Autonomy Oriented Computing (AOC) for Web Intelligence (WI): A Distributed Resource Optimization (DRO) Perspective

Xiaolong Jin

Principal-Supervisor: Prof. Jiming Liu

Co-supervisor: Prof. Yuan-Yan Tang

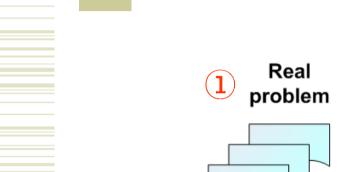
Outline

- Background on WI and AOC, and problem statements
- DRO perspective on WI
- AOC mechanism and formulation for DRO
- DRO in homogeneous environments
- DRO in heterogeneous environments
- Conclusions and future work

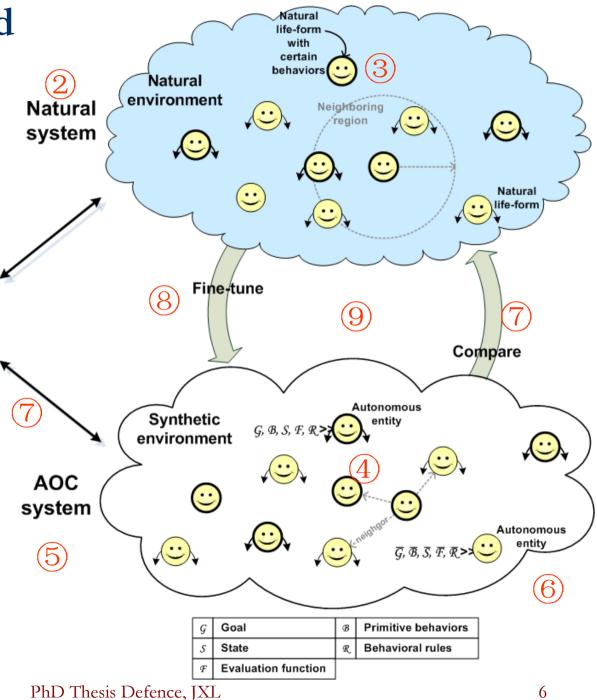
Background on WI and AOC, and problem statements

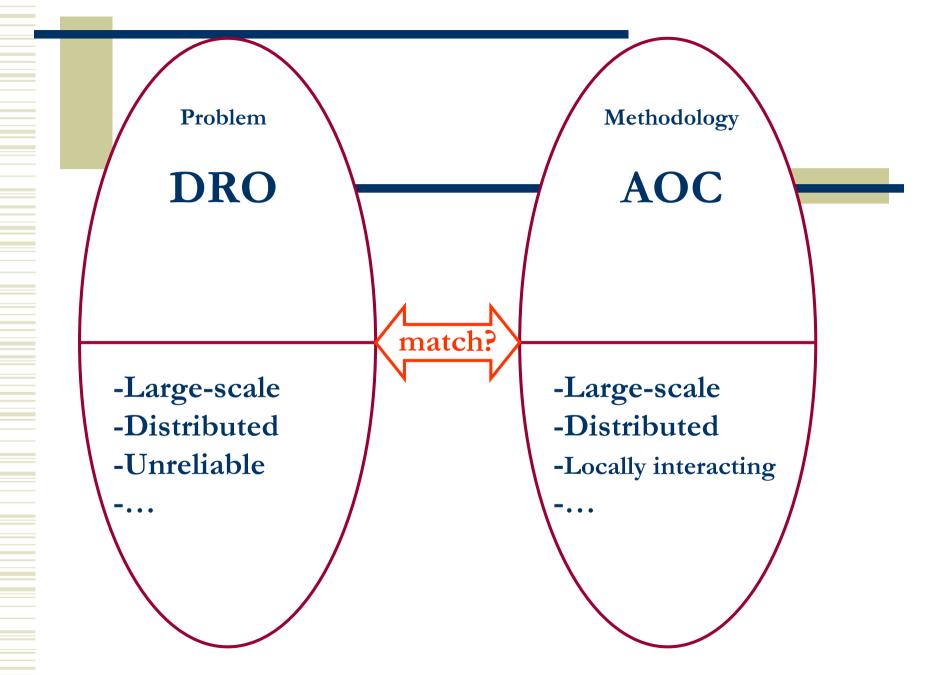
Web Intelligence (WI)

