Paper I1D: 378

Student Paper: Self-organized Autonomous Web Proxies

Markus J. Kaiser

Department of Computer Science
Hong Kong Baptist University

Kwok Ching Tsui

Department of Computer Science
Hong Kong Baptist University

Jiming Liu

Department of Computer Science
Hong Kong Baptist University

Kowloon Tong, Kowloon, Hong Kong Kowloon Tong, Kowloon, Hong Kong Kowloon Tong, Kowloon, Hong Kong

mjk@gmx.it

ABSTRACT

With the increasing size of the Internet, proxy servers have
emerged as a feasible way to reduce the overall network load and
latency. More recantly reseachers focused on rew ways to
combine multiple coperative proxies into ore transparent proxy
system to further increase the overall performance gain, but no
work so far was redly able to propose an ided trade-off between
content dissemination and clustering in a changing environment
cading environment. This paper introduces a self-organizing
approach to combine multiple aitonomous proxies into ore
transparent proxy system One of the emerging attributes of a
system of self-organizing autonamous proxies is a baance
between content clustering and dbta disemination. Our
experimental results dow that such a system outperforms
conventional cooperative proxy infrastructures.

Categories and Subject Descriptors

1.2.11 [Distributed Artificial Intelligence]: Coherenceand
coordination, intelli gent agents, Languages and structures,
Multi agent systems

General Terms

Algorithms, Management, Measurement, Performance, Design,
Reli ability

Keywords
Proxy, Load Balancing, Data Clustering, Self-Organizaion

1. INTRODUCTION

Internet traffic is growing exporentially and increases the need for
methods to minimize network latency. Proxy servers have been
shown to be awell-suited approach to help improving the network
performance They are usually placed between the dient and the
origin server and ad as an intercepting proxy cade [6]. Their
advantages gart with reduced bandwidth consumption, a

Permisgon to make digital or hard copies of all or part of this work for
personal or clasgoom use is granted without feeprovided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or repubish, to post on agents or to redistribute to lists,
requires prior specific permisson and/or afee

AAMAS-02, Month 1-2, 200Q City, State.

Copyright 2002ACM 1-58113000-0/00/0000...$5.00.

tsuikc@comp.hkbu.edu.hk

jiming@comp.hkbu.edu.hk

reduction in latency due to data dissemination and a reduction
the load for remote origin server [1][10]. Recent approaches try to
combine aset of multiple proxy servers into ore operative
proxy system with shared cades ading transparently as one proxy
server. These moperative proxies usualy share the knowledge
abou their caced data and alow a faster document fetching
through request forwarding [11], but non d this approaces was
able to maintain a stable trade-off for ided performance
charaderistics. A new approach based on the self-organizing
nature of autonamous objeds, as proposed in this paper, seens
promising to expand teyond the limitations of existing
cooperative gpproaches.

1.1 Cooperative Proxy Systems

Existing cooperative proxy systems can be cdegorized into
hierarchicd & distributed proxy systems [2][12][17][6]. The
hierarchicd approac, first introduced by the Harvest Caching
Projed [24][25], is based onthe Internet Caching Protocol (ICP)
and a staticdly assgned hierarchy of proxy servers. A page not in
the locd cade of a proxy server is first requested from
neighbaing proxies on the same hierarchy level. If ill
unresolved the assgned roct-proxy in the hierarchy will be
queried and urresolved requests continue to climb the hierarchy
and dten leal to a battlenedk situation onthe main-roct server.

The distributed approach is usualy based ona hashing algorithm
like the Cache Array Routing Protocol (CARP) [16]. In ahashing-
system ead requested page is mapped to exadly one proxy in the
proxy array and will be ether resolved by the locd cade or
requested from the origin server. Hashing-based al ocaions can
be widely seen as the most ided way to find caded web pages,
due to the fad that their location is pre-defined and the seach
agorithm requires no further overhead, but their mgjor drawbadk
isinflexibility and poa adaptability [15][21].

