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Abstract—In this paper, we present a macroscopic characterization of agent-based load balancing in homogeneous minigrid

environments. The agent-based load balancing is regarded as agent distribution from a macroscopic point of view. We study two

quantities on minigrids: the number and size of teams where agents (tasks) queue. In macroscopic modeling, the load balancing

mechanism is characterized using differential equations. We show that the load balancing we concern always converges to a steady

state. Furthermore, we show that load balancing with different initial distributions converges to the same steady state gradually. Also,

we prove that the steady state becomes an even distribution if and only if agents have complete knowledge about agent teams on

minigrids. Utility gains and efficiency are introduced to measure the quality of load balancing. Through numerical simulations, we

discuss the utility gains and efficiency of load balancing in different cases and give a series of analysis. In order to maximize the utility

gain and the efficiency, we theoretically discuss the optimization of agents’ strategies. Finally, in order to validate our proposed agent-

based load balancing mechanism, we develop a computing platform, called Simulation System for Grid Task Distribution (SSGTD).

Through experimentation, we note that our experimental results in general confirm our theoretical proofs and numerical simulation

results on the proposed equation system. In addition, we find a very interesting phenomenon, that is, our agent-based load balancing

mechanism is topology-independent.

Index Terms—Homogeneous minigrids, load balancing, task distribution, agents, macroscopic modeling, steady states, convergence,

grid simulation.
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1 BACKGROUND

IN order to meet the increasing demand of large-scale
scientific computation in the fields of life sciences,

biology, physics, and astronomy, the notion of “computa-
tional grid” was proposed in mid 1990s [1], [2], [3], [4]. It
has been observed that computers (such as PCs, work-
stations, and clusters) in the Internet are often idle. Grid
computing aims to integrate idle computational power over
the Internet and provide powerful computation capability
for users all over the world [1], [2], [3], [5].

Since a grid connects numerous geographically distrib-
uted computers, and tasks are submitted to grid nodes in a
distributed fashion, an important issue is how to evenly
distribute submitted tasks to nodes. This is a load balancing
problem, one of the scheduling problems on the grid. By
solving this problem, we can optimally utilize computa-
tional resources of the grid. In this paper, we will propose
an agent-based load balancing mechanism.

1.1 Scheduling on Grids

The schedulingproblemongrids has beenwidely studied [6],
[7], [8]. Many schedulers for grid computing have been
developed [9], such as AppLeS [10], [11], Nimrod-G [12],

GrADs [13], [14], and Condor-G [15]. The scheduling issues
on grids lie in several aspects, amongwhich resource allocation
[6], i.e., how to allocate computational resources (e.g., CPU-
hours, storage, and network bandwidth) to submitted tasks,
and task allocation [7], [8], i.e., how to allocate tasks todifferent
nodes, absorbmost attentions. In [6], Galstyan et al. proposed
an agent-based resource allocation model for grid Comput-
ing. Their model is based on the reinforcement learning
technique, and consequently can be adaptive to the dynami-
cally changing grid environment.

In [7], [8], [16], [17], Casanova et al. have studied the task
allocation problem in a grid environment, where the
submitted task is arbitrarily divisible. In other words, a
task can be divided into arbitrary chunks. Their scheduling
mechanism assumed a master/worker architecture, i.e., a
master, acting as a scheduler, is responsible for dividing the
submitted tasks and allocating the obtained task chunks to
different workers. In their work, they paid special attention
to task transfer time and network latency. Their algorithm,
called uniform multiround (UMR), allocates chunks using
multiple rounds so as to overlap communication (i.e.,
transfer time and network latency) and computation and,
consequently, decrease the total time for handling the task,
i.e., makespan.

In Casanova et al.’s work, the main problem lies in the
master/worker architecture. Because a grid environment
usually involves a large number of nodes and tasks, such
a centralized architecture is not feasible [6]. In the paper, we
will provide an agent-based, decentralized task allocation
mechanism. Specifically, the paper will focus on load
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balancing among nodes while allocating tasks rather than
makespan. Our mechanism is inspired from real and
artificial ants’ behavior.

1.2 Ant-Based Task Distribution

In natural environments, a group of real ants can collect
dispersed objects into piles without any manager. Mon-
tresor and Meling have developed an inverse artificial ants
system, where artificial ants disperse a group of tasks
evenly on idle nodes [18], [19]. The detailed behavioral rules
of ants are as follows:

1. SearchMax: an ant wanders across the network,
looking for overloaded Nodes.

2. SearchMin: an ant wanders across the network,
looking for underloaded nodes.

3. Transfer: an ant transfers a task from the most
overloaded node to the most underloaded one.

In one of their experiments, there are 100 idle nodes on a
grid. Initially there are 10,000 tasks on a node. Twenty ants
are generated to disperse the tasks. The ants obey the above
three rules. After 50 iterations, the tasks are evenly
dispersed on the idle nodes, that is, there are 100 tasks on
each idle node.

In the experiments of [18], [19], when a user provides
tasks on a node, ants are generated to fulfill the tasks. Ants
move from nodes to nodes to distribute the tasks. To obtain
more information about nodes, ants indirectly communicate
with each other. There is a communication layer in each
node. Neighbors of a node are defined as a set of nodes
known to that node. In the communication layer, there is a
collection of neighbors of that node. A visiting ant may add
a new neighbor to the collection if the ant has discovered a
new node. A visiting ant may remove an old neighbor if the
neighbor is discovered to be unreachable. Therefore, the
collection of neighbors in a node is highly dynamic during
load balancing. Visiting ants not only make the collection of
neighbors dynamic, but also use it to know the network
topology (neighbor). This kind of indirect communication is
called stigmergy [20], which is used by real ants. Based on
the detected network topology, ants make decisions such as
selecting the best route for accomplishing their tasks. As
shown in [18], [19], an ant does not always select the best
neighbor as its route, sometimes it selects another way to
avoid obstructing because too many ants might select the
same route.

Therefore, an ant’s strategies in moving between nodes
come from communication layers left by other ants. On the
other hand, an ant’s strategies also come from its own
experience directly since it carries its experience when
moving [18], [19]. The statistic information from communica-
tion layers and its own experience determines an ant’s
strategies. The strategies change dynamically as the environ-
ment is modified bymobile agents. Theymay be regarded as
unchanged during the time period when the change of
environment is small. Since ants’ strategies in moving
between nodes result in the final distributions of load
balancing, it is important to establish a relationship between
the strategies and the final distributions. In Section 2, we will
provide amacroscopic characterization in order to find sucha
relationship. Furthermore, ants’ strategies, which come from

statistic information, can be improved to raise the utility gain
and the efficiency of loadbalancing.Wewill discuss this issue
in Section 5.

