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Abstract - This paper introduces an adaptive algorithm for
distributed caching based on the idea of autonomous proxy
caches without the usage of a central coordinator or
broadcasting protocol. We will show, that the algorithm
outperforms existing approaches based on hashing
algorithms in hot-spot scenarios and common power -law
request patterns.

[.INTRODUCTION
The Internet is growing exponentially and web caches have
been shown to be a feasible way to reduce the overall
network traffic. A cache is usually placed between the
requesting clients and the resolving origin server, storing
transferred objects for future retrieval.

If aproxy is not able to resolve an incoming request it can
either forward the request directly to the origin server or
guery a neighboring proxy for the needed object. The idea
that a proxy can forward requests to a different proxy cache
lead to research in the area of cooperative proxies.
Cooperative proxies try to combine their individual caches
in such away that a maximum cache-usageis achieved while
acting transparently as one single load-balanced proxy cache

3.

A Hierarchical vs. Hashing

Common approaches for cooperative systems encompass
mostly solutions based on hierarchical cache structures or
classical hashing algorithms [4]. While in the hierarchical
gructure unresolved requests get forwarded to sibling
caches, using ICP, and to the parent cache up the hierarchy
with a high number of additional querying messages, the
hashing approach, like found in CARP [7], computes the
exact location of the requested object and forwards the
request to maximal one additional proxy minimizing the
number of querying messages to one [5][6].

On the other side, the hierarchical approach leads usually to
multiple copies of the same object in different locations,
minimizing the overall cache usage but allows good load
balancing in hot-spot situations. The hashing approach
assigns one exact location to each object, leading to a
maximum of cache usage but lacks the flexibility to load-
balance hot-spots through multiple copies.

Additionally, both algorithms are more or less flexible to
cope with changes in the underlying infrastructure like the
removal or addition of proxy resources. In the hierarchical
structure the changed infrastructure needs to be represented
in a changed proxy hierarchy, through user interference.

Some solutions for hashing based algorithms are able to
dowly cope with changes in the proxy set but in general the
predefined hashing function does not fancy changes in the
infrastructure.

B. ldeal Cooperation

This short comparison shows the major objectives of a
distributed cooperative proxy environment:  Object
Allocation, Cache Usage, Load Balancing and Reactivity
towards the Infrastructure.

1) Object allocation, describes the challenge of finding
the exact location of a cached object with a minimum
number of messages or forwarding hops (a hop occurs for a
message between client/proxy, proxy/proxy and
proxy/server) (Figure 1)

2) Cache-Usage, the goal isto maximize the usage of the
overall cache space in all cooperative proxies through
minimization of redundant data. Ideally, each object usesthe
cache space of exactly one proxy with alow fluctuation to
promote ideal allocation.

3) Load Balancing, describes the idea of ideal content
dissemination in regard to the current request pattern. In
contrast to maximized cache-usage, hot-spot situations
demand the storage of multiple copies of the same object in
different locations.

4) Reactivity towards the infrastructure, an ideal
distributed proxy system should be able to scale with newly
added resources, and furthermore should fail gracefully with
the removal of resources.
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Figurel, Ideal Cooperation



C. Problem Definition

A cooperative caching system isbased on a set of M
individual proxieswith atotal cache capacity C. A set of N
different objects, where usually N > C, needsto be assigned
to the total cache-space in such away that each object has
ideally one location allowing afast alocation and maximal
cache-usage (for simplification purposes we assume all
objects of equal size).

In the worst-case scenario, all objects are requested with a
uniform distribution, not allowing a LRU cache to focus on
a stable set objects. Recent work has shown, that the
experienced request pattern on a proxy server, follows the
power-law distribution [11], where a small number of most
objects gets requested most of the time and a high number
of objects gets requested very rarely. In the other extreme
the small set of mostly requested objects, hot documents, is
located on the same proxy, leading to an bottleneck scenario
in pre-assigned hashing algorithm with lack of maintaining
multiple objects.

An ideal cooperative proxy environment maintains multiple
copies of the same hot object on different locations to load
balance the proxy latency. Therefore we are looking for an
adaptive distributed algorithm that is able to maximize the
average hit-rate and minimizes the average number of hops
needed to find the document. Additionally, This constraint
creates a conflict between the storage of multiple objects
decreasing the average number of hops needed to find an
object

D. Related & Previous Work

As described earlier, the change from a general almost
uniform request pattern to a more focused hotspot situation,
isthe major problem, that existing approaches fail to cope
with. A hierarchical structure always maintains multiple
copies, good for load balancing, but minimizes the cache-
usage and comes with a costly search algorithm [9]. Hashing
always maintains exactly one copy of each object, allows a
minimum search but is not able to avoid a proxy overload in
hotspot situations through multiple copies[8].

