artificia Intelli-
44 gence 9 (2) (1977) 135-196. 44
45 45

[41] Swarm Development Group, Swarm simulation system, http://www.swarm.org/index.html.

ARTICLE IN PRESS

50004-3702(01)00174-6/FLA AID:1872 Vol.eee(eee) A I J1872 P.44 (1-44)
by:vi

ELSGMLTM(ARTINT) :mla 2001/12/17 Prn:18/12/2001; 8:37 oleta p. 44

44 J. Liu et al. / Artificial Intelligence eee (eeee) eoe—eee
1 [42] R. Wallace, Analysis of heuristic methods for partial constraint satisfaction problem, in: Principles and 1
2 Practice of Constraint Programming (CP-1996), 1996, pp. 482-496. 2
3 [43] M. Yokoo, K. Hirayama, Algorithms for distributed constraint satisfaction: A review, Autonomous Agents 5
4 and Multi-Agent Systems 3 (2000) 185-207. 4

[44] M. Yokoo, E.H. Durfee, T. Ishida, K. Kuwabara, The distributed constraint satisfaction problem:
5 Formalization and algorithms, |EEE Trans. Knowledge and Data Engineering 10 (5) (1998) 673-685. 5
6 [45] M. Yokoo, K. Hirayama, Distributed constraint satisfaction agorithm for complex local problems, in: 6
7 Proceedings of the Third International Conference on Multi-Agent Systems, 1998, pp. 372-379. 7
8 [46] M. Yokoo, Y. Kitamura, Multi-Agent real-time-a* with selection: Introducing competition in cooperative g
9 search, in: Proceedings of the Second International Conference on Multi-Agent Systems, 1996. 0

[47] http://dimacs.rutgers.edu/Chal lenges/Seventh/#PC.
10 [48] http://mat.gsia.cmu.edu/COL OR/instances html. 10
1 [49] http://mscmga ms.ic.ac.uk/jeb/orlib/colourinfo.html. 1
12 12
13 13
14 14
15 15
16 16
17 17
18 18
19 19
20 20
21 21
22 22
23 23
24 24
25 25
26 26
27 27
28 28
29 29
30 30
31 31
32 32
33 33
34 34
35 35
36 36
37 37
38 38
39 39
40 40
41 41
42 42
43 43
44 44

I
a
IS
a