1.3 Macroscopic Analysis

Microscopic simulations, as shown in [18], [19], can provide
interesting experimental results. However, the results are
empirical and cannot directly present the relationship
between different factors. On the other hand, macroscopic
models can directly describe the dynamic behavior of the
system and obviously present that how the changes of local
factors affect the global dynamics. There are a series of such
macroscopic models, such as Web site competition [21],
coalition formation [22], distributed robot collaboration [23],
cyclic feedback [24], infection [25], [26], neural networks
[25], biological system [27], turning patterns [28], and
chemical reaction-diffusion systems [29].

To give a macroscopic characterization of agent-based
load balancing on grids, we should view load balancing
from a macroscopic perspective. In the load balancing
process of [18], [19], tasks are carried by ants from nodes to
nodes. Since what we concern is task distribution on grids,
we can assume that we only see tasks’ movement between
nodes without seeing ants. Therefore, we can regard each
task as a mobile ant-like agent. Here, “mobile” means that
the agent is active and independent in their decision
making. Then, from a macroscopic point of view, the
agent-based load balancing becomes a process of agent
dispersion. An agent’s behaviors in load balancing includes:
1) leaving a node where it has queued, 2) wandering on the
network, and 3) joining a team in a visited node.

Quantitatively, the effect of agents’ behavior on load
balancing is reflected by the number and size of teams on
grids. Therefore we can use the quantities to describe the
load balancing mechanism.

1.4 Problem Statements

As mentioned in Section 1.2, experiments in [18] show that
load balancing through artificial ants converges to a steady
state which corresponds to an even distribution. However,
results are not the same in other papers. In [30], a market
mechanism is used to describe an agent-based load
balancing. Since agents have incomplete information about
nodes, load balancing converges under some conditions,
but oscillates and even chaotic under other conditions [30].
Therefore, the main problems we concern in our work are:

1. Does load balancing through artificial ants always
converge to a steady state? Furthermore, if load
balancing converges to a steady state, does the
steady state always correspond to an even distribu-
tion although agents only have incomplete informa-
tion about the grid?

2. How to characterize the quality of load balancing? Is
load balancing always worth doing? In other words,
when load balancing is not worth doing and when
high efficiency can be achieved?

3. Can the agents’ strategies employed in load balan-
cing be optimized? That is, the optimization of
agents’ strategies in load balancing should be
addressed in order to improve the efficiency.
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In this paper, we will first propose an agent-based load
balancing mechanism. Based on our macroscopic character-
ization and experimental simulations on the mechanism, we
study the above problems in depth.

1.5 Organization of the Paper

The rest of the paper is organized as follows: In Section 2,
we describe the homogeneous minigrid environment we
will concern and then propose an agent-based load
balancing mechanism on grids. In Section 3, the load
balancing mechanism is modeled using differential equa-
tions and all terms in the equations are explained. The
convergence and perfectness of load balancing are dis-
cussed in Section 4. In Section 5, the utility gains and the
efficiency of load balancing are discussed. In Section 6, we
theoretically discuss how to optimize agents’ strategies. In
order to validate our proposed load balancing mechanism,
we provide our experimental results on a real computing
platform, called Simulation System for Grid Task Distribution
(SSGTD) in Section 7. Finally, we conclude our paper and
discuss our future work in Section 8.

2 AGENT-BASED LOAD BALANCING

As we have mentioned, a grid usually involves a large
number of nodes and tasks. Particularly, nodes are
geographically distributed. Tasks are submitted to different
nodes in a decentralized fashion. Generally speaking, grid
nodes are not dedicated to a grid environment. Therefore, a
grid lacks of a fixed topology. In addition, because of the
distributed nature of a grid, it is hard to globally collect
accurate status information of nodes [6]. Given such a
situation, a centralized scheduler is not feasible to handling
such a complex scheduling problem [6]. Otherwise, the
scheduler will be a bottleneck of the grid. Therefore, we
need to provide a scalable and decentralized scheduling
mechanism.

2.1 Minigrid Environments Considered

Before we present our agent-based load balancing mechan-
ism, we first describe the specific type of grid environments
with divisible tasks, which we will consider in this paper.

1. In our present work, we will focus on load balancing
of divisible tasks on grids. Specifically, tasks are
divided into independent chunks with the same size
before they are submitted to grids.1 The divisible
load/task theory (DLT) has been studies in depth
[31]. In DLT, a load can be arbitrarily partitioned into
chunks for a group of processors. There is no
precedence relation among the obtained chunks.

A good example of a divisible load comes from
the STAR project, a large international collaboration
involving about 400 high energy and nuclear
physicists from many countries [32]. The divisible
load in the STAR is to analyze over 250 tera-bytes of
raw data. In [32], Robertazzi and Yu have discussed
how to use the grid computing technology to handle
the above mentioned heavy load. In addition, as we
have seen, Casanova et al. have discussed the task
allocation problem in a grid environment where

tasks are also assumed to be divisible and indepen-
dent [7], [8], [16], [17].

2. In this paper, we study the load balancing problem of
divisible tasks in homogeneous minigrid environ-
ments. Generally speaking, in a grid environment,
nodes areheterogeneous in termsofprocessing speed,
memory size, storage space, etc.. However, in a local
minigrid environment, nodes are usually homoge-
neous. TheDistributedASCI Supercomputer (DAS) is
a geographically distributed, cluster-based minigrid
designed by theAdvanced School for Computing and
Imaging (ASCI) [33], [34]. It aims at providing five
Dutch universities with powerful computational
resources for research programs on parallel and
distributed computing, such as, image processing,
weather forecasting, and quantum chemistry. DAS is
a homogeneous minigrid environment containing
200 nodes in total. The Parallel Architecture Research
Laboratory (PARL) at ClemsonUniversity has also set
up a computational minigrid consisting of totally
792 homogeneous Pentium III processors, which
belong to five Beowulf Clusters interconnected
through dedicated Ether links [35], [36].

3. The paper aims at examining whether or not tasks
can be distributed to nodes and finally achieve a
balanced steady state. Hence, in our work, we
assume that the process of load balancing is relative
short, during which there is neither new task
submitted nor old task finished.

2.2 Agents

Multiagent systems have been widely used in distributed
problem solving. In our distributed scheduling mechanism,
we use agents to carry tasks. Immediately after a task is
submitted to a node, an agent will be automatically
dispatched to the task. The agent will carry the task to
search for appropriate agent teams2 to queue. In principle,
an agent accompanies a task until it is finished on a certain
node.

The goal of an agent is to search suitable nodes for its
task, where the agent will obtain a higher utility. Utility
may be defined based on different metrics, such as, waiting
time and service time. Because in our work, nodes are
homogeneous and tasks have the same size, we consider the
service time for all tasks on any node as being the same.
Hence, in the paper, we only consider waiting time.
Obviously, here, waiting time is only related to the length
of the agent team where the agent is queuing. Given such a
utility definition, agents prefer to queue at a small agent
team so as to achieve a higher utility.

