
Paper ID: 378 

Student Paper: Self-organized Autonomous Web Proxies 
 

Markus J. Kaiser 
 

Department of Computer Science 
Hong Kong Baptist University 

Kowloon Tong, Kowloon, Hong Kong 

mjk@gmx.it 

Kwok Ching Tsui 
 

Department of Computer Science 
Hong Kong Baptist University 

Kowloon Tong, Kowloon, Hong Kong 

tsuikc@comp.hkbu.edu.hk 

Jiming Liu 
 

Department of Computer Science 
Hong Kong Baptist University 

Kowloon Tong, Kowloon, Hong Kong 

jiming@comp.hkbu.edu.hk 
 

 

ABSTRACT 
With the increasing size of the Internet, proxy servers have 
emerged as a feasible way to reduce the overall network load and 
latency. More recently researchers focused on new ways to 
combine multiple cooperative proxies into one transparent proxy 
system to further increase the overall performance gain, but no 
work so far was really able to propose an ideal trade-off between 
content dissemination and clustering in a changing environment 
caching environment. This paper introduces a self-organizing 
approach to combine multiple autonomous proxies into one 
transparent proxy system One of the emerging attributes of a 
system of self-organizing autonomous proxies is a balance 
between content clustering and data dissemination. Our 
experimental results show that such a system outperforms 
conventional cooperative proxy infrastructures.  

Categories and Subject Descriptors 

I.2.11 [Distributed Artificial Intelligence]: Coherence and 
coordination, intelli gent agents, Languages and structures, 
Multiagent systems 

General Terms 

Algorithms, Management, Measurement, Performance, Design, 
Reliabilit y 

Keywords 
Proxy, Load Balancing, Data Clustering, Self-Organization 

1. INTRODUCTION 
Internet traff ic is growing exponentially and increases the need for 
methods to minimize network latency. Proxy servers have been 
shown to be a well -suited approach to help improving the network 
performance. They are usually placed between the client and the 
origin server and act as an intercepting proxy cache [6]. Their 
advantages start with reduced bandwidth consumption, a 

reduction in latency due to data dissemination and a reduction of 
the load for remote origin server [1][10]. Recent approaches try to 
combine a set of multiple proxy servers into one cooperative 
proxy system with shared caches acting transparently as one proxy 
server. These cooperative proxies usually share the knowledge 
about their cached data and allow a faster document fetching 
through request forwarding [11], but non of this approaches was 
able to maintain a stable trade-off for ideal performance 
characteristics. A new approach based on the self-organizing 
nature of autonomous objects, as proposed in this paper, seems 
promising to expand beyond the limitations of existing 
cooperative approaches.  

1.1 Cooperative Proxy Systems 
Existing cooperative proxy systems can be categorized into 
hierarchical & distributed proxy systems [2][12][17][6]. The 
hierarchical approach, first introduced by the Harvest Caching 
Project [24][25], is based on the Internet Caching Protocol (ICP) 
and a statically assigned hierarchy of proxy servers. A page not in 
the local cache of a proxy server is first requested from 
neighboring proxies on the same hierarchy level. If still 
unresolved the assigned root-proxy in the hierarchy will be 
queried and unresolved requests continue to climb the hierarchy 
and often lead to a bottleneck situation on the main-root server.  

The distributed approach is usually based on a hashing algorithm 
like the Cache Array Routing Protocol (CARP) [16]. In a hashing-
system each requested page is mapped to exactly one proxy in the 
proxy array and will be either resolved by the local cache or 
requested from the origin server. Hashing-based allocations can 
be widely seen as the most ideal way to find cached web pages, 
due to the fact that their location is pre-defined and the search 
algorithm requires no further overhead, but their major drawback 
is inflexibilit y and poor adaptabilit y [15][21].  

