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Background on WI and AOC,
and problem statements
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Web Intelligence (WI)

¢ Proposal: by Zhong, Liu, Yao, and Ohsuga; in COMPSAC 2000
¢ An informal definition:

“Broadly speaking, Web Intelligence (WI) is a new direction for scientific
research and development that explores the fundamental roles as well as practical
impacts of Artificial Intelligence (Al) and advanced Information Technology (IT) on the
next generation of Web-empowered products, systems, services, and activities. It is the
key and the most urgent research field of IT in the era of Web and agent
intelligence.”

¢ The goal of WI: the Wisdom Web
m Proposal: by Liu, Zhong, Yao, and Ras; in 2002

m Purpose: enable human users to gain new practical wisdom of working, living,
learning, and playing
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Web Intelligence (WI)cont)

¢ Great challenges for WI [Liu, 2003]

s Mobilizing distributed resources
e Distributed Resource Optimization (DRO)
e Web oriented computing paradigm

¢ Large-scale
¢ Pervasive and distributed

¢ Dynamics and unreliable

. ° o 0

o ...
» Discovering the best means and ends

» Enriching social interaction
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Problem Statements

¢ Problems

= Q-1: What resources to be optimized? What requirements?
m  Q-2: How to generalize specific DRO i1ssues?

= Q-3: How to provide an AOC-based computing paradigm for the generalized
DRO?

= Q-4: How to refine and validate the above paradigm according to the features
of different DRO environments?

e Q-4-A: Homogeneous DRO environments

e Q-4-B: Heterogeneous DRO environments

¢ Assumptions
m Features considered: large-scale, distributed, and unreliable

m  Not considered: security, privacy, interoperability, and transportation cost
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DRO perspective on WI
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Q-1: DRO Perspective

¢ Generalized view of resources

m  Resources = different contents with different functions or utilities

m Physical or logical
¢ DRO at four WI levels

m Internet level
e E.o CPU time & processing speed, network width, computers
m Interface level
e E.o. Portals
»  Knowledge level
e FE.g distributed data/knowledge bases
= Application level

e LE.o. various high-level Web services
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Q-2: A Generalized DRO Scenario

¢ Assumptions

One service request (SR) : one

resource

= No dependency relationship
m SRs ~ certain distribution

¢ Generalized scenario
m  Resources

6/16/2005

DRO environment = resoutrce
nodes (RNs) + links

Linked resources : neighbors
Service providers
Homogeneous / heterogeneous
Unreliable

Capacity

*

m Service requests

Demands to resources

Submitted in a distributed
fashion

No centralized mechanism for
distributing service requests

Homogeneous / heterogeneous

Resource optirnization

» How to distribute SRs among
different RNs to achieve:
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Approximate load balancing
Approximately optimized
resource utilization

BTW, reducing the response
time for individual SR
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Q-1: WI Requirements on DRO

¢ Semantic : semantic match ¢ Online : real-time decision making
*  Correct: correct match *  Robust : robust to failures and
*  Distributed : not centralized recovery

*  Optimized : optimal or sub-optimal ~ * Adaptive : adaptation to real-time

utilization Changes (e.g., insertion and remove of

*  Global : global scale resource nodes)

¢ Autonomic : operate by itself
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Q-3:
AOC mechanism & formulation
for DRO
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AOC-Based DRO Mechanism

¢ Agents carry service requests to search:
= Idle resource nodes to form new agent teams
=  Existing agent teams to join
¢ Agents prefer to join agent teams with less load

¢ When queuing, agents can choose to
= Remain at current agent teams, or

m [eave current teams and wander to other resource nodes
¢ Agents must be served by certain resource nodes
¢ Agents automatically disappear after being served
¢ Agents has local information

¢ Agents indirectly interact via the environment
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AOC Formulation

Resource environment

Neighboring region NR: (17, ')

e Resource nodes and links in the

vision range

Neighbors

e Agents in the neighboring region

Evaluation functions: F={f, /,}

e / :returning the wandering or

|
s Environment E: (17, L)
o '=(rn, -+, ru, -+, ruy,) : resource
nodes =
o I.=(/, --+1, -+ L) :links
m  Resource node : .
® J/:service vector
e ps: processing speed vector
e gts5: the size of agent team, gat, at node
n
Agents
m  State S:

e g : wandering or queuing

e yr: radius of the vision range
® pos: position

® 7g: service request, its size

e 7y :service required

7t response time

6/16/2005

queuing state

e /: evaluating the load of a resource

node 7

fitrn) = fi(rn.qat) = Z a.rq, Or

acrn.qat

fitrn) = fi(rn.qat, rn.ps) = Z _arq
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acrn.qat ™M.PS(qg.r