Utility may also be related to other metrics, such as task
transfer time3 and network latency. In this paper, we assume
that as compared to waiting time and service time, task
transfer time and network latency may not be significant.

2.3 Load Balancing Mechanism

The load balancing mechanism we concern is as follows:
Initially, a group of tasks is submitted to a minigrid. Then a
group of agents, whose number is equal to that of the tasks,
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are dispatched to these tasks. From now on, agents
asynchronously wander on the network of nodes to search
for appropriate nodes for their tasks. Then, load balancing
becomes the dispersion procedure of agents.

Consider a system of multiple mobile agents. The agents
are dispatched by one or more nodes on a minigrid. Each
agent has to obtain a service at a node on the minigrid and
each agent’s service lasts the same time. Agents have
incomplete information about nodes on minigrids. They
have to exploit proper nodes and queue for services. To
search for small teams, an agent moves among nodes
randomly and makes decisions by itself from its own
experience and the communication layers it has visited.
Because of their goal for obtaining higher utilities, agents
will not join a very large team. That is, there is a maximum
size for each team. Let m denote the maximum team size,
then agents will not join a team whose size is larger than m.
Agents probabilistically decide to join the team at a node, or
form a new team if there is no other agents. After joining a
team, an agent can also probabilistically decide to leave the
team and move to other nodes. Therefore, agents’ behaviors
can be classified into two types: leaving and queuing. The
strategies for the two types will determine the global
dynamic behavior of the system.

It should be pointed out that in the paper, without loss of
generality, we assume agents properly behave according to
their strategies.

3 THEORETICAL FORMULATION

In this section, we will provide a macroscopic characteriza-
tion of the agent-based load balancing mechanism. Our
characterization is inspired by the differential equation
based modeling work in [22], [23].

As described in Section 2, the agent-based load balancing
we concern is regarded as agent dispersion. That is, a group
of agents wander on the network and search for proper
teams to queue. From the macroscopic point of view, the
teams of agents on minigrids vary dynamically as agents
leave and queue. The number and size of agent teams
reflects the performance of the agent-based load balancing
mechanism. We use two quantities to macroscopically
characterize load balancing: 1) the size, s, of an agent team
and 2) the number, ns, of teams whose size is s. It follows
from Section 2 that there is a maximum team size. Then,
during the period of load balancing, we have 1 � s � m.

Initially, agents are created for tasks by nodes. Although
a mobile agent will not join a team whose size is larger than
m, the maximum team size may be larger than m at the
beginning. This case can be explained as follows:

Suppose that initially the maximum team size is larger
than m. It follows from the mechanism in Section 2 that the
agents, who are in the pth (p � mþ 1) position of various
teams, will leave the teams. The leaving state is concurrent
and asynchronous. Therefore, the leaving process would be
completed very rapidly since no decision should be made
by the departing agents. The departing agents wander
synchronously on networks. Each agent decides by itself
whether or not to join the teams it encounters. After all the
pth (p � mþ 1) agents leave their positions and queue in

other nodes, the maximum team size in the system will not
be larger than m.

Therefore, we will not concern the case where the
maximum team size is larger than m. We will focus on
the case where the maximum team size is not larger than m
in this paper.

We use variables ns to represent the load balancing
process we concern. At first, we give an example to describe
the idea behind our characterization. Consider the change
of n2, the number of teams of size two. On one hand,
consider the increase of n2. A team of size three becomes a
team of size two after an agent’s leaving, then the increase
of n2 is proportional to n3, the number of teams of size
three. This can be denoted by þl3n3. Two teams of size one
become a team of size two after an agent’s queuing, then the
increase of n2 is also proportional to n1n1. This can be
denoted by þj1n

2
1. On the other hand, consider the decrease

of n2. A team of size two becomes two teams of size one
after an agent’s leaving, then the decrease of n2 is
proportional to n2. This can be denoted by �l2n2. A team
of size two becomes a team of size three after an agent’s
queuing, then the decrease of n2 is also proportional to n1n2.
This can be denoted by �j2n1n2. Here, j1, j2, l2, and l3 are
proportion values. Therefore, the change rate dn2

dt of n2 can
be expressed as:

dn2

dt
¼ l3n3 þ j1n

2
1 � l2n2 � j2n1n2: ð1Þ

Based on the above idea, we give the following general
macroscopic characterization to quantitatively describe the
load balancing mechanism we concern:

n0
1 ¼ 2l2n2 � 2j1n

2
1 þ

Xm

k¼3

lknk � n1

Xm�1

k¼2

jknk;

n0
s ¼ �lsns þ js�1n1ns�1 � jsn1ns þ lsþ1nsþ1; 2 � s � m� 1;

n0
m ¼ �lmnm þ jm�1n1nm�1;

ð2Þ

where n0
1, n

0
s, and n0

m describe the quantitative change rate of
agent teams of size one, s ð2 � s � m� 1Þ, and m, respec-
tively; js and ls are positive coefficients; ns � 0; 1 � s � m,4

and
Pm

s¼1 snsð0Þ ¼ S. Here, S is the total number of agents
initially.

It follows from the description in Section 2.1 that there is
no net change of agents during the period of load balancing.
An interesting verification can be done as follows: Accord-
ing to (2), we have:

Xm

s¼1

sn0
s ¼ 0; i:e:;

Xm

s¼1

snsðtÞ ¼
Xm

s¼1

snsð0Þ ¼ S as t > 0: ð3Þ

To better understand (2), we give some more detailed
descriptions as follows:

1. Coefficient js indicates the rate of agents that
encounter teams of size s and decide to join those
teams. js is regarded as the strategy of agents’
queuing.
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2. Coefficient ls indicates the rate of agents that are
queuing at the last position of agent teams of size s
and decide to leave now. It is regarded as the
strategy of agents’ leaving. As mentioned in Section
1.2, strategies js and ls come from agents’ own
experience and visited communication layers. They
may keep unchanged during the time period when
the change of environment is small. Hence, the
changes of js and ls is as follows: During different
time periods, they have different constant values.
We focus on the case where js and ls are constants.

3. The second subequation in (2) is a general one,
which characterizes the quantitative change rate of
teams of size s (2 � s � m� 1). The rate increases as
an agent joins a team of size s� 1, or an agent leaves
a team of size sþ 1. The rate decreases as an agent
leaves a team of size s, or an agent joins a team of
size s.

. “�lsns” denotes that there are lsns teams of size
s, each of which produces one team of size one
and one team of size s� 1 after its last agent’s
leaving.

. “þjs�1n1ns�1” denotes that js�1n1ns�1 teams of
size one and js�1n1ns�1 teams of size s� 1
produce js�1n1ns�1 teams of size s after agents’
queuing.