Additional work for distributed proxy systems, li ke Adaptive Web 
Caching [5] and CacheMesh [7], try to overcome specific 
performance bottlenecks. For example, in Adaptive Web Caching 
through dynamically created proxy groups combined with data 
multi -casting, while CacheMesh computes the routing protocol 
based on exchanged routing information. Both approaches can 
still be considered experimental and didn’ t reach the widespread 
acknowledgement li ke CARP or ICP. Yet other approaches like 
pre-fetching, reverse proxies and active proxies [11] can usually 
be seen as further improvements to speed-up the performance of a 

 

Permission to make digital or hard copies of all or part of this work for 
personal or classroom use is granted without fee provided that copies are 
not made or distributed for profit or commercial advantage and that 
copies bear this notice and the full citation on the first page. To copy 
otherwise, or republish, to post on agents or to redistribute to lists, 
requires prior specific permission and/or a fee. 
AAMAS-‘02, Month 1-2, 2000, City, State. 
Copyright 2002 ACM 1-58113-000-0/00/0000…$5.00. 
 



general hierarchical or distributed infrastructure and go hand in 
hand with our proposed self-organizing approach based on 
intelli gent autonomous proxies. 

1.2 The Ideal Cooperative Proxy 
The major challenges of a cooperative Proxy environment can be 
classified into the following areas: content allocation, cache-
usage, load balancing and reactivity towards a changing 
infrastructure.  

Content allocation describes the challenge of finding the location 
of a currently cached web page in a set of distributed proxy 
servers. An ideal cooperative proxy system knows exactly where 
to find requested data. Assuming that cached content is highly 
dependent on the current request pattern and that a cache is 
usually limited in size. Ideally each cache object is assigned to an 
exact set of locations, where it can easily be found and retrieved 
by other proxies. In hierarchical caches, proxies usually exchange 
cache summaries through inter-proxy protocols and learn about 
the content of neighboring proxies. If no knowledge is available a 
simple search process is initiated which occurs a high overhead. 
In hashing-based algorithms this problem is solved through a 
direct, and therefore ideal, assignment of cache objects to a 
specific proxy through, for example, a simple modulo calculation 
over the request URL. However, this approach is inflexible and 
adapts poorly to a changing infrastructure.  

Cache-Usage tries to maximize the usage of all combined proxy 
caches in the cooperative proxy system, through minimizing the 
number of duplicate copies in neighboring proxies. An ideal 
cooperative system minimizes redundant data in neighboring 
proxies to maximize the overall cache-usage. It should be pointed 
out that we emphasize on avoidance in neighboring proxies, due 
to the fact that for the client its insignificantly from where to fetch 
the object from but its more important to have a realm of cached 
data. Hierarchical systems usually do not consider this issue. 
Hashing-based allocations solve this problem again ideally 
through an ideal mapping of cached objects onto the set of proxy 
servers.  

Load Balancing describes the situation of ideal content 
dissemination, regarding the current request pattern, hot-spots or 
unused resources. It is usually true that a client requesting an 
cached object from a close proxy experiences a lower latency than 
a request for an object from a remote server. Hierarchical proxies, 
store copies of the requested objects on the path down the 
hierarchy. Subsequent requests for the same object have a high 
likelihood to be fulfill ed locally. It should be pointed out that load 
balancing interferes with the idea of a maximized cache usage and 
also with the goals of content allocation. Maximized Cache usage, 
tries to minimize data dissemination whereas content allocations 
is simpli fied with low system reactivity towards the current 
request pattern.  

The last challenge concerns adaptabilit y regarding changes in the 
underlying infrastructure. A good distributed proxy system 
should be able to scale well with newly added resources, and more 
importantly should fail gracefully with the removal of resources. 
In real-li fe, proxies will be added to and removed from the 
network. In the current implementation of hierarchical and 
distributed approaches, each proxy usually comes with a 
predefined knowledge of other neighboring proxy servers. The 
configuration is mostly based on the individual decision of the 

system administrator and does not necessarily represent an ideal 
scenario regarding the current network situation and usually lacks 
flexibilit y in hot-spot situations and changes in the network 
traff ic. An ideal cooperative proxy system should be able to react 
towards changes in the underlying proxy infrastructure; it scales 
well and dies gracefully. 

1.3 Previous Work 
A general cooperative proxy system can be divided into three 
layers: Clients, Proxies and Servers. In an ideal scenario with 
neighboring proxies, as shown in Figure 1, an incoming request 
for Server B, for example, will be forwarded to one specific proxy 
(ideal allocation, no unnecessary data dissemination), this proxy 
will acknowledge that it is dedicated for Server B and try to fulfill 
the request.   