Additional work for distributed proxy systems, like Adaptive Web
Cadhing [5] and CadcheMesh [7], try to overcome spedfic
performance battleneds. For example, in Adaptive Web Caching
through dynamicdly creaed proxy groups combined with data
multi-casting, while CacheMesh computes the routing protocol
based on exchanged routing information. Both approaches can
still be mnsidered experimental and ddn't read the widespread
adknowledgement like CARP or ICP. Yet other approaches like
pre-fetching, reverse proxies and adive proxies [11] can usualy
be sean as further improvements to speed-up the performance of a

general hierarchicd or distributed infrastructure axd go hand in
hand with ou proposed self-organizing approach based on
intelli gent autonamous proxies.

1.2 Theldeal Cooperative Proxy

The major challenges of a moperative Proxy environment can be
clasdfied into the following aress. content allocation, cache-
usage, load balancing and reactivity towards a changing
infrastructure.

Content allocation describes the challenge of finding the location
of a aurently caded web page in a set of distributed proxy
servers. An ided cooperative proxy system knows exadly where
to find requested data. Asuuming that caded content is highly
dependent on the airrent request pattern and that a cabe is
usudly limited in size Idedly ead cade objed is assgned to an
exad set of locdions, where it can easily be foundand retrieved
by other proxies. In hierarchicd cades, proxies usually exchange
cade summaries through inter-proxy protocols and lean about
the content of neighbaring proxies. If no knowledge is available a
simple seach processis initiated which occurs a high overhead.
In hashing-based algorithms this problem is lved through a
dired, and therefore ided, assgnment of cade objeds to a
spedfic proxy through, for example, a simple moduo cdculation
over the request URL. However, this approad is inflexible and
adapts poaly to a changing infrastructure.

Cache-Usage tries to maximize the usage of all combined proxy
cades in the moperative proxy system, through minimizing the
number of dudicae mpies in neighbaring proxies. An ided
cooperative system minimizes redundant data in neighbaing
proxies to maximize the overal cade-usage. It shoud be pointed
out that we emphasize on avoidance in neighbaring proxies, due
to the faa that for the dient itsinsignificantly from where to fetch
the objed from but its more important to have aredm of cated
data. Hierarchicd systems usualy do nd consider this isale.
Hashing-based allocaions <lve this problem again idedly
through an ided mapping of cated oljeds onto the set of proxy
Servers.

Load Balancing describes the situation o ided content
disemination, regarding the arrent request pattern, hot-spots or
unused resources. It is usualy true that a dient requesting an
caded oljed from a dose proxy experiences alower latency than
arequest for an oljed from aremote server. Hierarchicd proxies,
store mpies of the requested oljeds on the path down the
hierarchy. Subsequent requests for the same objed have ahigh
likelihoodto be fulfill ed locdly. It shoud be pointed ou that load
balancing interferes with the ideaof a maximized cade usage and
also with the goals of content all ocetion. Maximized Cache usage,
tries to minimize data dissmination whereas content all ocations
is gmplified with low system readivity towards the aurrent
request pattern.

The last challenge mncerns adaptability regarding changes in the
underlying infrastructure. A good dstributed proxy system
shoud be aleto scdewell with newly added resources, and more
importantly shoud fail gracdully with the removal of resources.
In red-life, proxies will be alded to and removed from the
network. In the arrent implementation o hierarchicd and
distributed approaches, eat proxy usually comes with a
predefined knowledge of other neighbaiing proxy servers. The
configuration is mostly based on the individual dedsion d the

system administrator and dces not necessarily represent an ided
scenario regarding the airrent network situation and wsually ladks
flexibility in ha-spot situations and changes in the network
traffic. An ided cooperative proxy system shoud be ale to read
towards changes in the underlying proxy infrastructure; it scdes
well and des gracdully.

1.3 Previous Work

A genera cooperative proxy system can be divided into three
layers. Clients, Proxies and Servers. In an ided scenario with
neighbaring proxies, as siown in Figure 1, an incoming request
for Server B, for example, will be forwarded to ore spedfic proxy
(ided alocaion, no unrecessary data dissemination), this proxy
will adknowledge that it is dedicated for Server B and try to fulfill
the request.