. “�jsn1ns” denotes that jsn1ns teams of size one
and jsn1ns teams of size s produce jsn1ns teams
of size sþ 1 after agents’ queuing.

. “þlsþ1nsþ1” denotes that lsþ1nsþ1 teams of size
sþ 1 produce lsþ1nsþ1 teams of size one and
lsþ1nsþ1 teams of size s after their last agents’
leaving.

4. The first and third subequations in (2) are similar to
the second one. For the sake of space limitation, we
will not discuss them in detail.

4 GLOBAL CONVERGENCE oF LOAD BALANCING

In the experiments of [18] as shown in Section 1.2, 10,000 tasks
are evenly dispersed on 100 idle nodes by ants after
50 iterations. That is, the state of load balancing converges
to a steady state which corresponds to perfect balancing.
Here, perfect balancing is defined as even distribution. It
follows from this experimental result that two interesting
questions are raised:

1. Does load balancing always converge to a steady
state?Mathematically, the question can be expressed
as: whether or not the steady state of (2) is globally
stable.

2. Does the final distribution always correspond to
perfect balancing? Mathematically, the question can
be expressed as: whether or not the steady state of
(2) always corresponds to the mathematical form of
perfect balancing.

In this section, we try to answer these questions through
mathematical proofs, numerical simulations, and analysis
of strategies. We show that load balancing with different
initial distributions will converge to the same distribution
finally, which is in agreement with the experiments in [18].
However, we prove that the final distribution does not

always correspond to perfect balancing. An interesting
result is given that if agents have complete information
about nodes on minigrids, then the steady state corresponds
to perfect balancing; otherwise, the steady state does not
correspond to perfect balancing. That is, perfect balancing
emerges if and only if agents have complete information
about nodes on minigrids. This is in agreement with the
common knowledge, but is not in agreement with the
experiments in [18].

4.1 Uniqueness and Stability

In this section, we show that load balancing with different
initial distributions converges to the same final distribution
(steady state). At first, we prove that the steady state of (2) is
unique. Then, the steady state is shown to be globally stable
by numerical simulations. Finally, we theoretically prove
that the steady state is globally stable if the maximum team
size is two or three.

Let n� ¼ ðn�
1; n

�
2; . . . ; n

�
mÞ be an equilibrium (steady state)

of (2). By definition of equilibrium, the expressions in the
right hand side of (2) are zero at n�.

By the third subequation of (2), we have:

� lmn
�
m þ jm�1n

�
1n

�
m�1 ¼ 0; i:e:; n�

m ¼ jm�1

lm
n�
1n

�
m�1: ð4Þ

It follows the subequation for teams of size ðm� 1Þ in (2),
we have:

� lm�1n
�
m�1 þ jm�2n

�
1n

�
m�2 þ lmn

�
m � jm�1n

�
1n

�
m�1 ¼ 0; ð5Þ

i.e.,

n�
m�1 ¼

jm�2

lm�1
n�
1n

�
m�2; ð6Þ

by replacing n�
m with jm�1

lm
n�
1n

�
m�1. Similarly, we can derive:

n�
s ¼

js�1

ls
n�
1n

�
s�1; 2 � s � m: ð7Þ

Inductively, we have:

n�
s ¼

j1j2 . . . js�1

l2l3 . . . ls
n�s
1 ; 2 � s � m: ð8Þ

It can be rewritten as follows: n�
s ¼ gsn

�s
1 ; 1 � s � m, where

g1 ¼ 1, and gs ¼ j1j2...js�1

l2l3...ls
, 2 � s � m.

It follows from
Pm

s¼1 sn
�
s ¼ S that:

F ðn�
1Þ ¼

Xm

s¼1

sgsn
�s
1 � S ¼ 0: ð9Þ

Since F ð0Þ < 0, F ðSÞ > 0, and F 0ðn�
1Þ > 0 as n�

1 > 0, accord-
ing to the continuity of function F , F ðn�

1Þ ¼ 0 has a unique
solution in ð0; SÞ.
Theorem 1. Equation (2) has a unique equilibrium (steady state).

According to Theorem 1, if load balancing with different
initial distributions converge to steady states, the steady
states are the same one and can be expressed as above.

By numerical simulations in Case Studies 1 and 2, we
show that load balancing with different initial distributions
converges to the unique steady state. That is, the unique
steady state of (2) is shown to be globally stable.
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Case Study 1 (Steady State). Letm ¼ 10,S ¼ 80, js ¼ lm�s ¼
0:1, 0 � s � 4, jj ¼ lm�j ¼ 0:001, 6 � j � 9, j5 ¼ l5 ¼
0:00001. Strategies js and ls are chosen in order to achieve
perfect balancing. The initial load distribution is nð0Þ ¼
ð0; 0; 0; 0; 0; 0; 0; 0; 0; 8Þ, i.e., there are only eight teams of size
10 initially.

In the result of Case Study 1, Fig. 1a, we show that the
number of teams of each size in load balancing tends to a
constant gradually. That is, each component nsðtÞ of a
solution nðtÞ converges to a constant as t ! þ1. In other
words, load balancing converges to a steady state.

Case Study 2 (Unique Steady State). Let m ¼ 10, S ¼ 80,
js ¼ lm�s ¼ 0:1, 0 � s � 4, jk ¼ lm�k ¼ 0:001, 6 � k � 9,
j5 ¼ l5 ¼ 0:00001. Without loss of generality, we consider the
fifth component n5ðtÞ. Several initial values nð0Þ are selected
randomly with

P10
s¼1snsð0Þ ¼ 80.

It follows from the result shown in Fig. 1b that the fifth
components of solutions nðtÞ with different initial values
nð0Þ converge to the same values n�

5: Other components of
solutions nðtÞ with different initial values nð0Þ also
converge to the same values but those figures are not
shown in this paper. In other words, solutions nðtÞ to (2)
with different initial conditions tend to the same steady
state as t ! þ1.

Therefore, the unique steady state of (2) is shown to be
globally stable by numerical simulations.

In the following theorem, we theoretically prove that the
unique steady state is globally stable if m � 3, that is, load
balancing converges to the unique steady state in case
where the maximum team size is two or three.

Theorem 2. In case m ¼ 2; 3; the equilibrium of (2) is globally
stable.

Proof. Suppose m ¼ 2, we have

n0
1 ¼ 2l2n2 � 2j1n

2
1; n0

2 ¼ �l2n2 þ j1n
2
1; ð10Þ

where n1 þ 2n2 ¼ S. Then, n2 ¼ 1
2 ðS � n1Þ, the first

equation of (10) is:

n0
1 ¼ Gðn1Þ; ð11Þ

where Gðn1Þ ¼ l2S � l2n1 � 2j1n
2
1; 0 � n1 � S.