Goal

g a.pos = u, where u = arg min (f;(rn))
rneV

s)
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Primitive Behaviors and Behavioral Rules

s Primitive behaviors:
B={remain, wander, join, leave}

wandering resg:;rca
i - - nuce
queuing Wander queuing
- wandering
queuing g queuing
L O = © ==
~._wandering e resource
Sy ) node
O Join e
) e o L —
& EE
queuing queuing
resource
node
SN Leave . queuing ™~
o) == © =
queuing
. _— wandering

state transition

Join
bt /’/--’___ o -
\Wander l Wandering | Queuing Remaln
. ‘
L;é;e
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s Behavioral rules: R={r,7}
e 7,: the high level, evaluation-based rule

e 7, : the low level, probability-based rule
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Indirect Interactions
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System Objective Function

N
N gl
Zﬁ-\f:l(rnj.rl — Z“—%n )2
N

®(V,A) = std,; = J

s V={m,, -, --rny} : the set of resource nodes

s A={m,.qat, --yrn.qat,---,rn\.qat}: the set of queuing agent teams

at resource nodes in V

a.rq
m gl =

acrn;.qat T Vi-PS(a.rs)
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Q-4-A:
DRO in homogeneous environments
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Refined DRO Mechanism

¢ Homogeneous environments m At each step, how many wandering
agents join agent teams of a certain size

= Homogeneous RNs : same service +
depends on:

same processing speed .
e The total number of currently wandering

= Homogeneous SRs : same required
agents

service + same size -
e The numbers of currently existing agent

* Reﬁned DRO mechanism teams of various sizes
s The size of an agent team = Service = At ecach step, how many queuing agents
request load leave teams of a certain size depends on:
o Agents’ decision—making based on e The total number of currently existing
o Probabilities teams of this size

= In the above sense, the proposed

e The size of agent teams encountered L :
mechanism 1s adaptive

= Agents’ preference: relatively small
agent teams

= Resource nodes’ capability : A
maximum size for agent teams
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¢ Homogeneous environments
m  Relative load of RN: m.r/ =rn.qts
= The maximum team size 7 < the capacity

Refined AOC Formulation

of RNs:
® 1n.ch=m
o vl <m
¢ Agents
m  State:

= Evaluation function: /,(rm)=rn.qts

¢ System objective function: gy A) = \l

e Two vectors: (G0 Gt -+ &) and

(L(t) 1)
¢ .(1): probability for joining teams of size s
1 (?): probability for leaving teams of size s
¢.(1) and 1 (2) are fixed

L 4

L 4

L 4

L(t))

e Vision range a.vr=1

Behavioral rule:
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Performance Studies

¢ [nstantaneous DRO Scenario

= A small time interval =» no new service request + no handled service request
m I-1. Can the mechanism achieve a steady state where load is balanced?

m I-2. Is the mechanism robust to tolerate the dynamic changes in the
environment and adapt their outcome?

¢ Ongoing DRO Scenario

s A long time interval=® new service requests + handled service requests

m I-3. How does the arrival speed of service requests affect the performance?
How to determine an appropriate arrival speed?

m I-4. Is the mechanism robust to tolerate the dynamic changes in the
environment and adapt their outcome?

6/16/2005 PhD Thesis Defence, JXL
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AQOC-based Instantaneous DRO Model

The quantitative changes of:

Agents teams of size one:

Agents teams of size two:

() _ o)
dt == -

dgo(t)
dt

= jrw(t) — loga(t)

! = Wandering agents join idle nodes or existing agent teams

i m  Queuing agents leave existing agent teams

------------------------------------------------------------------------------------------------------------------

Wandering agents:

dw(t)

dt

1
= lago(t) — ) jsw(t)
s=0

/,«/' o
Y
/ *{ =

Idle resource nodes:

dqo(t)

= —jow(t)

dt

6/16/2005 PhD Thesis Defence, JXL
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dq1 () o
Iy . a3, if 5o(t) — 8 > 0
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Study on: Global stability

¢ Setting

= Case It ¢,0)=0, ¢,(0)=800,
7:(0)=0, q5(0)=0, w(0)=200

= Case II: ¢,0)=200, ¢,(0)=300,
7,(0)=200, q;0)=100, »(0)=0

¢ Observations

= Any initial agent distribution =
e a steady state, a load-balanced
state, an optimal resource
utilization
e all characterizing parameters,
nonnegative

s Different agent distributions =
the same steady state = globally
stable
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Study on: Robustness and adaptation

Setting:

s 7=3,5(0)=1000, q,(0)=300, q,(0)=200,
g;(0)=100, w(©0)=0, O(0)=600,
Q(100)=500, and Q(200)=800

m At time /=700 : 700 nodes fail

m At time /=200 : 200 new nodes added

Observations
m  Successfully enduing relatively large-
scale resource failures

e Converging to steady states

= Quickly responding to a drastic
increase in the availability of resource
nodes so as to re-balance the load