CLIENTS
Client
PROXIES |
A v A
Proxy 1 47 Proxy 2 o m— Proxy 3
SERVERS
h 4
Server A Server B Server C

Figurel: System Layers

In previous work by our group [8] we placel a central dedsion
making entity between the dient and al proxy servers (asuming
we have asmall system, e.g. ingtitutional level) to promote ided
load balancing in resped to the proxies individual performance
charaderistics. The work introduced a single point of failure and
did na consider the caded data.

The logicd next step, which we present in this paper, isto place a
dedsionr-making comporent into every proxy comporent
(autonamous proxy). The new ideais based on the assumption
that after a leaning phase, the aitonomous proxy will self-
organize [23], [26], [3] themselves in such a way that similar
unresolved requests will be forwarded to the same devoted and
ided proxy.

1.4 Theproposed Approach

In red life a sdf-organizing proxy architedure based on
autonamous proxies can be mmpared to a simple market buyer-
sdller environment where the buyer (client) ads as a “dumb”
customer chocsing aways the same shop for al its requests
(smilar to pre-defined proxies in web-browsers). The
maximizaion o the market depends completely on the sellers
(autonamous proxies). Eadch shop les a limited locd stock
(Cadhe) and the goal to maximizethe austomer satisfadion. There
are two ways in suppying good service either by having the

requested item in the locd stock or by knowing the most suitable
way to suppy the item. Additionaly ead proxy tries to attrad
more requests (not customer but other proxies) by spedalizing on
a cetain caegory of items (clustering). This dedsion is usualy
made, based on the arrent spedalizaion o the shop and the
incoming request pattern.

Self-organization in general, describes the adility of a system to
maximize itself towards a spedfied goa. Based on the locd
dedsions of a large number of autonamous objeds emerging
attributes will | ead the aitonamous Dciety as a whole toward a
pre-defined ohjedive and will settle down in an ided stable state.
The previous enario of sdller-buyer objeds in a dynamic market
is a very fitting analogy for the goal to maximize the hit rate for
proxy requests in a distributed autonomous proxy environment.
The subsequent chapters describes design and attributes of a
simple self-organizing autonomous proxy based on the stated
scenario.

2. SELF-ORGANIZING AUTONOMOUS
PROXIES (SOAP)

In this sdion we will describe in detail the cmporents of the
proposed approach and show the design of a self-organizing
autonomous proxies (SOAP): cade, routing table, forwarding
function, feedbad function and seledive cading.

2.1 Request Comparison

The biggest chalenge for the proposed system lies in the
asumption that we ae @le to compare and categorize incoming
requests regarding their similarities. In an ided situation, eat
incoming request is dored with its feedbadk values. This ided
approach would na only leal to an enormous amourt of data, but
it would also require a high number of requests per objed to
distinguish ided from inappropriate dedsions. Leaning by
feadbadk includes a leaning period, and in ou case the leaning
period can be presented in number of requests.

We neal to define cdegories in such a way that we have a
minimum number of requests to reduce the anourt of feadbadk
data and to aaquire the necessary minimum number of requests
per eat caegory to make suitable assumptions abou a chosen
forwarding path. On the other side, the cdegories $roud be fine
enough to allow a good chta dissemination and to minimize
overlapping data in neighbaing proxy cades. In the context of
hashing-algorithms, a simple moduo function, for example, can
define similarity, over the requested URL. But such a simple
caegorization canna be sufficient.

A more sufficient approach would be based on keywords
distribution in the returned data, but this approach could na be
simulated due to time limitations and shall be part of the future

work. For the purpose of this paper we defined request
comparison besed on the main-domain of a given URL, eg.
“sport.com”.

2.2 Components

2.2.1 Cache Replacement Scheme

Eadh proxy comes with alocd cade, a data spacefor storage and
retrieval of transferred oljeds. In the cae of a full cade, the
cading of anewly arrived page is preceded by the removal of an
existing page. We cose to simulate the Least Recently Used
agorithm as one of the most common and well-suited algorithm
for aproxy cade replacanent scheme.