 

CLIENTS  

 

 

PROXIES 

 

 

 

SERVERS 

 

 

 

Figure 1:  System Layers 

 

In previous work by our group [8] we placed a central decision 
making entity between the client and all proxy servers (assuming 
we have a small system, e.g. institutional level) to promote ideal 
load balancing in respect to the proxies’ individual performance 
characteristics. The work introduced a single point of failure and 
did not consider the cached data. 

The logical next step, which we present in this paper, is to place a 
decision-making component into every proxy component 
(autonomous proxy). The new idea is based on the assumption 
that after a learning phase, the autonomous proxy will self-
organize [23], [26], [3] themselves in such a way that similar 
unresolved requests will be forwarded to the same devoted and 
ideal proxy.  

1.4 The proposed Approach 
In real li fe a self-organizing proxy architecture based on 
autonomous proxies can be compared to a simple market buyer-
seller environment where the buyer (client) acts as a “dumb” 
customer choosing always the same shop for all it s requests  
(similar to pre-defined proxies in web-browsers). The 
maximization of the market depends completely on the sellers 
(autonomous proxies). Each shop has a limited local stock 
(Cache) and the goal to maximize the customer satisfaction. There 
are two ways in supplying good service, either by having the 

Client 

Proxy 1 Proxy 2 Proxy 3 

Server A Server B Server C 



requested item in the local stock or by knowing the most suitable 
way to supply the item. Additionally each proxy tries to attract 
more requests (not customer but other proxies) by specializing on 
a certain category of items (clustering). This decision is usually 
made, based on the current specialization of the shop and the 
incoming request pattern.  

Self-organization in general, describes the abilit y of a system to 
maximize itself towards a specified goal. Based on the local 
decisions of a large number of autonomous objects emerging 
attributes will l ead the autonomous society as a whole toward a 
pre-defined objective and will settle down in an ideal stable state. 
The previous scenario of seller-buyer objects in a dynamic market 
is a very fitting analogy for the goal to maximize the hit rate for 
proxy requests in a distributed autonomous proxy environment. 
The subsequent chapters describes design and attributes of a 
simple self-organizing autonomous proxy based on the stated 
scenario.  

2. SELF-ORGANIZING AUTONOMOUS 
PROXIES (SOAP) 
In this section we will describe in detail the components of the 
proposed approach and show the design of a self-organizing 
autonomous proxies (SOAP): cache, routing table, forwarding 
function, feedback function and selective caching.  

2.1 Request Comparison 
The biggest challenge for the proposed system lies in the 
assumption that we are able to compare and categorize incoming 
requests regarding their similarities. In an ideal situation, each 
incoming request is stored with its feedback values. This ideal 
approach would not only lead to an enormous amount of data, but 
it would also require a high number of requests per object to 
distinguish ideal from inappropriate decisions. Learning by 
feedback includes a learning period, and in our case the learning 
period can be presented in number of requests.  

We need to define categories in such a way that we have a 
minimum number of requests to reduce the amount of feedback 
data and to acquire the necessary minimum number of requests 
per each category to make suitable assumptions about a chosen 
forwarding path. On the other side, the categories should be fine 
enough to allow a good data dissemination and to minimize 
overlapping data in neighboring proxy caches. In the context of 
hashing-algorithms, a simple modulo function, for example, can 
define similarity, over the requested URL. But such a simple 
categorization cannot be suff icient.  

A more suff icient approach would be based on keywords 
distribution in the returned data, but this approach could not be 
simulated due to time limitations and shall be part of the future 

work. For the purpose of this paper we defined request 
comparison based on the main-domain of a given URL, e.g. 
“sport.com”.  

2.2 Components 
2.2.1 Cache Replacement Scheme 
Each proxy comes with a local cache, a data space for storage and 
retrieval of transferred objects. In the case of a full cache, the 
caching of a newly arrived page is preceded by the removal of an 
existing page. We chose to simulate the Least Recently Used 
algorithm as one of the most common and well -suited algorithm 
for a proxy cache replacement scheme.  