In our previous work we tried to cope with the problematic
through the simple usage of a central coordinator [1], which
assigns incoming requests accordingly to a specific proxy,
maintaining ideal load balancing with non-existing search
costs. Due to the fact, that the central coordinator
establishes a single-point of failure and is usually not able
to scale with a growing number of proxies we focused in
our second work on the creation of adaptive proxy servers
[2], that will self-organize themselves to minimize the
search cost and which is able to load-balance hotspots. We
build the approach on the idea of data clustering in regard to
the objects URL-main-domain were over time a specific
proxy became responsible for a certain number of domain
data. We experienced that in hot spot situation, when only
data of one domain is requested each proxy will maintain

copies of the requested objects, but the approach was not
able to minimize redundant data between proxies.

F. Proposal

In the following chapters we introduce an adaptive
distributed caching algorithm based on the principles of
self-organization in autonomous objects. We will show that
the algorithm is able to reduce the number multiple copies
in situations where N > C and the request pattern is not
emphasizing on a group hot documents. On the other side, if
such a hotspot situation occurs, N < C, our algorithm will
allow the overall system to maintain multiple copies to
balance the load between the cooperative proxies.

Looking at the special case of N=C, after alearning period,
the system of adaptive proxies should stabilize in such a
way, that each proxy becomes devoted for a exact set of
objects, and all proxies will agree on the same location for a
specific object, minimizing the search costs, without the
usage of an central coordinator or a broadcasting protocol.

F. Slf-Organization

The major challenge of our approach lies in the constraint
that proxies are not allowed to exchange knowledge directly
but have to make autonomous decisions based on local
picture [12][13]. Each autonomous proxy has to be
proactive towards the ideal system state through request—
response evaluation and request pattern observation. For
this purpose the proposed algorithm comes with two
adaptive components, which will reinforce each other in the
global picture: selective caching & request forwarding

1) Selective Caching, instead of using the very common
LRU algorithm to replace cache content with every arriving
object, the adaptive proxy will try to stabilize its cache
content in the currently most often requested objects. This
stabilization allows neighboring proxies to make good
assumptions about the cached content [10].

2) Request Forwarding, assigns an unresolved request to
the most suitable proxy, which is most often returning a
cache hit. The more proxies agree on the same location, the
more the targeted proxy will experience a change in its
request pattern and cache the highly requested objects.

The last step will lead to a further stabilization of the
targeted cache and will lead to reinforcement through the
attraction of more requests for the cached data. The overall
system will move to a stable self-organized state in regard to
the current request pattern.

1. ADAPTIVE DISTRIBUTED CACHING
ALGORITHM (ADC)
Each proxy contains an implementation of the exact same
agorithm with the following components: Mapping Table, Request
Forwarding, Selective Caching, Cache Replacement.



A Mapping Table

The proxy stores information for each requested object in
the mapping table. The table rows represent the entry for one
object, while the table columns represent the attributes:
Object ID, Location 1D, Stability, Time Stamp, Average
Time.

Table.getCurrentAverage ( objectID, time) {
return ( ( 3* Table.getAverageTime (objectlD ) )
+ (time — Table.getTimeStamp ( objectiD ) ) ) / 4;
}
Table.updateAverage ( objectID, time) {
value = ((3* Table.getAverageTime (objectlD ) )

+ (time — Table.getTimeStamp ( objectiD ) ) ) / 4;
Table.setAverage ( objectID, value);
Table.setTimeStamp ( objectID, time);
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Figure 2, Adaptive Mapping Table Functions

1) Object ID, a unique identifier for the whole system for
this particular object. In an Internet Proxy environment, the
object URL usually represents the unique identifier. For our
simulations, we used a plain numerical value to identify
different objects.

2) Location ID, is the unique identifier for a specific
location (proxy 1D). When the local proxy was not able to
resolve the request, it will forward the request to the
location specified by the location 1D in the mapping table.
When the location ID is equal to the current proxy, the
request will be forwarded to the origin server.

3) Sability, this value represents a probability value for
the likelihood to use the defined location or to do arandom
forwarding. The higher the stability value, the more likely it
is, that the request will be forwarded to the assigned
location (Table 1).

Value  Situation

0.02 Initial val ue for an unknown object

0.98 Assigned value after first
initialization

TABLE 1: STABILITY VALUES

4) TimeStamp (T\), isalocal time value representing the
last time when this object was requested. In our simulation,
each proxy counts the number of received requests and the
current time is always the current request number.

5) Average Time (Taerage), represents an estimate for the
average time between two requests. To make the system
adaptive to different request patterns a simple non-stationary
formulais used. Figure 2, shows the mgjor update functions
where the update formula will be used.