2.2.2 Routing Table

The routing table stores numericd values, used hy the forwarding
function, to sdled an ided forwarding path of an urresolved
request. The table cntains one row for ead known category and
the @lumns represent the list of all known proxy objeds (or in
more redistic scenarios, a subset). In aher words, for eah
caegory the proxy has multi ple paths to chocse from to fetch the
requested oljed. Each table entry represents the aceumulated
average vaue for the last n requests forwarded through this path
andiscdculated by the request feedbad function.

Table1: Example Weight Table

DIRECT | PROXY 1 | PROXY 2 | PROXY 3
Seach.com 10 0.03 4344 100
Sport.com 1.0 0.7 545 43
Riddles.com 1.0 3424 0.005 0.0002
Travel.com 1.0 50 0.45 435

2.2.3 Forwarding Function

The forwarding comporent is triggered when a request could na
be resolved by the locdly caded data and ceta in the routing
table is used to find the most suitable path for the unresolved
request (see Figure 2). After identifying the main-domain of the
request, it looks up the spedfic row and cdculates a weight for
ead entry in regard to the dired proxy-server communicetion.
Table 1 shows an example table dter the weight cdculation. The
weight for a dired proxy-server communicaion receves always
the value 1.0 and represents a reference value for comparison.
Proxy paths that are usualy two times faster than a dired
communicaionwill recéve the weight 2, and a path that is half as
fast asthe dired communication will recéve the weight 0.5.

FOR| = 1 TO (PROXIES + 1)

IF (VALUE [i] == DI RECT)
weight[i] =1.0

IF (VALUE [i] > DI RECT)

value[i] — rowMax

weight[i] = -
rowDirect — rowMax
ELSE
i1- i abilit
weight[i] = Bvalue[}] rowD|.rect . scaIeESt !
rowMin - rowDirect 0

weight[i] : the computed weight for the i-th column
rowDirect: the plain Vaue for adirect forwarding
rowMin : therow plain value Minimum

rowMax : the row plain value Maximum

scale :avauegreater 10

stability : value around 50

2.2.5 Sdlective Caching

The selective caching component decides if the data from a
resolved request will be added to the local cache or discarded (see
Figure 4ab). As described earlier selective caching is introduced
to promote efficient clustering based on the overal traffic pattern
and not just on the recently observed requests. Selective Caching
uses the current cache status for the requested category and
caculates aratio in regard to the category with the highest page
assignments. The ratio is adapted with a small random noise, to
alow categories with a low ratio to leave their minimum in case
of asudden change in focus on a certain category.

| F (# OF NEWPAGE. GETCACHED < M NI MM)
Caching = Random(max Noise)
ELSE
Caching = newPagegetCachedQ —min Cached
max Cached — min Cached
Caching = Caching £ Random(max Noise)
END

Figure 2: Forwarding Function

Note, that a high value in the core table always leads to a low
value in the calculated weight table to avoid this path for future
selections. All weights will be normaized and used as a
probability value for each possible path for this category. A small
random noise value is added to avoid the system to become stuck
in local minima. The final path is randomly chosen based on the
received probabilities.

2.2.4 Feedback Function

The feedback function is executed after a forwarding proxy
received the returned data object (see Figure 3). It should be
mentioned at this point that for simplification purposes we assume
all are objects of equa size and future work should adapt the
algorithm to objects with different sizes. The feedback function
will use the received latency value to update the appropriate cell
in the routing table. Basically, each value in the routing table is
the average latency of the last n requests for this path. The
formula is based on the simple weighted average calculation for
the tracking of a non-stationary problem.

tabled, .y memory + latency
memory +1

tablegi,y =

latency : new returned latency for this request

memory : constant value, representing the number
of last nvauesincludedin cell average

table (i,t) : represents table value in position (i,t)
i : request category, table row
t : chosen path, table column

Figure 3: Feedback Function

Figure 4a: Selective Caching

Caching : probability value to cache the new objects
Minimum: alower bound for categories close to zero
MinCached : Category with smallest # of cached objects
MaxCached : Category with greatest # of cached objects
NewPage: Category of the new object

Figure 4b: Selective Caching

2.3 Algorithm

The following agorithm describes the core steps in a simplified
version without emphasize on the evaluation subroutines (see
Figure 5). It should be clarified at this point, that all autonomous
proxies are based on exactly the same algorithm.