2.2.2 Routing Table 
The routing table stores numerical values, used by the forwarding 
function, to select an ideal forwarding path of an unresolved 
request. The table contains one row for each known category and 
the columns represent the list of all known proxy objects (or in 
more realistic scenarios, a subset). In other words, for each 
category the proxy has multiple paths to choose from to fetch the 
requested object. Each table entry represents the accumulated 
average value for the last n requests forwarded through this path 
and is calculated by the request feedback function.  

Table 1 : Example Weight Table 

 DIRECT PROXY 1 PROXY 2 PROXY 3 

Search.com 1.0 0.03 4344 100 

Sport.com 1.0 0.7 545 43 

Riddles.com 1.0 3424 0.005 0.0002 

Travel.com 1.0 50 0.45 435 

 
2.2.3 Forwarding Function 
The forwarding component is triggered when a request could not 
be resolved by the locally cached data and data in the routing 
table is used to find the most suitable path for the unresolved 
request (see Figure 2). After identifying the main-domain of the 
request,  it looks up the specific row and calculates a weight for 
each entry in regard to the direct proxy-server communication. 
Table 1 shows an example table after the weight calculation. The 
weight for a direct proxy-server communication receives always 
the value 1.0 and represents a reference value for comparison. 
Proxy paths that are usually two times faster than a direct 
communication will receive the weight 2, and a path that is half as 
fast as the direct communication will receive the weight 0.5.  



Figure 2: Forwarding Function 

Note, that a high value in the core table always leads to a low 
value in the calculated weight table to avoid this path for future 
selections. All weights will be normalized and used as a 
probability value for each possible path for this category. A small 
random noise value is added to avoid the system to become stuck 
in local minima. The final path is randomly chosen based on the 
received probabilities. 

2.2.4 Feedback Function 
The feedback function is executed after a forwarding proxy 
received the returned data object (see Figure 3). It should be 
mentioned at this point that for simplification purposes we assume 
all are objects of equal size and future work should adapt the 
algorithm to objects with different sizes. The feedback function 
will use the received latency value to update the appropriate cell 
in the routing table. Basically, each value in the routing table is 
the average latency of the last n requests for this path. The 
formula is based on the simple weighted average calculation for 
the tracking of a non-stationary problem. 

Figure 3: Feedback Function 

 

2.2.5 Selective Caching 
The selective caching component decides if the data from a 
resolved request will be added to the local cache or discarded (see 
Figure 4a,b). As described earlier selective caching is introduced 
to promote efficient clustering based on the overall traffic pattern 
and not just on the recently observed requests. Selective Caching 
uses the current cache status for the requested category and 
calculates a ratio in regard to the category with the highest page 
assignments. The ratio is adapted with a small random noise, to 
allow categories with a low ratio to leave their minimum in case 
of a sudden change in focus on a certain category.  

Figure 4a: Selective Caching  

Figure 4b: Selective Caching 

  

2.3 Algorithm 
The following algorithm describes the core steps in a simplified 
version without emphasize on the evaluation subroutines (see 
Figure 5). It should be clarified at this point, that all autonomous 
proxies are based on exactly the same algorithm.  

 

FOR I = 1 TO (PROXIES + 1) 

 

      IF (VALUE [i] == DIRECT) 

0.1][ =iweight  

      IF (VALUE [i] > DIRECT) 

rowMaxrowDirect

rowMaxivalue
iweight

−
−= ][

][  

      ELSE 

1
][

][ +




 •

−
−=

stability
scale

rowDirectrowMin

rowDirectivalue
iweight

 

DO  

weight[i] : the computed weight for the i-th column 

rowDirect: the plain Value for a direct forwarding 

rowMin : the row plain value Minimum 

rowMax  : the row plain value Maximum 

scale : a value greater 10 

stability : value around 50 

1

),(
),(

+
+•=

memory

latencymemorytable
table

ti
ti  

 latency : new returned latency for this request 

memory  : constant value, representing the number 
of  last n values included in cell average 

 table (i,t) : represents table value in position (i,t) 

 i : request category, table row 

 t  : chosen path, table column 

 

IF (# OF NEWPAGE.GETCACHED  <  MINIMUM ) 

)(max NoiseRandomCaching =  

ELSE 

)(max

minmax

min().