- Proposal: by Zhong, Liu, Yao, and Ohsuga; in COMPSAC 2000
- An informal definition:


"Broadly speaking, Web Intelligence (WI) is a new direction for scientific research and development that explores the *fundamental roles* as well as *practical impacts* of *Artificial Intelligence (AI)* and *advanced Information Technology (IT)* on the next generation of *Web-empowered products, systems, services, and activities.* It is the key and the most urgent research field of IT in the era of Web and agent intelligence."

- The goal of WI: the **Wisdom Web**
 - Proposal: by Liu, Zhong, Yao, and Ras; in 2002
 - Purpose: enable human users to gain new practical wisdom of working, living, learning, and playing


Web Intelligence (WI)(Cont.)


- Great challenges for WI [Liu, 2003]
 - Mobilizing distributed resources
 - Distributed Resource Optimization (DRO)
 - Web oriented computing paradigm
 - Large-scale
 - Pervasive and distributed
 - Dynamics and unreliable
 - •
 - ...
 - Discovering the best means and ends
 - Enriching social interaction

Autonomy Oriented Computing

- Proposal:by Liu, in 2001
- Inspiration: autonomy and selforganization in nature
- Purposes
 - To model complex systems
 - To solve computationally hard problems
- An AOC System:
 - Environment + Entities
 - Interactions
 - System objective function

Problem Statements

- Problems
 - **Q-1:** What resources to be optimized? What requirements?
 - Q-2: How to generalize specific DRO issues?
 - **Q-3:** How to provide an AOC-based computing paradigm for the generalized DRO?
 - Q-4: How to refine and validate the above paradigm according to the features of different DRO environments?
 - **Q-4-A:** Homogeneous DRO environments
 - **Q-4-B:** Heterogeneous DRO environments
- Assumptions
 - Features considered: large-scale, distributed, and unreliable
 - Not considered: security, privacy, interoperability, and transportation cost

DRO perspective on WI

Q-1: DRO Perspective

- Generalized view of resources
 - Resources → different contents with different functions or utilities
 - Physical or logical
- DRO at four WI levels
 - Internet level
 - E.g. CPU time & processing speed, network width, computers
 - Interface level
 - E.g. Portals
 - Knowledge level
 - E.g. distributed data/knowledge bases
 - Application level
 - E.g. various high-level Web services

Q-2: A Generalized DRO Scenario

- Assumptions
 - One service request (SR) : one resource
 - No dependency relationship
 - SRs ~ certain distribution
- Generalized scenario
 - Resources
 - DRO environment = resource nodes (RNs) + links
 - Linked resources : neighbors
 - Service providers
 - Homogeneous / heterogeneous
 - Unreliable
 - Capacity

- Service requests
 - Demands to resources
 - Submitted in a distributed fashion
 - No centralized mechanism for distributing service requests
 - Homogeneous / heterogeneous
- Resource optimization
 - How to distribute SRs among different RNs to achieve:
 - Approximate load balancing
 - Approximately optimized resource utilization
 - BTW, reducing the response time for individual SR

Q-1: WI Requirements on DRO

- *Semantic* : semantic match
- *Correct* : correct match
- Distributed: not centralized
- *Optimized*: optimal or sub-optimal utilization
- *Global* : global scale

- Online: real-time decision making
- Robust: robust to failures and recovery
- Adaptive: adaptation to real-time changes (e.g., insertion and remove of resource nodes)
- Autonomic: operate by itself

Q-3: AOC mechanism & formulation for DRO

AOC-Based DRO Mechanism

- Agents carry service requests to search:
 - Idle resource nodes to form new agent teams
 - Existing agent teams to join
- Agents prefer to join agent teams with less load
- When queuing, agents can choose to
 - Remain at current agent teams, or
 - Leave current teams and wander to other resource nodes
- Agents must be served by certain resource nodes
- Agents automatically disappear after being served
- Agents has local information
- Agents indirectly interact via the environment