WHI LE (NOT END)
WAI T FOR REQUEST
CHECK LOCAL CACHE
| F (PAGE EXI STS)
UPDATE LEAST RECENTLY USED CACHE
SEND DATA TO REQUESTER
ELSE
I F (HOPS > MAX HOPS)
FORWARD TO ORI G N SERVER
ELSE
DO FORWARDI NG FUNCTI ON
RECEI VE DATA
DO FEEDBACK FUNCTI ON
DO SELECTI VE CACHI NG
SEND DATA TO REQUESTER

Figure5: Algorithm

3. EXPERIMENTATION

In order to show the aility of the proposed algorithm to provide
the objedives of an ided proxy environment, we tested the
simulated system first on its ability to load balance and cluster in
readion to experienced ha-spat situations. Additionally we tested
the dgorithms ability to adapt to changes in the underlying
infrastructure. The gained results will show how a system of
multi ple self-organizing distributed autonamous proxies adapts to
the request pattern in such a way that load balancing and data
clustering will emerge. Additionally the results will also proof that
the system is well able to adapt to radicd changes in the
autonomous proxy infrastructure, like removal and addition o
Proxy resources.

3.1 Architecture

The infrastructure used for later simulations is smilar to a
common institutional proxy environment; with for example, up to
10 poxies. We asaume that in this context, going to any proxy
within the aray of proxies, even by doing a maximum number of
hops, is always faster than requesting the data from the origin
server. The same gplies to an overloaded proxy objed. A locd
hit will aways be faster than a remote request. In such a scenario,
an remote server appeas to be very far away and eadh server a
very high, constant latency value.

We further assume full knowledge and full conredivity within the
proxy layer, so that ead autonamous proxy knows abou every
other autonamous proxy and they are caable of conreding to
ead other withou network restrictions. Furthermore we asame
that ead proxy is equally able to conred to the 20 servers with
the same latency value, e.g. Figure 6.

Client 1 Client 2 Clientn
\ 4 \ 4
Proxv1 |4 ¥ ; Proxv n
/\ Proxv 2 %
‘ 4
Server A Server B Server m-1 Server m

Figure6: Simulated Scenario

3.2 ZIPF-Request Pattern

Resent reseach has down that a power-law or ZIPF-law
distribution is very suitable to describe the experienced request
pattern on a proxy server [4]. In ou simulation, clients injed
requests for al existing servers based ona ZIPF-distribution.

In the simulation, we wanted to be ale to artificially creae hot
spot situations. A hot spot is defined in such a way that the
algorithm first chooses a subset of origin servers, which shall be
part of the hat spot, and the ZIPF distribution will be placed upon
this subset in such a way that chosen servers will be the most
requested ores, and the remaining set of servers recéve dmost no
requests. Future work with a red system shall broaden these
limitations.

Preliminary simulations have shown that the outcome of the
simulations are highly dependent on the request pattern. We
simulated a uniform distribution and also a normally distributed
pattern over al server pages and gained results with similar but
scded performance arves.

3.3 Distributed Hashing

All experimentations are wmparing to a dasscd distributed
hashing approach where an incoming request is aways assgned
to a spedfic request based ona simple moduo cdculation. In our
simulations for the hashing algorithm, ead o the 10 autonamous
proxies is pre-assgned resporsible for two o the origin servers,
e.g. proxy 1 cades data for server A & B, and so on We will
show, that this pre-assgnment wont adapt to the request pattern, a
server overload will occur for hot-spot situations with lower
performance values than a self-organizing autonamous proxies
approadh. The second test shows the alaptability of the propased
approach to changes in the proxy infrastructure withou
comparison to the hashing algorithm, due to the fad that classcd
hashing approaches are nat able to adapt to changes in the number
of resources. Present reseach in the aea of consistent hashing
agorithms tries to overcome this limitation through a feedbadk
function based onmulti-casting groups [27].