NoiseRandomCachingCaching

CachedCached

CachedgetCachednewPage
Caching

±=

−
−=

END 

 

Caching : probability value to cache the new objects 

Minimum: a lower bound for categories close to zero 

MinCached : Category with smallest # of cached objects 

MaxCached : Category with greatest # of cached objects 

NewPage : Category of the new object 

WHILE (NOT END) 

WAIT FOR REQUEST 

CHECK LOCAL CACHE 

IF (PAGE EXISTS) 

UPDATE LEAST RECENTLY USED CACHE 

SEND DATA TO REQUESTER 

ELSE 

 IF (HOPS > MAX HOPS)   

FORWARD TO ORIGIN SERVER 

ELSE 

DO FORWARDING FUNCTION  

RECEIVE DATA 

DO FEEDBACK FUNCTION 

DO SELECTIVE CACHING  

SEND DATA TO REQUESTER  

DO 

 



Figure 5: Algorithm 

3. EXPERIMENTATION 
In order to show the abilit y of the proposed algorithm to provide 
the objectives of an ideal proxy environment, we tested the 
simulated system first on its abilit y to load balance and cluster in 
reaction to experienced hot-spot situations. Additionally we tested 
the algorithms abilit y to adapt to changes in the underlying 
infrastructure. The gained results will show how a system of 
multiple self-organizing distributed autonomous proxies adapts to 
the request pattern in such a way that load balancing and data-
clustering will emerge. Additionally the results will also proof that 
the system is well able to adapt to radical changes in the 
autonomous proxy infrastructure, li ke removal and addition of 
proxy resources.  

3.1 Architecture 
The infrastructure used for later simulations is similar to a 
common institutional proxy environment; with for example, up to 
10 proxies. We assume that in this context, going to any proxy 
within the array of proxies, even by doing a maximum number of 
hops, is always faster than requesting the data from the origin 
server. The same applies to an overloaded proxy object. A local 
hit will always be faster than a remote request. In such a scenario, 
an remote server appears to be very far away and each server a 
very high, constant latency value.  

We further assume full knowledge and full connectivity within the 
proxy layer, so that each autonomous proxy knows about every 
other autonomous proxy and they are capable of connecting to 
each other without network restrictions. Furthermore we assume 
that each proxy is equally able to connect to the 20 servers with 
the same latency value, e.g. Figure 6. 

 

  

 

 

 

 

 

 

 

 

 

 

Figure 6:  Simulated Scenario 

 

3.2 ZIPF-Request Pattern 
Resent research has shown that a power-law or ZIPF-law 
distribution is very suitable to describe the experienced request 
pattern on a proxy server [4]. In our simulation, clients inject 
requests for all existing servers based on a ZIPF-distribution.  

In the simulation, we wanted to be able to artificially create hot 
spot situations. A hot spot is defined in such a way that the 
algorithm first chooses a subset of origin servers, which shall be 
part of the hot spot, and the ZIPF distribution will be placed upon 
this subset in such a way that chosen servers will be the most 
requested ones, and the remaining set of servers receive almost no 
requests. Future work with a real system shall broaden these 
limitations. 

Preliminary simulations have shown that the outcome of the 
simulations are highly dependent on the request pattern. We 
simulated a uniform distribution and also a normally distributed 
pattern over all server pages and gained results with similar but 
scaled performance curves.  

3.3 Distributed Hashing 
All experimentations are comparing to a classical distributed 
hashing approach where an incoming request is always assigned 
to a specific request based on a simple modulo calculation. In our 
simulations for the hashing algorithm, each of the 10 autonomous 
proxies is pre-assigned responsible for two of the origin servers, 
e.g. proxy 1 caches data for server A & B, and so on. We will 
show, that this pre-assignment wont adapt to the request pattern, a 
server overload will occur for hot-spot situations with lower 
performance values than a self-organizing autonomous proxies 
approach. The second test shows the adaptabilit y of the proposed 
approach to changes in the proxy infrastructure without 
comparison to the hashing algorithm, due to the fact that classical 
hashing approaches are not able to adapt to changes in the number 
of resources. Present research in the area of consistent hashing 
algorithms tries to overcome this limitation through a feedback 
function based on multi -casting groups [27].  