= In general,
e Robust to tolerate dynamic changes

e Promptly adapting the results of
dynamic changes
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AOC-based Ongoing DRO Model
The quantitative changes of: I—

Agents teams of size one:

dgr(t) - T N N e s
o = Jow(O)—j1w(tHlag2 ()M f2q2(t) — f191 (L

i = Wandering agents join idle nodes or existing agent teams

Agents teams of size two:

: = Queuing agents leave existing agent teams —
:m  Old service requests are finished after being served a unit of service time dQQ (t) \'

eSS S It = jrw(t) — logo(t) ‘/\—\ fQQQ(t)‘

~ =

Wandering agents:

T .
L) gt = Y Gsw(®) & g(0)

dt s=0

: = g(?):newly generated agents for new tasks !

qu(t) . o T S
6/16,/2005 PhD Thesis Defence,| g —jow(t) ¥ f1q1 (L}

—————




dqy (t)
dt

dgs (t)
dt

= jow(t)—j1w(t)+laga(t)+faqo(t)—f1q1(t)

= Jo—1w(t)—=jsw(t)+ls4 19541 () —lsqs(t) + fs+1q5+1 () — fsqs(t)

dgm (t)
dt

dgo(t)
dt

= Jm-1w(t) = lmgm(t) = fmam(t)

= —jow(t) + f1q1(t)

W) S 1yge(t) - z Jaw(®) + gt

dt =




I-3. Study OnN: The effects of arrival speeds of service requests

3000

~  wandering agents

¢ Setting:

w  g(t)=random([1,MaxG])

s m=3,A=10,0(0)=100, $0)=0, ¢4,00)=0,
4,(0)=0, 45(0)=0, w(0)=0

o
=]
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T
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MaxG MaxG .
performance of the proposed mechanism.
- A S B Fixing the service time of service requests,
2 07 e A small arrival speed = less-loaded
g8  oss o A large artival speed = over-loaded
= 1ol avg. load ;
8 {06
§1.4— f A . . . .
: s » Fixing service time A, an appropriate atrival
> 12 5 .
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Al o5l Std deV. P &
MaxG= (m- Q)] A
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e m  The service requests arrived during a unit
o5 e : 1 of service time (i.e., MaxG- A) should
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std. dev. pp ‘ pacity
os| 1 resource environment (1.e., 7- Q):
oss] avg. load

MaxG - A &~ m-Q

04r
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Study on: Robustness and adaptation

Setting:
n MaxG=30
s m=3, 1 =10, 00)=100, $(0)=0, 4,(0)=0,

4,(0)=0, 45(0)=0, w(0)=0
At the first 700 steps : 0.1 percent of
resource nodes failure per 20 steps

o 0.1 percent of gy(1), 4,(t) 4:(0): g:(0) failure,
respectively

At the later 700 steps : 0.7 percent of
resource nodes recovered and are added to
q,(1), per 20 steps

If a resource node with an agent team fails,

queuing agents at this node become
wandering agents

Observation

The avg. service requst load and its
std. dev. : no great changes

e Successfully enduring resource failures

e Quickly responding to increases in the
availability of resource nodes

In general, the proposed mechanism is
robust

e It can tolerate failures and recovery of
resource nodes without being greatly affected
its performance



Summary

¢ [nstantaneous DRO Scenario

6/16/2005

Given any 1nitial agent
distribution = a steady, load-
balanced state

Different initial agent
distributions =>the same steady
state = the proposed mechanism
is globally stable

The proposed mechanism can
tolerate large-scale failures and
recovery of resource nodes =2 it
1s robust to endure dynamic
changes occurred, adapt them,
and finally reach a new steady
state

PhD Thesis Defence, ] XL

¢ Ongoing DRO scenario

= The arrival speed of service

requests greatly affects the
performance of the proposed
mechanism

An appropriate arrival speed of
service requests should be set
according to:

MaxG~ {m-Q}/A

The proposed AOC-based DRO
mechanism is robust and
adaptive to tolerate failures and
recovery of resource nodes
without being greatly affected its
performance
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Q-4-B:
DRO in heterogeneous environments
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Characterization of Heterogeneous
Environments

¢ Heterogeneous resources & heterogeneous service requests

¢ Topology of resource networks
m scale-free with a power of 3

¢ Service request characterization
m Jnterarrival times, siges, and service times ~ exponential distribution
= A :exponential distribution of interarrival times

= A, :exponential distribution of sizes

¢ Failures and recovery of resource nodes
= Exponential distributions
= A, exponential distribution of failures
= A :exponential distribution of recovery

6/16/2005 PhD Thesis Defence, JXL
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Refined AOC Mechanism and Formulation