AOC Formulation

• Resource environment

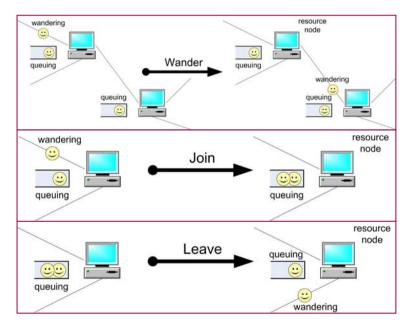
- Environment $E: \langle V, L \rangle$
 - $V = \langle rn_1, \dots, rn_i, \dots, rm_N \rangle$: resource nodes
 - $L = \langle l_1, \dots, l_p, \dots, l_K \rangle$: links
- Resource node *rn*:
 - *si* : service vector
 - *ps*: processing speed vector
 - qts: the size of agent team, qat, at node rn

Agents

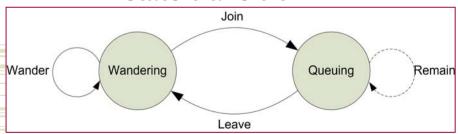
- State S:
 - wq: wandering or queuing
 - vr: radius of the vision range
 - *pos*: position
 - rq: service request, its size
 - *rs* : service required
 - rt: response time

- Neighboring region NR: (V', L')
 - Resource nodes and links in the vision range
- Neighbors
 - Agents in the neighboring region
- Evaluation functions: $F = \{f_s, f_l\}$
 - f_s : returning the wandering or queuing state
 - f_l : evaluating the load of a resource node rn

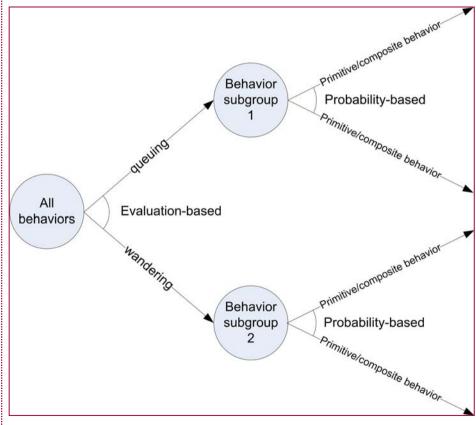
$$f_l(rn) = f_l(rn.qat) = \sum_{a \in rn.qat} a.rq$$
, or

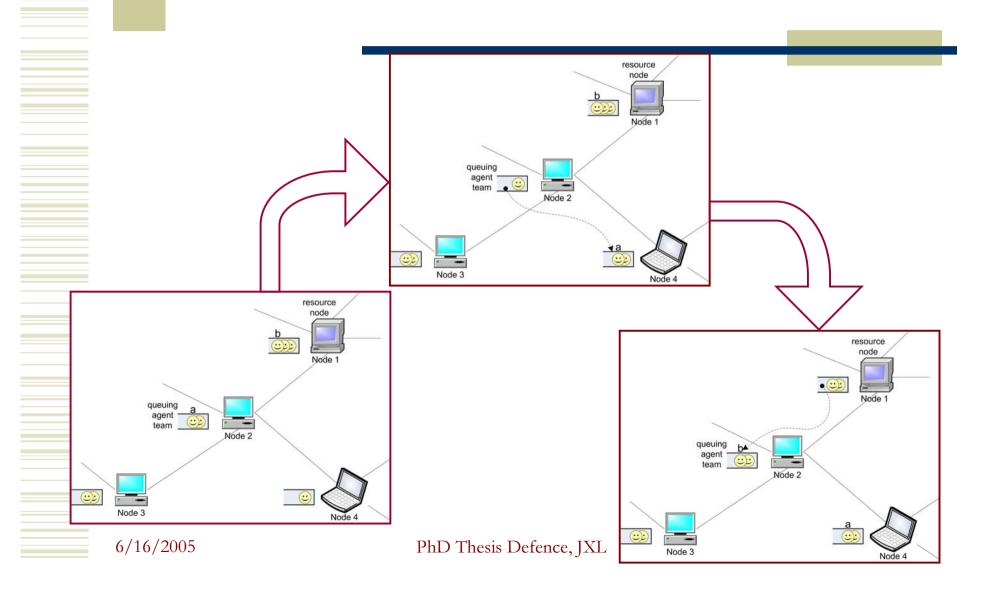

$$f_l(rn) = f_l(rn.qat, rn.ps) = \sum_{a \in rn.qat} \frac{a.rq}{rn.ps_{(a.rs)}}$$