 

3.4 Test 1: Dissemination & Clustering 
The following tests show the abilit y of the system to adapt to an 
incoming hot-spot request pattern with focus on a specific subset 
of 20 servers. This kind of situation occurs, when a sudden hot-
spot emerges and many clients are focusing on a specific topic 
(“America vs. Terrorism”) The same request pattern is also used 
for a classical hashing system and we should see a performance 
gain in hot-spot situations due to load-balancing and content 
dissemination while the hashing-based system should outperform 
the self-organizing approach in situations with almost no hot-
spots, due to uncertainties and the need for an adaptation period. 

Performance Gain. As seen from Figure 7, the self-organizing 
approach works much better than the plain hashing-approach 
when it comes to clear hot-spot situations. And as predicted the 
performance gain decreases with decreasing hot spots in 
comparison to a pre-defined hashing algorithm. This limitation 
will be considered in future work together with an adaptive URL-
comparison and categorization.  

 

Client 1 

Proxy 1 Proxy n 

Server A Server B Server m 

Client 2 Client n 

Server m-1 

Proxy 2 



Performance Gain

-30%

-20%

-10%

0%

10%

20%

30%

40%

1 of 20 5 of 20 10 of 20 15 of 20 20 of 20

Hot-Spots

P
er

fo
rm

an
ce

 G
ai

n

Figure 7: Performance gain compared to plain Hashing 
regarding Hot-Spots 

 

Looking at the average number of hop request needs before it gets 
resolved, we can see that both approaches require close to the 
prediceted medium value of 2 hops. A hop is defined by a request 
moving from one host (client, proxy or server) to another host.  
Figure 8 shows, that the self-organizing autonomous proxies are 
able to build a stable infrastructure with clustered content 
minimizing unnecessary request forwarding.  

 

Average # of Hops

1.7

1.8

1.9

2

2.1

2.2

2.3

1 of 20 5 of 20 10 of 20 15 of 20 20 of 20
Hot Spots

H
o

p
s Adaptive

Hashing

Figure 8: Average number of Hops in regard to the number of 
Hot-Spots 

 

Figure 9, which displays the average hit rate for both SOAP & 
hashing, shows the same behavior as the previous diagrams. In 
hot-spot situations with a focus on a certain set of data, the 
adaptive approach performs better than the hashing approach, but 
with increasing request distribution over the whole number of sets 
the performance of the adaptive approach decreases. 

 

Average Hit Rate

56%
58%
60%
62%
64%
66%
68%
70%
72%

1 of 20 5 of 20 10 of 20 15 of 20 20 of 20

Hot Spots

H
it

 R
at

e

Adaptive
Hashing

Figure 9: Average Hit Rates in regard to the number of Hot-
Spots  

 

The evaluation of Content Clustering shows that the number of 
data clusters is dependent on the number of requested hot spots. 
In our system with 10 autonomous proxies, clusters will emerge 
based on the current hot-spot distribution.  

1 of 20: Only one type of content is requested and all proxy 
servers will fill their caches with the same category of data. 

5 of 20: Clusters will emerge in such a way that always two of the 
proxies focus on the same type of data. Five combined clusters 
were created as a result.  

10 of 20: The data for 10 hot spots are equally distributed over the 
10 proxies allowing each one to focus on one specific category. 
The system becomes stable with 10 different clusters.  

15 of 20 & 20 of 20: more random clustering are observed with 
some each proxy having a small percentage of all categories 
available. 

3.5 Test 2: Changing Infrastructure  
The following test scenario proofs that the system is able to react 
to changes in the proxy infrastructure. In the simulated example, 
the overall performance of an individual proxy server will be 
raised. Decreasing the proxy performance to a bare minimum is 
equal to removing this proxy out of the system, due to the fact that 
the proxy latency will increase immensely. As we can see in 
Figure 10, the remaining autonomous proxies are adapting to the 
newly created situation and even if they are not able to make up 
for the lost resources, they try to minimize the negative impact 
through further load balancing.  