3.4 Test 1: Dissemination & Clustering

The following tests show the aility of the system to adapt to an
incoming hot-spot request pattern with focus on a spedfic subset
of 20 servers. This kind d situation cccurs, when a sudden ha-
spot emerges and many clients are focusing on a specific topic
(“Americavs. Terrorism”) The same request pattern is also used
for a dasscd hashing system and we shoud see aperformance
gain in ha-spot situations due to load-balancing and content
disemination whil e the hashing-based system shoud ouperform
the self-organizing approach in situations with almost no ha-
spots, due to urcertainties and the need for an adaptation period.

Performance Gain. As e from Figure 7, the self-organizing
approach works much better than the plain hashing-approach
when it comes to clea hot-spat situations. And as predicted the
performance gain deaesses with deaeasing hot spots in
comparison to a pre-defined hashing agorithm. This limitation
will be cnsidered in future work together with an adaptive URL-
comparison and categorizaion.

Performance Gain

40%

= 30% A
g 20% ‘\
o \
S 10%
g \
E 0% T T T T
S _10% |-10f20 50f20 M}Nwzo 20 of 20
()
Q _20% O
-30%
Hot-Spots

Figure 7: Performance gain compared to plain Hashing
regarding Hot-Spots

Looking at the average number of hop request needs before it gets
resolved, we can see that both approaches require close to the
prediceted medium value of 2 hops. A hop is defined by a request
moving from one host (client, proxy or server) to another host.
Figure 8 shows, that the self-organizing autonomous proxies are
able to build a sable infrastructure with clustered content
minimizing unnecessary request forwarding.

Average # of Hops

2.3

2.2 /\/

21
@ / —e&— Adaptive

2 . -

2 ‘/ —ll— Hashing

1.9 i L L |

1.8

1.7 ‘ ‘ ‘

50f20 100f20 150f20 20 o0f20

Hot Spots

1of 20

Figure 8: Average number of Hopsin regard to the number of
Hot-Spots

Figure 9, which displays the average hit rate for both SOAP &
hashing, shows the same behavior as the previous diagrams. In
hot-spot situations with a focus on a certain set of data, the
adaptive approach performs better than the hashing approach, but
with increasing request distribution over the whole number of sets
the performance of the adaptive approach decreases.

Average Hit Rate

2%

70%
68% - \
66% LN

£ —
X 64% -
£ 62% . —o
60% - —o— Adaptive
58% —— Hashing
56% ; ; ; ;
10f20 50f20 100f20 150f20 20 of 20

Hot Spots

Figure 9: Average Hit Ratesin regard to the number of Hot-
Spots

The evauation of Content Clustering shows that the number of
data clusters is dependent on the number of requested hot spots.
In our system with 10 autonomous proxies, clusters will emerge
based on the current hot-spot distribution.

1 of 20: Only one type of content is requested and al proxy
servers will fill their caches with the same category of data.

5 of 20: Clusters will emerge in such away that always two of the
proxies focus on the same type of data. Five combined clusters
were created as aresult.

10 of 20: The datafor 10 hot spots are equally distributed over the
10 proxies alowing each one to focus on one specific category.
The system becomes stable with 10 different clusters.

15 of 20 & 20 of 20: more random clustering are observed with
some each proxy having a small percentage of all categories
available.

3.5 Test 2: Changing Infrastructure

The following test scenario proofs that the system is able to react
to changes in the proxy infrastructure. In the smulated example,
the overall performance of an individual proxy server will be
raised. Decreasing the proxy performance to a bare minimum is
equal to removing this proxy out of the system, due to the fact that
the proxy latency will increase immensely. As we can see in
Figure 10, the remaining autonomous proxies are adapting to the
newly created situation and even if they are not able to make up
for the lost resources, they try to minimize the negative impact
through further load balancing.