3-T +(T_ -T

T _ average now last )
current
4
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B. Request Forwarding

When an incoming request was not resolved by the locally
cached data, an alternative route needs to be selected based
on the information in the mapping table. The proposed
algorithm will simply accept the assigned location with a
probability of the stability value. If the assigned location is
equal to the current proxy or if aloop got detected, the
request will be forwarded directly to the origin server.

IF RequestTable.containsRequest ( requestiD ) {
Forwarding = THIS;
} ELSE{
RequestTable.addRequest ( requestID );
IF rand.probability < Table.getSability ( objectID ) {
Forwarding = Table.getL ocation ( objectID );
ELSE
Forwarding = select random proxy;
}
IF ( Forwarding == THIS) {
Forwarding = origin server;

Figure 3, Request Forwarding Algorithm

A newly requested object will always be initialized with a
very small stability value (0.02) leading to a high chance for
arandom search across multiple proxies to resolve the
request. In our current algorithm, we did not limit the
number of hops for the search path and the search will
continue until either the origin server is randomly selected
or apath loop is detected.

Loop Detection occurs through the fact, that each request
uses a unique request ID and all forwarding proxies will
store information about the unresolved request. When a
proxy experiences the same request ID twice, aloop has
occurred and the request will be forwarded to the origin
server. The request table is used to allow resolved objects to
traverse the same path back to the requesting client. In case
of aloop occurrence additional data needs to be stored to
avoid that a double incoming request does not update the
proxy cache and mapping table twice.

C. Response Evaluation

After either a proxy or the origin server resolved the request,
the package traverses the same way back to the requesting
client and leaves afeedback trail in each passing proxy. Each
proxy will individually decide whether to store or discard
the received data before forwarding the resolved object to
the next proxy on the feedback path.

Before the package migratesits way back, it will be marked
with the ID of the resolving proxy or the ID of the proxy



which forwarded the request to the server. In thisway, all
proxies on the forwarding path will be informed about the
most suitable location of this object, for future requests. In
case, where the request got resolved by the server and not by
a proxy, the first proxy on the way back that caches the
object will overwrite the current resolver ID with its own
ID, to inform the remaining proxies on the response path
about its ability to resolve future requests much faster
(Figure 4).

IF (Response.getResolver() == null) ||
(Response.isCached() & & Table.getCached(objectID)) {
Response.setResolver ( THIS);
Response.setCached (Table.getCached(objectID) );
Table.setLocation ( objectID, THIS)
} ELSE{
Table.setLocation ( objectI D, Response.getResolver () );

Figure 4, Response Evaluation

Essentially the information distribution is very similar to a
multicasting to a selected group of proxies with two
advantages, first the multicast message is not initialized
from a central point but forwarded from proxy to proxy, and
secondly a message with the resolved objects is sent
anyways and there is no need to initialize additional
messages to distribute the information.

D. Selective Caching

To alow the cacheto stahilize in a set of objects, we follow
the idea of selective caching. Each returned object from a
forwarded request has to fulfill a certain criteriato enter the
cache. In the described algorithm we want the cache to
stabilize in the most frequently used objects, even if the
frequency ratios of the different objects have almost the
same value. For comparison and evaluation, we use the
average request time for a certain object plus the current
time difference to the last request to allow object aging.

IF ( Table.getCurrentAverage ( objectID, time) <
0.5 - Table.getCurrentAverage ( cacheMaxID, time)) {
Cache.Remove (cacheMaxID );
Table.setCached (cacheMaxID, FALSE);
Cache.AddSorted ( objectID );
Table.setCached ( objectID, TRUE);

Figure 5, Selective Caching

For a new abject to enter the cache, it has to pass the cached
object with the worst request frequency in regard to the
current time. The focus on the current time allows objects
to age and gives the system the ability to adapt to changing
request patterns. Simulations have shown, that the

stabilization process will speed-up if we use just a fraction
of the worst frequency.

The cacheis always sorted by the current time values of the
stored objects. If a cache hit occurs on a specific object, the
object will slowly climb to the top of the sorted cache while
the other objects age and move to the bottom. If a new
object is able to enter the cache, the cached object with the
worst request frequency will be removed, leading to
stabilization in the most frequently used objects.

[11.EXPERIMENTATION
In the following experiments we compared our algorithm to
two types of hashing algorithms and we will show that our
approach is able to outperform both of them in significant
points like hit-rate, number of hops and load balancing. We
do not use the hierarchical approach for comparison,
because, hashing comes with an ideal object to location
resolution which is one of the major objectives of our work.