Since Gðn1Þ0 < 0 as n1 > 0, then there is a unique
equilibrium of (11) as n1 > 0. It follows from Gð0Þ >
0; GðSÞ < 0 that the equilibrium is globally stable on
½0; S�. That is, the equilibrium of (10) is globally stable.

A similar proof can be given for m ¼ 3. tu

4.2 Perfectness

Perfect load balancing in experiments of [18] is very
interesting. However, it is supposed that there are certain
idle nodes on grids in the experiments. This is not in
agreement with the nature of load balancing on grids. In
fact, the network of idle nodes lacks fixed structures. Then,
the number of idle nodes is random. Here, we discuss the
perfectness of load balancing by the expression of equili-
brium of (2). We concern the necessary and sufficient
conditions under which there exists perfect balancing.

Let n�
1 be the unique solution of F ðn�

1Þ ¼ 0 in ð0; SÞ. Then,
the equilibrium of (2) can be expressed as follows:

n� ¼ ðg1n�
1; g2n

�2
1 ; g3n

�3
1 ; . . . ; gmn

�m
1 Þ; ð12Þ

where

g1 ¼ 1; and gs ¼
j1j2 . . . js�1

l2l3 . . . ls
; 2 � s � m: ð13Þ

Perfect balancing corresponds to the form of equilibrium
as follows:

n� ¼ ð0; . . . ; 0; n�
k; 0; . . . ; 0Þ; ð14Þ

that is, there is k, 1 � k � m; such that n�
s ¼ 0 as s 6¼ k and

n�
k > 0. Therefore, the equilibrium of (2) does not corre-

spond to perfect balancing generally as js > 0 and ls > 0.
When does the equilibrium of (2) correspond to perfect
balancing?
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Fig. 1. (a) Case Study 1 with initial load distribution nð0Þ ¼ ð0; 0; 0; 0; 0; 0; 0; 0; 0; 8Þ. Load balancing converges to steady state

n� ¼ ð0; 0; 0; 0; 0; 16; 0; 0; 0; 0Þ. (b) Case Study 2 with different initial load distributions. The component n5ðtÞ of nðtÞ with different initial values

converges to the same value n�
5 ¼ 16, which numerically shows the global stability of steady state.



We return to the definition of equilibrium of (2). Then,

we have: The equilibrium of (2) has the form of perfect

balancing if and only if there is k, 1 � k � m such that:

1. js ¼ 0 as k � s � m� 1,
2. js > 0 as 1 � s � k� 1,
3. ls ¼ 0 as 2 � s � k, and
4. ls > 0 as kþ 1 � s � m.

The detailed proof can be found in [37].
It follows from the definition of equilibrium that the

equilibrium of (2) varies continuously as parameters js and

ls vary. So, the form of perfect balancing can be closely

reached if and only if the following conditions are satisfied:

1. ls is small enough as 2 � s � k.
2. js is small enough as k � s � m� 1.
3. js remains large enough (relative to the small

enough) as 1 � s � k� 1.
4. ls remains large enough (relative to the small enough)

as kþ 1 � s � m.

These conditions can be verified in the numerical

simulation in Fig. 1a. From the strategies point of view,

these conditions mean that agents have complete informa-

tion about nodes on minigrids:

1. It follows from js (1 � s � k� 1) is large enough and
ls (2 � s � k) is small enough that: for the teams
whose sizes are less than k, agents would like to join
the teams and would not leave the teams after
joining.

2. It follows from ls (kþ 1 � s � m) is large enough
and js (k � s � m� 1) is small enough that: for the
teams whose sizes are larger than k, agents would
like to leave the teams and would not join these
kinds of teams after leaving.

Therefore, if the equilibrium has the form of perfect
balancing, that is, perfect balancing exists in load balancing,
then agents have complete information about nodes on
minigrids. On the other hand, it is known that if agents have
complete information about nodes on minigrids, the load
will be evenly balanced on idle nodes, that is, perfect
balancing exists in load balancing. Then, we have:

Theorem 3. Perfect balancing exists in load balancing if and only

if agents have perfect information about nodes on minigrids.

Generally speaking, agents do not have perfect knowl-
edge about minigrid nodes. Therefore, perfect balancing
does not always emerge in load balancing. The perfect load
balancing shown in experiments of [18] exists under the
strict conditions we give.

5 EFFICIENCY OF LOAD BALANCING

In Section 4, we show that load balancing described by (2)

converges to a unique steady state. The convergent speed

and the final distribution at the steady state present the

quality of load balancing. In this section, we measure the

quality of load balancing by analyzing the convergent speed

and the distribution at the steady state. The problems we

concern are:

1. Whether or not load balancing is worth doing?
2. How about the utility gains and the efficiency during

different balancing periods?

It is known that the goal of load balancing is to save time
in fulfilling tasks. Since the service time for each agent (task)
is assumed the same, we define utility gains of load
balancing by waiting time. Let T > 0 be the service time
for each agent (task). Let the initial distribution of agents
(tasks) be nð0Þ ¼ ðn1ð0Þ; n2ð0Þ; . . . ; nmð0ÞÞ. That is, initially
the number of teams of size s on minigrids is nsð0Þ,
1 � s � m. Let S be the total number of agents (tasks) in the
system, then

Pm
s¼1 snsð0Þ ¼ S.

Suppose there is no load balancing. Consider a team of
size m. Then, the first agent in the team need not to wait.
The second agent has to wait for time T when the first agent
is served. The third agent has to wait for time 2T when the
first agent and the second agent are served. Inductively, The
mth agent has to wait for time ðm� 1ÞT when the first ðm�
1Þ agents in the team are served. Therefore, the total waiting
time of the team is

T þ 2T þ 3T þ . . .þ ðm� 1ÞT ¼
Xm�1

s¼1

sT ¼ 1

2
mðm� 1ÞT

ð15Þ

if there is no load balancing. Since initially the number of
teamsof sizem isnmð0Þ, then the totalwaiting timeof teamsof
size m is 1

2mðm� 1ÞTnmð0Þ. Inductively, for 1 � s � m� 1,
the total waiting time of teams of size s is 1

2 sðs� 1ÞTnsð0Þ.
Therefore, the total waiting time of the system is 1

2

Pm
s¼1 sðs�

1ÞTnsð0Þ if there is no load balancing.
Suppose there is load balancing under strategies js and ls,

then the distribution tends to steady state n� ¼ ðn�
1; n

�
2;

. . . ; n�
mÞ. The waiting time for n�

1 teams of size one is zero.
The waiting time for n�

2 teams of size two is n�
2T . Inductively,

the waiting time for n�
m teams of size m is 1

2mðm� 1ÞTn�
m.

Therefore, the total waiting time of the system is 1
2

Pm
s¼1 sðs�

1ÞTn�
s after load balancing.