CHANGED INFRASTRUCTURE

5.00E+12

4.00E+12

3.00E+12

2.00E+12
0.00E+00 - \ \

0 500000 1000000

Accumulated Latency

1500000

of Requests

Figure 10: Changed Infrastructure, in the first half of the
graph resource will be removed, in the second added

In the first half of the test, 0 to 750000, we removed proxy servers
every 200000 requests, from 10, to 6, to 3 to 1 running proxy
server. The figure shows clearly that the steepness of latency
curve increases reaching its steepest at around 800000 requests.
Afterwards, requests from 1000000 to 1500000, we added new
resources to the simulated system, from 4 to 7 and to 9 proxy
servers. Clearly visible in figure 10 the curve is slowly getting
flatter. The steeper the curve, the more latency added per request.
A flat curve stays for good performance. The graph shows
explicitly that the self-organizing autonomous proxies are able to
adapt to resource changes.

Adding new resources in a rea life scenario unfortunately
includes the introduction of a minimum inter-proxy
communication (a topic which was not addressed by this work).
Running proxies need to be notified about a newly added
resource, and this can either happen statically through a system
administrator or in a dynamic way through a simple broadcast or
multi-cast protocol. A simply protocol for the exchange of proxy
lists shall be considered as part of the future work.

3.6 Discussion

Overall we can say that our current self-organizing proxy system
performs as well as a common hashing agorithm and is able to
outperform it in hot-spot situations commonly found in Internet
traffic.

The results show us that the system is not only able to find a
stable balance between content dissemination and clustering but it
is also capable of adapting gracefully towards the addition and
remova of proxy resources. Additionally, we can see that the
overal system performance is highly dependent on the incoming
request pattern and that the comparison and categorization of
requests is a key factor for future tests. Besides the fact that the
adaptive system performs as well as a common hash function, we
also gain al additional features that define an ideal distributed
proxy system like, load balancing, simple allocation, good cache
usage and reactivity to changes in the infrastructure. Overall, the
results show that self-organizing autonomous proxies are a
promising approach to compete with or even replace existing
cooperative proxy caching systems.

4. CONCLUSION

Our work was able to show that self-organizing autonomous
proxies are a highly suitable architecture for a cooperative proxy
environment. Its adaptive attributes give the system the necessary
flexibility to cope with emerging hot-spot situations in a genera
network environment and we have shown that aready a simple
algorithm is able to compete with conventional hierarchical and
distributed proxy systems. Further investigations will give more
insights into ways to improve this already promising approach.

5. FUTURE WORK

Future work will especialy focus on new ways to compare and
categorize request patterns. We will try to make the comparing
algorithm more adaptive and we will additionally try to replace
the static system parameters with mechanisms of self-discovery.
Load-balancing attributes in correlation to a system of proxy
servers with different performance characteristics need to be
tested. Furthermore the system needs to be expanded in such a
way that it also reacts to different object sizes and the idea of
proxy migration needs further exploration. Overall the proposed
approach is not only applicable for proxy caching systems, but a
more general view on resource alocation in a dynamic
infrastructure needs further consideration.

6. ACKNOWLEDGEMENT
This work is supported by Baptist University research grant
FRG/01-02/1-03.

7. REFERENCES

[1] Ghaeb Abdulla, Anaysis and Modeling of World Wide Web
Traffic, Dissertation submitted to Virginia Polytechnic
Institute and State University (May, 1998)

[2] Mohammed Salimullah Raunak, A Survey of Cooperative
Caching, (December, 1999)

[3] I. Kassabdidis, M.A. El-Sharkawi, R.JMarkus II, P.
Arabshahi, A.A. Gray, Swarm Intelligence for Routing in
Communication Networks,

[4] Lee Bredau, Pei Cao, Li Fan, Graham Phillips, Scott
Shenker, Web Caching and Zipf-like Distributions: Evidence
and Implications, Technical Report 1371, Computer
Sciences Dept, Univ. of Wisconsin-Madison, April
1998

[5] Scott Michel, Khoi Nguyen, Adam Rosenstein, Lixia Zhang,
Adaptive Web Caching: Towards a New Global Caching
Architecture, In Third International Caching Workshop,
June 1998.