A. Algorithms

We compare our adaptive distributed caching (ADC)
algorithm against two types of hashing algorithm deferring
intheir caching strategy.

1) Hashing with cache everything (H& C) as found in
CARRP. In this approach, each unresolved request will be
forwarded to the location computed by the hashing function.
After the object is returned, the forwarding proxy will
always store every arriving object initsloca cache based on
the Least Recently Used Algorithm.

2) Hashing with cache assigned objects only (HNC), In
this agorithm, each unresolved request will be forwarded to
the location computed by the hashing function. After the
object is returned, the forwarding proxy will only store
objects, which are assigned to its location based on the
hashing function. The replacement algorithm is based on the
Least Recently Used Approach.

B. Attributes

After the simulation we will compare, the hit-rate, number
of hops and the load variance. Each simulation measuring
point encompasses 1000 different request.

1) Average Hit Rate, represents the number of requests
that were resolved by the cooperative caching system in
regard to the number of requests. The higher the average —
hit rate the better performs the algorithm.

2) Average Hops Rate, represents the number hops that
are needed to resolve arequest. The distance between a
client/proxy, proxy/proxy or proxy/server defines one hop.
The lower the average hops rate, the lesstime it takes to
resolve the requested object. The evaluation of this
parameter will give us an ideaif the algorithm also suitsin
global scenarios where the number of transferred messages
matters.

3) Average Load Variance, represents the variance in
regard the number of requests a proxy experiences in the



measuring period. The variance value is computed by the
well-known statistical variance method where a very small
variance value represents an almost equal load for all
proxies

C. ZIPF - Distribution

In the first smulation, we ran, all three algorithms against a
typical ZIPF-distribution over a set of 10000 web-objects.
A set of 10 proxies provides a total cache space of 1000
objects.
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Figure 8, ZIPF — average load variance

1) Average Hit Rate (Figure 7), shows that the hashing
approach with storage of only assigned objects (HNC)
outperforms by far the hit-rate of the hashing approach with
storage of all objects (H&C). Our algorithm (ADC)
approaches quickly the good values of HNC and lies just a
small percentage beneath its value.

2) Average Hops Rate (Figure 8), shows areversed
situation, were H& C outperforms slightly better than HNC.
As visible from the diagram, ADC is even able to
outperform H& C by a small percentage and probably much
more in longer test runs due to the self-organizing nature of
the algorithm.
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3) Average Load Variance (Figure 9), shows clearly that
our adaptive approach again very quickly approaching an
almost optimal value and competes with the good |oad
balance of H& C. HNC performs poorly in comparison to
H& C and our algorithm.

D. Uniform Hot Spot

In the second simulation, we ran, all three algorithms against a
uniform — hot spot for a set of 1000 objects. A set of 10 proxies
provides atotal cache space of 1000 objects. To create a hot-spot
situation, the 1000 objects are selected in such away, that the two
hashing algorithms will forward al unresolved requests to the same
proxy, creating a bottleneck scenario.

1) Average Hit Rate (Figure 10), shows that load balancing
of hot spots is the major strength of our proposed
algorithm. While both hashing algorithms perform very
poorly of fewer than 20% (100 objects per proxy represent a
maximum of 10% of the total 1000 objects). ADC is able
to maximize the total cache-usage through minimization of
redundant objects allowing a hit-rate of over 90%.

2) Average Hops Rate (Figure 11), proofs that also
regarding the average number of hops our adaptive
algorithm outperforms the two hashing approaches by far.
ADC is able to learn ideal mapping for each requested
object and allows specific request forwarding.

3) Average Load Variance (Figure 12), the last figure
shows more than clearly the load-balancing feature of ADC.
With a value very close to zero, ADC is able to keep all
proxies on an almost equal usage, while the overloaded
proxy in the hashing approachesis the reason for the high
load variance value.

IV.CONCLUSION

In this paper we introduced an adaptive algorithm for
distributed caching based on request forwarding and
response evaluation. We have shown that the algorithm,
which is completely based on autonomous proxies, is more
than able to outperform existing predefined hashing
solutions for cooperative caching both in a general ZIPF
request patterns and in hot-spot situations. The adaptive
components of the algorithm allow the system to stabilize in
the most suitable state in accordance to the current request
pattern. Overall we can say, that our algorithm combines the
advantages from both ideal mapping found in HNC with no
multiple copies and | oad-balancing through redundant
copies found in H& C. One limitation of the algorithm lies
in the fact that it keeps a mapping table record for each
requested object, which can lead to a large amount of
system data. Future work will show how the limitation of
the mapping table to a maximums size will affect the overall
system behavior. Additionally, the algorithm needs to be
tested in areal system with areal proxy request traces.
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