CHANGED INFRASTRUCTURE

0.00E+00

1.00E+12

2.00E+12

3.00E+12

4.00E+12

5.00E+12

0 500000 1000000 1500000

# of Requests

A
cc

u
m

u
la

te
d

 L
at

en
cy

Figure 10: Changed Infrastructure, in the first half of the 
graph resource will be removed, in the second added 

 

In the first half of the test, 0 to 750000, we removed proxy servers 
every 200000 requests, from 10, to 6, to 3 to 1 running proxy 
server. The figure shows clearly that the steepness of latency 
curve increases reaching its steepest at around 800000 requests. 
Afterwards, requests from 1000000 to 1500000, we added new 
resources to the simulated system, from 4 to 7 and to 9 proxy 
servers. Clearly visible in figure 10 the curve is slowly getting 
flatter. The steeper the curve, the more latency added per request. 
A flat curve stays for good performance. The graph shows 
explicitly that the self-organizing autonomous proxies are able to 
adapt to resource changes. 

Adding new resources in a real life scenario unfortunately 
includes the introduction of a minimum inter-proxy 
communication (a topic which was not addressed by this work). 
Running proxies need to be notified about a newly added 
resource, and this can either happen statically through a system 
administrator or in a dynamic way through a simple broadcast or 
multi-cast protocol. A simply protocol for the exchange of proxy 
lists shall be considered as part of the future work.  

3.6 Discussion 
Overall we can say that our current self-organizing proxy system 
performs as well as a common hashing algorithm and is able to 
outperform it in hot-spot situations commonly found in Internet 
traffic.  

The results show us that the system is not only able to find a 
stable balance between content dissemination and clustering but it 
is also capable of adapting gracefully towards the addition and 
removal of proxy resources. Additionally, we can see that the 
overall system performance is highly dependent on the incoming 
request pattern and that the comparison and categorization of 
requests is a key factor for future tests.  Besides the fact that the 
adaptive system performs as well as a common hash function, we 
also gain all additional features that define an ideal distributed 
proxy system like, load balancing, simple allocation, good cache 
usage and reactivity to changes in the infrastructure. Overall, the 
results show that self-organizing autonomous proxies are a 
promising approach to compete with or even replace existing 
cooperative proxy caching systems.  

4. CONCLUSION 
Our work was able to show that self-organizing autonomous 
proxies are a highly suitable architecture for a cooperative proxy 
environment. Its adaptive attributes give the system the necessary 
flexibility to cope with emerging hot-spot situations in a general 
network environment and we have shown that already a simple 
algorithm is able to compete with conventional hierarchical and 
distributed proxy systems. Further investigations will give more 
insights into ways to improve this already promising approach. 

5. FUTURE WORK 
Future work will especially focus on new ways to compare and 
categorize request patterns. We will try to make the comparing 
algorithm more adaptive and we will additionally try to replace 
the static system parameters with mechanisms of self-discovery. 
Load-balancing attributes in correlation to a system of proxy 
servers with different performance characteristics need to be 
tested. Furthermore the system needs to be expanded in such a 
way that it also reacts to different object sizes and the idea of 
proxy migration needs further exploration. Overall the proposed 
approach is not only applicable for proxy caching systems, but a 
more general view on resource allocation in a dynamic 
infrastructure needs further consideration. 

6. ACKNOWLEDGEMENT 
This work is supported by Baptist University research grant 
FRG/01-02/I-03. 

7. REFERENCES 
[1] Ghaleb Abdulla, Analysis and Modeling of World Wide Web 

Traffic, Dissertation submitted to Virginia Polytechnic 
Institute and State University (May, 1998) 

[2] Mohammed Salimullah Raunak, A Survey of Cooperative 
Caching, (December, 1999) 

[3] I. Kassabalidis, M.A. El-Sharkawi, R.J.Markus II, P. 
Arabshahi, A.A. Gray, Swarm Intelligence for Routing in 
Communication Networks,  

[4] Lee Breslau, Pei Cao, Li Fan, Graham Phillips, Scott 
Shenker, Web Caching and Zipf-like Distributions: Evidence 
and Implications, Technical Report 1371, Computer 
Sciences Dept, Univ. of Wisconsin-Madison, April 
1998 

[5] Scott Michel, Khoi Nguyen, Adam Rosenstein, Lixia Zhang, 
Adaptive Web Caching: Towards a New Global Caching 
Architecture, In Third International Caching Workshop, 
June 1998.  