¢ Three composite behaviors:
combinations of the primitive
behaviors

m |.east-loaded move
m less-loaded move
m Random move

¢ State description
m Probabilities vector:

p o= Cblmﬁ’ P less’ P mndom)

" p leas? p Jess’ P random are fixed
P, &p,. :relatively large

m p . relatively small

6/16/2005
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¢ Behavioral rules

/Least,

less, |
¥\ random, &
._remain -
R\
@
&
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\066‘,‘@ | Leave
o
e? -
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!and% 3

—>| Wander }—b{ Join
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Join
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Performance Studies

¢ II-1. How does the probability combination atfect the performance of the
proposed mechanism? Are all composite behaviors necessary?

m II-1-A. Unsaturated situations

= II-1-B. (Approximately) saturated situations

¢ II-2. Whether the proposed mechanism 1s robust to endure the failures
and recovery of resource nodes, and adapt the outcome?
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II-1-A. Study on: the probability combination in an unsaturated situation
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¢+ Random move is also necessary

¢ Setting:
s A =075 2,=100

m  Processing speeds of services 1 & 2: 200 &
100

¢  Observations

= Anexperimentp, . =1.0:
e Avgload: 2.5+ Std. Dev. : 3.1
e The mechanism: effective

» Largep,, . = small std, > more
optimized utilization
e alarge number of wandering agents

e alow service request load

= Largep, > large std, > low degree of
resource optimization
Large p,,. =2 relatively short response
time = the less-loaded move is necessary

= p....=0 > wandering agents are relatively hard to find suitable resource nodes = a lot of wandering

agents

= Random move helps agents move to new areas such that they can possibly find suitable resource nodes

¢ In general, in a relatively optimal combination

" P andp, :close 0.5

= p.om - arelatively small, nonzero value, say, 0.0/~ 0.1



II-1-B. Study on: the probability combination in a saturated situation
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loaded move is enough for
agents

¢ Differentp,, , and p,, -~ different performance

= Since a least-loaded move is computationally harder than a less-loaded move, only performing
less-loaded move is more reasonable for agents

¢ In general,
m [f saturated: less-loaded move only

= [funsaturated: relatively large p,,,, and p,,,,, and relatively small p, .,



I1-2. Study on: Robustness and adaptation
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Setting:
s A =045 1,.=100
1at ts

n # 1] 2 3 4 5 6 7 8 g 10
Aji |~ (100 100 100 100 100 100 100 100 100
At |1 10 20 30 40 50 100 150 200 250
A |—| 50 50 50 50 50 50 50 50 50
At |—] 10 20 30 40 50 100 150 200 250
Note: ‘~’ denotes that in this case, no resource

nodes fail and recover.

Observations

s The proposed mechanism is robust
e it can endure failures and recovery of
resource nodes
m The effects are mainly determined by
the distributions of the f&R time
intervals, i.e., 44 and 4,

o A;>4,,: nomuch effect on the average
load

e A <A, the effects becomes remarkable:
low average load + high standard
deviation

e The smaller the value of 4, ; (or, the
larger the value of 4, ), the greater the
effects

» The effects on the average response
time are not obvious
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Summary

¢ In an unsaturated resource environment
m Less-loaded move & random move : necessary
s The probability combination determines the performance

» In an optimized probability combination: p,, ., ~p,,.,~ 0.5 andp, .~
small, but nonzero

¢ In a saturated resource environment
m The probability combination has no great effect
s Least-loaded move and random move: not necessary
s Less-loaded move is enough

¢ Robustness and adaptation

s The mechanism is robust to endure failures and recovery and adapt to the
outcome

m If resource nodes can quickly recover from failure, no great effects will be
caused

6/16/2005 PhD Thesis Defence, JXL
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Conclusions and Future Work

¢ (Conclusions & contribution

m  Surveyed related work on Web Intelligence (WI) and Autonomy Oriented
Computing (AOC) (Chapter 2)

m  Presented a brief DRO perspective on WI. Specifically, gave a generalized view
of distributed resources on the Web, and described a generalized and
abstracted scenario for DRO (Chapter 4)

m  Provided an AOC-based DRO mechanism and the corresponding AOC
formulation (Chapter 5)

m  Presented an AOC-based DRO mechanism for homogeneous resource
environments and validated it through macroscopical characterization,
numerical simulation, and experimentation (Chapter 06)
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Conclusion and Future Work (cont)

s Presented an AOC-based DRO mechanism for heterogeneous
resource environments and validated 1t through experimentation

(Chapter 7)

m Validated AOC as an effective methodology for distributed resource
optimization on the Web in that it satisfies the WI requirements, e.g.,
adaptive, robust, optimized, etc.. (Chapters 6 & 7)

¢ Huture work

» Service request interdependency
= Agent behavioral variation

s Implementation 1n a realistic Web environment
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