Definition 1. The total utility gain E0 of load balancing is
defined as the difference between two waiting times:

E0 ¼
1

2

Xm

s¼1

sðs� 1ÞTnsð0Þ �
1

2

Xm

s¼1

sðs� 1ÞTn�
s

¼ 1

2
T
Xm

s¼1

sðs� 1Þðnsð0Þ � n�
sÞ;

ð16Þ

where nð0Þ ¼ ðn1ð0Þ; n2ð0Þ; . . . ; nmð0ÞÞ is the initial distribu-
tion of agents, n� ¼ ðn�

1; n
�
2; . . . ; n

�
mÞ is the final distribution

of agents at steady state.

When load balancing performs, the distribution nð0Þ is
changed into nðtÞ at time t. Then, we have:

Definition 2. The utility gain EðnðtÞÞ of load balancing at time t
is defined as:

EðnðtÞÞ ¼ 1

2

Xm

s¼1

sðs� 1ÞTnsð0Þ �
1

2

Xm

s¼1

sðs� 1ÞTnsðtÞ

¼ 1

2
T
Xm

s¼1

sðs� 1Þðnsð0Þ � nsðtÞÞ;
ð17Þ
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where nð0Þ ¼ ðn1ð0Þ; n2ð0Þ; . . . ; nmð0ÞÞ is the initial distribu-
tion of agents, nðtÞ ¼ ðn1ðtÞ; n2ðtÞ; . . . ; nmðtÞÞ is the distribu-
tion of agents at time t.

Definition 3. The efficiency �ðtÞ of load balancing at time t is
defined as:

�ðtÞ ¼ d�ðtÞ
dt

; ð18Þ

where �ðtÞ is the fraction of total utility gain that load
balancing finishes during time period ½0; t�:

�ðtÞ ¼ EðnðtÞÞ
E0

: ð19Þ

The definition of efficiency gives the relation between the
fraction of utility gains and the consumed time.

In order to discuss the efficiency obviously, we consider
the case where both the attachment rate and the detachment
rate are uniform, that is, js ¼ j, ls ¼ l, 1 � s � m. Then, (2)
can be rewritten as follows:

n0
1 ¼ 2ln2 � 2jn2

1 þ l
Xm

k¼3

nk � jn1

Xm�1

k¼2

nk;

n0
s ¼ �lns þ jn1ns�1 � jn1ns þ lnsþ1; 2 � s � m� 1;

n0
m ¼ �lnm þ jn1nm�1:

ð20Þ

Under certain strategy j and l in (20), the distribution
nðtÞ varies with time t because of load balancing. For
different strategy j and l in (20), the corresponding steady
state n� is different. For different strategies j and l and at
different time t, both the utility gains and the efficiency of
load balancing are different. We show the cases through
numerical simulations of (20).

Case Study 3 (Utility Gain and Efficiency). Letm¼6,T ¼ 1,
that is, the maximum team size is six and the service time is one
unit of time. Consider the initial distribution (condition)nð0Þ ¼
ð0; 0; 0; 0; 0; 100Þ; which means there are 100 teams of size 6
initially. Let l=j¼10�6;10�4;10�2;100, 101; 102; t ¼ 1; 10; 100,
respectively.

The simulation result of Case Study 3 is shown in Fig. 2.
In Fig. 2a, it is shown that as l=j ¼ 102, the utility gain at
time t ¼ 10 is equal to that at time t ¼ 100, that is, a little
time is enough to reach the maximum utility gain. It is also
shown that as l ¼ 10�6, the utility gains at time t ¼ 1; 10; 100
are all zero, that is, much time of load balancing has little
effect on increasing the utility gain.

In Fig. 2b, it is shown that as l ¼ 10, the gain fractions at
time t ¼ 1; 10; 100 are �ð0:01Þ ¼ 8 percent, �ð0:1Þ ¼ 30 per-
cent, �ð200Þ ¼ 50 percent, that is, high efficiency emerges
during the first balancing time. It is also shown that as
l ¼ 10�6, the gain fractions at time t ¼ 1; 10; 100 are close to
zero, that is, the efficiency is very low there.

It follows from the numerical simulation in Fig. 2 that
some discussions can be given about the efficiency in load
balancing:

1. As parameter l=j is large, a little time is sufficient for
load balancing to reach its maximum utility gain and
efficiency, which is shown in both Figs. 2a and 2b as
l=j � 10. This is in agreement with the special case
where the number of nodes is larger than that of

agents (tasks), agents’ experiences tell them to
disperse without queuing. In fact, let js ¼ 0, ls > 0,
1 � s � m. Then, (2) becomes linear differential
equations and can be solved. By solutions of the
linear (2), a little time is enough for agents’
dispersion. Therefore, as parameter l=j is large, high
efficiency emerges in the first time period.

2. As parameter l=j is small, much more time is needed
for load balancing to reach its steady state, which is
shown both in Fig. 2a as l < 10�4. As the time of load
balancing increases, the utility gains increase very
slowly. On the other hand, the total (final) utility
gains are small. Therefore, load balancing is not
worth doing in these cases. For example, if there is a
little free nodes on the network, load balancing is not
worth doing since time is consumed with little gains.
Here, there is no obvious time period during which
high efficiency emerges.

3. As parameter l=j is assigned a medial value, the
balance between utility gain and consumed time
should be evaluated. Since

limt!þ1nsðtÞ ¼ n�
s; 1 � s � m; ð21Þ

then

dEðnðtÞÞ
dt

! 0 as t ! þ1: ð22Þ

The efficiency �ðtÞ becomes very small as time t is

large enough. Therefore, if the efficiency �ðtÞ is

smaller than a predefined value, load balancing

should be stopped; on the other hand, if the gain

fraction �ðtÞ is greater than a predefined value, load

balancing should be stopped.

6 OPTIMIZATION OF AGENTS’ STRATEGIES

While wandering on the network, an ant collects informa-

tion on nodes it has visited [18]. The information is about

the status of other nodes and is left by other ants. According

to its own experience and the information from other ants,
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Fig. 2. Case Study 3: For certain strategies l=j ¼ 10�6; 10�4; 10�2; 100;

101; 102, utility gains E and gain fraction � vary as time increases, where

t ¼ 1; 10; 100, respectively.



the ant decides where to go and forms its strategies of
leaving and queuing. That is, ants’ strategies of leaving and
queuing simply come from the statistic information about
nodes. Is there any adjustment of strategies to maximize the
total utility gains of load balancing?

It is known that perfect balancing, where load is evenly
balanced, corresponds to the maximum of total utility gains.
In this section, we discuss the optimization of strategies in
order to maximize total utility gains. It follows from
Theorem 1 that the steady state is uniquely determined by
agents’ strategies of leaving and queuing: different strate-
gies js and ls result in different distributions at steady
states, and the steady states do not always correspond to
perfect balancing. In this section, we theoretically give the
optimization of strategies from the expression of steady
states.