[6] Greg Barish, Katia Obraczka, World Wide Web Caching: 
Trends and Techniques, IEEE Communications Magazin, 
May 2000 

[7] Zhen Wang, Jon Crowcroft, Cachemesh : A Distributed 
Cache System for World Wide Web, NLANR Web cache 
workshop, June 1997 

[8] Kwok Ching Tsui, Jiming Liu, Hiu Lo Liu, Autonomy 
Oriented Load Balancing in Proxy Cache Servers, Web 
Intelligence: Research and Development, First Asia-Pacific 
Conference, WI 2001, p.115-124 



[9] Ari Luotonen, Kevin Altis, World-Wide Web Proxies, First 
International Conference on the World-Wide Web, 
Elsevier Science B, 1994 

[10] Bradley M. Duska, David Marwood, Michael J. Feeley, The 
Measured Access Characteristics of World-Wide-Web Client 
Proxy Caches, In USENIX Symposium on Internet 
Technology and Systems, Monterey, Cali fornia, USA, 
December 1997. USENIX Association. 

[11] Jia Wang, A survey of Web Caching Schemes for the 
Internet, ACM Computer Communication Review, 
29(5):36--46, October 1999. 

[12] Pablo Rodriguez, Christian Spanner, Ernst W. Biersack, Web 
Caching Architectures: Hierarchical and Distributed 
Caching. 4th International Caching Workshop, 1999 

[13] Alec Wolman, Geoffrey M. Voelker, Nitin Sharma, Neal 
Cardwell , Anna Karlin, Henry M. Levy, On the scale and 
performance of cooperative Web proxy caching, SOSP-17, 
12/1999 

[14] Krishnanand M. Kamath, Harpal Singh bassali , 
Rajendraprasad B. Hosamani, Topology aware algorithms for 
proxy placement in the Internet 

[15] Keith W. Ross, Hash-Routing for Collections of Shared Web 
Caches, IEEE Network Magazine, 11, 7:37--44, Nov-
Dec 1997 

[16] J. Cohen, N. Phadnis, V. Valloppillil , K.W.Ross, Cache 
array routing protocol v.1.1, Sept. 1997, Internet Draft 

[17] Sandra G. Dykes, Clinton L. Jeffery, Samir Das, Taxonomy 
and Design for Distributed Web Caching, Published in the 
Proceedings of the Hawaii International Conference on 
System Sciene, 1999 

[18] Alec Wolman, Geoff Voelker, Nitin Sharma, Neal Cardwell , 
Molly Brown, Tashana Landray, Denise Pinnel, Anna Karlin, 
Henry Levy, Organization-Based Analysis of Web-Object 
Sharing and Caching 

[19] Tony White, Routing with Swarm Intelli gence, SCE 
Technical Report SCE-97-15 

[20] Greg Barish, Katia Obraczka, World Wide Web Caching: 
Trends and Techniques, IEEE Communications 
Magazine Internet Technology Series, May 2000 

[21] Xueyan Tang, Samuel T. Chanon, Optimal Hash Routing for 
Web Proxies 

[22] R.B. Bunt, D.L. Eager, g.M. Oster, C.L. Willi amson, 
Achieving load balance and effective caching in clustered 
web serversProceedings of the 4th International Web 
Caching Workshop, January 1999 

[23] Jiming Liu, Kwok Ching Tsui, Jianbing Wu, Introduction to 
autonomy oriented computation, In Proceedings of 1st 
International Workshop on Autonomy Oriented 
Computation, pages 1-11, 2001 

[24] A. Chankhunthod et al., “A Hierarchical Internet Object 
Cache”” ,Proc. USENIX Tech. Conf., 1996 

[25] K. Claffy and D. Wessels, “ ICP and the Squid Web Cache”, 
1997 

[26] Eric Bonabeau, Marco Dorigo, and Guy Theraulaz, Swarm 
Intelli gence: From Natural to Artificial Systems   

[27] David Karger, Eric Lehman, Tom Leighton, Matthew 
Levine, Daniel Lwin, Rina Panigrahy, Consistent Hashing 
and Random Trees: Distributed Caching Protocols for 
Relieving Hot Spots on the World Wide Web 

 

 