[6] Greg Barish, Katia Obraczka, World Wide Web Caching:
Trends and Techniques, IEEE Communications Magazin,
May 2000

[7] Zhen Wang, Jon Crowcroft, Cachemesh : A Distributed
Cache System for World Wide Web, NLANR Web cache
workshop, June 1997

[8] Kwok Ching Tsui, Jiming Liu, Hiu Lo Liu, Autonomy
Oriented Load Balancing in Proxy Cache Servers, Web
Intelligence: Research and Development, First Asia-Pacific
Conference, WI 2001, p.115-124

[9] Ari Luotonen, Kevin Altis, World-Wide Web Proxies, First
International Conference on the World-Wide Web,
Elsevier ScienceB, 1994

[10] Bradley M. Duska, David Marwood, Michad J. Fedey, The
Measured AccessCharaderistics of World-Wide-Web Client

Proxy Cades, In USENIX Symposium on Internet
Tecdhnology and Systems, Monterey, California, USA,
Deceanber 1997 USENIX Association.

[11] Ja Wang, A survey of Web Cadiing Schemes for the
Internet, ACM Computer Communication Review,
29(5):36--46, October 1999

[12] Pablo Rodriguez Christian Spanner, Ernst W. Biersadk, Web
Cadciing Architedures. Hierarchicd and Distributed
Caching. 4™ International Caching Workshop, 1999

[13] Alec Wolman, Geoffrey M. Voelker, Nitin Sharma, Ned
Cardwell, Anna Karlin, Henry M. Levy, On the scde ad
performance of cooperative Web proxy cading, SOSP-17,
12/1999

[14] Krishnanand M. Kamath, Harpad Singh bassli,
Rajendraprasad B. Hosamani, Topdogy aware dgorithms for
proxy placament in the Internet

[15] Keith W. Ross Hash-Routing for Colledions of Shared Web
Caches, |IEEE Network Magazne, 11, 7:37--44, Nov-
Dec1997

[16]J. Cohen, N. Phadnis, V. Valopgllil, K.W.Ross Cace
array routing protocol v.1.1, Sept. 1997, Internet Draft

[17] Sandra G. Dykes, Clinton L. Jeffery, Samir Das, Taxonamy
and Design for Distributed Web Caching, Published in the
Procealings of the Hawaii International Conference on
System Sciene, 1999

[18] Alec Wolman, Geoff Voelker, Nitin Sharma, Ned Cardwell,
Molly Brown, Tashana Landray, Denise Pinnel, Anna Karlin,
Henry Levy, Organization-Based Anaysis of Web-Objed
Sharing and Caching

[19] Tony White, Routing with Swarm Intelligence SCE
Technicd Report SCE-97-15

[20] Greg Barish, Katia Obracka, World Wide Web Cading:
Trends and Tedniques, |EEE Communicaions
Magazne Internet Technology Series, May 2000

[21] Xueyan Tang, Samuel T. Chanon, Optimal Hash Routing for
Web Proxies

[22]R.B. Bunt, D.L. Eager, g.M. Oster, C.L. Williamson,
Achieving load baelance and effedive cating in clustered
web serversProceedings of the 4th International Web
Caching Workshop, January 1999

[23] Jiming Liu, Kwok Ching Tsui, Jianbing Wu, Introduction to
autonomy oriented computation, In Procealings of 1%
Internationl Workshop on Autonamy Oriented
Computation, pages 1-11, 2001

[24] A. Chankhurthod et a., “A Hierarchicd Internet Objed
Cade™ ,Proc. USENIX Tech. Conf., 1996

[25] K. Claffy and D. Wesss, “ICP and the Squid Web Cache”,
1997

[26] Eric Bonabeau, Marco Dorigo, and Guy Theraulaz, Swarm
Intelli gence: From Natural to Artificial Systems

[27] David Karger, Eric Lehman, Tom Leighton, Matthew
Levine, Daniel Lwin, Rina Panigrahy, Consistent Hashing
and Random Trees. Distributed Caching Protocols for
Relieving Hot Spats on the World Wide Web