First, we show our idea about optimization through an
example. Second, the abstract discussion is given. Here, we
consider the case m ¼ 3, that is, the maximum team size is
three.

Case Study 4 (Nonperfect Load Balancing). Let j1 ¼ j2 ¼
0:001, l2 ¼ l3 ¼ 0:1. Initially, there are 200 teams of size three,
i.e., nð0Þ ¼ ð0; 0; 200Þ: In other words, there are 600 agents
(tasks) to be balanced, S ¼ 600.

The result in Fig. 3a shows that under the given
strategies, load balancing converges to the steady state n� ¼
ð100; 100; 100Þ; where there are 100 teams of size one,
100 teams of size two, and 100 teams of size three,
respectively. Then, the load is not perfectly balanced.

Now, we revisit the steady state reduced by the given
strategies. It follows from the steady state n� ¼ ð100; 100; 100Þ
that there are 300 idle nodes on minigrids. For the total
600 tasks, the corresponding perfect balancing is ð0; 300; 0Þ.
To reach the perfect balancing, agents’ strategies j1, j2, l2, and
l3 should be adjusted from theold ones. In fact, it follows from
the perfect balancing ð0; 300; 0Þ that there is no teams of size
three and there is no teams of size one at the steady state.
Therefore, an agent will not join a team of size two to form a

team of size three, i.e., j2 ¼ 0. And, an agent will not leave a

team of size two, i.e., l2 ¼ 0. Then, agents’ strategies j1, j2, l2,

and l3 can be optimized as follows:

j2 ¼ l2 ¼ 0; j1 > 0; and l3 > 0: ð23Þ

Case Study 5 (Perfect Load Balancing). Letm¼3, j2¼ l2 ¼ 0,

j1 ¼ l3 ¼ 0:1, nð0Þ ¼ ð0; 0; 200Þ to examine the final steady

state.

The result in Fig. 3b shows that under the optimized

strategies, load balancing converges to a steady state n� ¼
ð0; 300; 0Þ; i.e., there are 300 teams of size two and there is

not teams of size one or three. Perfect balancing emerges in

this case.
We can generalize the optimization of strategies in the

example. In fact, the optimization of strategies js and ls can

be obtained from the expression of steady state n�. That is,

the strategies for perfect balancing can be deduced from

current strategies js and ls. It follows from n� that there are

l ¼
Pm

s¼1 n
�
s idle nodes on minigrids. Let k ¼ S

l . In order to

express our idea obviously, we assume that k and l are

integers. For the case where k and l are not integers, similar

discussions can be given.
Since k and l are integers, then there are l idle nodes on

minigrids and S agents can be even balanced among the

l idle nodes with team size k. Therefore perfect load

balancing should be:

y� ¼ ð0; . . . ; 0; y�k; 0; . . . ; 0Þ; ð24Þ

where y�k ¼ l. The perfect load balancing could be reached if

strategies js and ls are properly rearranged:

1. An agent will not join a team of size s as
k � s � m� 1, that is, js ¼ 0; k � s � m� 1.

2. An agent will join a team of size s as 1 � s � k� 1,
that is, js > 0; 1 � s � k� 1.

3. An agent will not leave a team of size s as 2 � s � k,
that is, ls ¼ 0; 2 � s � k.
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Fig. 3. (a) Case Study 4, where j1 ¼ j2 ¼ 0:001 and l2 ¼ l3 ¼ 0:1. The steady state is n� ¼ ð100; 100; 100Þ. The load is not even balanced. (b) Case

Study 5, where j2 ¼ l2 ¼ 0 and j1 ¼ l3 ¼ 0:1. The steady state is n� ¼ ð0; 300; 0Þ, i.e., the load is absolutely even balanced.



4. An agent will leave a team of size s as kþ 1 � s � m,
that is, ls > 0; kþ 1 � s � m.

Let N� ¼ ðN�
1; N

�
2; . . . ; N

�
mÞ be the new steady state under

the new strategies. We give the expression of N� by (2). It
follows from js ¼ 0; k � s � m� 1 that N�

s ¼ 0; kþ 1 � s �
m: It follows from ls ¼ 0; 2 � s � k that N�

s ¼ 0; 1 � s �
k� 1: Therefore, the new steady state determined by the
new strategies is N� ¼ ð0; . . . ; 0; l; 0; . . . ; 0Þ, which corre-
sponds to perfect load balancing.

Suppose that strategies js and ls cannot be determined
accurately, that is, there are only estimated ranges for js and
ls. The above discussion is still effective: We can give a
range of perfect load balancing y�, based on which we can
give ranges for new strategies js and ls.

7 EXPERIMENTAL VALIDATION

In the previous sections, we have provided a differential
equation system for characterizing the agent-based load
balancing on minigrids. We have further studied the
properties of global convergence and efficiency through
theoretical proofs and numerical simulations on the
equation system. In order to experimentally validate our
system, we have developed a computing grid platform,
called Simulation System for Grid Task Distribution (SSGTD),
using Java language based on the multithread technique,
where each agent is simulated with a thread. On this
computing platform, we have implemented the proposed
agent-based load balancing mechanism. Through experi-
ments, we have observed that the results in general confirm
those found from the numerical simulations. Subsequently,
we have validated the effectiveness of our equation system.

Due to space limitation, in this section, we will show
only the results of the experiments, where the settings are
similar to those of Case Studies 4 and 5 in Section 6.

7.1 Topology-Independency

In the following, we examine the effects of different
topologies of minigrids on our agent-based load balancing
mechanism.

As we have seen, (2) does not consider the topology of
the minigrid. However, in our experiments on the SSGTD
platform, in order to simulate a realistic minigrid environ-
ment where agents carry tasks to search for appropriate
agent teams, we need to address this important issue. A
straightforward question is: Does different topologies affect
the performance of the multiagent system as well as the
final load balancing result? In order to answer this question,
we will investigate three different topologies of minigrids:

. Fully connected minigrid, where each node is
connected to all other nodes.

. Lattice-like minigrid, where each node is connected
to four neighboring nodes, and all nodes form a
lattice-like network.

. Scale-free minigrid, where nodes form a scale-free
network. It has been proven that the Internet exhibits
a scale-free topology [38]. Since a grid is usually
based on the Internet, we believe that a grid more or
less has a scale-free topology. Therefore, we use a
model in [39] to generate scale-free networks.

In the following experiment, we let the maximum team
sizem ¼ 3, the initial agent distribution be nð0Þ ¼ ð0; 0; 200Þ,
and j1 ¼ j2 ¼ 0:001, l2 ¼ l3 ¼ 0:1. Note that in the previous
sections, js denotes the ratio of wandering agents that join
existing agent teams of size s. In this experiment, js denotes
the probabilitywithwhich awandering agent joins an existing
agent team of size s when it meets this team. Similarly, ls
denotes the probabilitywithwhich an agent at the last position
of an existing team of size s leaves the team.

In Fig. 4, we presented our experimental results on a fully
connected minigrid and a scale-free minigrid, respectively.
Note that due to space limitation, our experimental result ona
lattice-like minigrid is omitted, which is similar to those in
Fig. 4. We can note from these figures that for all cases, the
final states are not strictly steady. All cases achieve approxi-
mately steady states, where the numbers of agent teams of
different size oscillate along a certain value. This is because of
the probabilistic feature of agents’ strategies. Specifically, at
each time step, agents probabilistically decide to join teams

10 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 16, NO. 6, JUNE 2005

Fig. 4. Let m¼3, j1¼j2¼0:001, l2¼ l3¼0:1, nð0Þ¼ð0; 0; 200Þ. (a) Fully connected minigrid. The final approximately steady state is n� ¼ ð111; 99; 97Þ.
(b) Scale-free minigrid. The final approximately steady state is n� ¼ ð109; 92; 102Þ.



that they encounter or leave teams where they are queuing.
Therefore, as long as not all probabilities js and ls are zero, at
each time step there always exists a few agents joining or
leaving existing teams.

Although the final states in Fig. 4 are not strictly steady,
they are quite close to the steady state shown in Fig. 3a,5 i.e.,
n� ¼ ð100; 100; 100Þ. That is to say, our experimental results
are by and large in agreement with that obtained from our
numerical simulation of (2). This validates that our
proposed agent-based load balancing characterization
system (i.e., (2)) is effective.

An interesting phenomenon is that as we can see from
Table 1 and Fig. 4, for different topologies of the minigrids,
the processes of load balancing are similar to each other. In
particular, the final approximately steady states are quite
close to each other. That means the proposed agent-based
load balancing mechanism is insensitive to the topology of
the minigrid. It further indicates that no consideration of the
minigrid topology in (2) is feasible.

Remark 1. According to the above observations, we can
conclude that:

1. The topology of the minigrid does not affect the
agent-based load balancing mechanism on mini-
grids, including the process of load balancing and
the final approximately steady state. In other
words, the proposed mechanism is topology-
independent.

2. Since the proposed load balancing mechanism is
insensitive to the topology, the abrupt coming or
going of nodes (if there is no agent queuing) will
not affect the performance of the load balancing
process. In this sense, the proposed load balan-
cing mechanism is fault-tolerant.

7.2 Approximately Perfect Load Balancing

In this section, we will examine whether or not the agent-
based load balancing mechanism can lead to the perfect
load balancing (as discussed in Section 4.2) on the SSGTD
platform.

In the following experiment, we change the probabilities
in the previous experiment to j2 ¼ l2 ¼ 0; j1 ¼ l3 ¼ 0:1.
Because of the topology-independency of the proposed
mechanism, in this experiment we only use a scale-free
network of gird nodes. The result is shown in Fig. 5.

From Fig. 5, we can note that the final approximately
steady state is n� ¼ ð34; 283; 0Þ, i.e., it is not strictly even

balanced as the one shown in Fig. 3b, but rather approxi-
mately even balanced. This is also because of the probabil-
istic feature of agents’ strategies.

8 CONCLUSIONS AND FUTURE WORK

In this paper, agent-based load balancing on minigrids is
regarded as agent dispersion. We have presented a
macroscopic characterization of load balancing based on
two quantities on minigrids, i.e., the number and size of
agent teams. We have shown that load balancing always
converges to a steady state, which is in agreement with
experiments through artificial ants. As contrary to even
distributions in experiments through artificial ants, we have
shown an interesting phenomenon, i.e., the steady state
does not always correspond to an even distribution. We
have theoretically proven that an even distribution emerges
if and only if agents have complete knowledge about
minigrid nodes. To measure the quality of load balancing,
we have defined a utility gain function and have given a
series of analysis about the efficiency of load balancing. We
have theoretically found that agents’ strategies can be
optimized to maximize the utility gain of load balancing.

Finally, we have developed a real platform, called
Simulation System for Grid Task Distribution (SSGTD), to
validate our proposed agent-based load balancing mechan-
ism. Through experimentation, we have found that the
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5. The ranges of x-axes in Fig. 3a and Figs. 4a and 4b are different. This is
because of their different time scale.

Fig. 5. Let m ¼ 3, j2 ¼ l2 ¼ 0, j1 ¼ l3 ¼ 0:1, nð0Þ ¼ ð0; 0; 200Þ. The final

approximately steady state is n� ¼ ð34; 283; 0Þ. The load is approxi-

mately even balanced.

TABLE 1
A Comparison of the Final Approximately Steady States in Figs. 4a and 4b



results from our experiments on the SSGTD platform in

general confirm those from our theoretical analysis and

numerical simulations in (2). In addition, we have observed

another interesting phenomenon, i.e., the agent-based load

balancing mechanism cannot be affected by different

topologies of minigrids.
Regarding the future work, the following are three

important directions:

1. Grid environments: In this paper, we have specifi-
cally focused on a type of homogeneous minigrid
environments. In order to further exploit the
functionality of our agent-based load balancing
mechanism, in our future work, we will extend the
mechanism to more general environments, where
nodes may be heterogeneous in terms of their
processing speed, memory size, and storage space,
and nodes may dynamically come and go. If nodes
are heterogeneous, even for the same task, the
service time on different nodes may be different. In
order to address the load balancing problem in such
grid environment, we need to extend our proposed
mechanism to take into account more factors, such as
processing speed of nodes. In this paper, we have
not considered task transfer time and network
latency. In the future work, we will study them
both theoretically and experimentally.

2. Task interdependency and granularity: This paper
has studied a task distribution environment where
tasks are arbitrarily divisible. How to extend our
proposed mechanism such that it can work well in
the case of more general task environments is an
interesting research issue. Some general task envir-
onments may have the following characteristics:

. Tasks may be interdependent rather than
independent.

. Tasks cannot be divisible. Or, tasks are divisible.
However, tasks can only be partitioned into
chunks of different granularities.

. Tasks need coallocation of different computa-
tional resources, such as, CPU time andmemory.

Providing an agent-based task distribution mechan-

ism for the above environments will be a natural

extension of this work.
3. Agent behavioral variation: In this paper, we have

assumed that agents properly behave according to
their strategies. In real world environments, agents
perhaps perform without strictly complying their
predefined behaviors. For example, because of
some unpredictable factors, agents may fail to
handle tasks, or agents congest at certain nodes,
etc.. In our future work, we need to address the
effects of agent behavioral variation on the load
balancing mechanism.
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