Goal


$$g:a.pos=u, \text{ where } u=\arg\min_{rn\in V}(f_l(rn))$$

Primitive Behaviors and Behavioral Rules


Primitive behaviors:B={remain, wander, join, leave}


state transition

- Behavioral rules: $R = \{r_h, r_l\}$
 - r_b : the high level, evaluation-based rule
 - r_l : the low level, probability-based rule

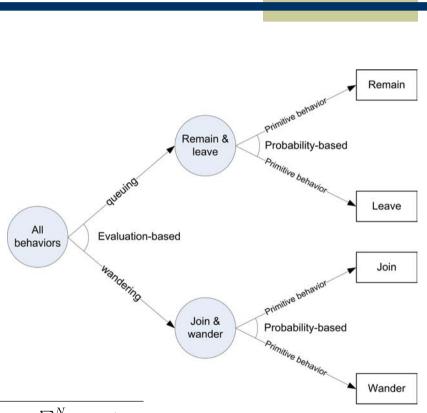
Indirect Interactions

System Objective Function

$$\Phi(\mathbf{V}, \mathbf{A}) = std_{rl} = \sqrt{\frac{\sum_{j=1}^{N} (rn_j.rl - \frac{\sum_{i=1}^{N} rn_i.rl}{N})^2}{N}}$$

- $V = \{rn_1, \dots, rn_i, \dots, rn_N\}$: the set of resource nodes
- $A = \{rn_1.qat, \dots, rn_i.qat, \dots, rn_N.qat\}$: the set of queuing agent teams at resource nodes in V

Q-4-A: DRO in homogeneous environments


Refined DRO Mechanism

- Homogeneous environments
 - Homogeneous RNs : same service + same processing speed
 - Homogeneous SRs : same required service + same size
- Refined DRO mechanism
 - The size of an agent team = Service request load
 - Agents' decision-making based on
 - Probabilities
 - The size of agent teams encountered
 - Agents' preference: relatively small agent teams
 - Resource nodes' capability : A maximum size for agent teams

- At each step, how many wandering agents join agent teams of a certain size depends on:
 - The total number of currently wandering agents
 - The numbers of currently existing agent teams of various sizes
- At each step, how many queuing agents leave teams of a certain size depends on:
 - The total number of currently existing teams of this size
- In the above sense, the proposed mechanism is adaptive

Refined AOC Formulation

- Homogeneous environments
 - Relative load of RN: rn.rl = rn.qts
 - The maximum team size $m \Leftrightarrow$ the capacity of RNs:
 - rn.cp=m
 - $rn.rl \leq m$
- Agents
 - State:
 - Two vectors: $(\zeta_0(t), \dots, \zeta_s(t), \dots, \zeta_{m-1}(t))$ and $(\iota_2(t), \dots, \iota_s(t), \dots, \iota_m(t))$
 - $\zeta_s(t)$: probability for joining teams of size s
 - $l_s(t)$: probability for leaving teams of size s
 - $\zeta_s(t)$ and $\iota_s(t)$ are fixed
 - Vision range a.vr=1
 - Evaluation function: $f_t(rn) = rn.qts$
 - Behavioral rule:
- System objective function: $\Phi(\mathbf{V}, \mathbf{A}) = \sqrt{\frac{\sum_{j=1}^{N} (rn_j.qts \frac{\sum_{i=1}^{N} rn_i.qts}{N})^2}{N}}$

Performance Studies

- Instantaneous DRO Scenario
 - A small time interval → no new service request + no handled service request
 - I-1. Can the mechanism achieve a steady state where load is balanced?
 - **I-2.** Is the mechanism robust to tolerate the dynamic changes in the environment and adapt their outcome?
- Ongoing DRO Scenario
 - A long time interval → new service requests + handled service requests
 - **I-3.** How does the arrival speed of service requests affect the performance? How to determine an appropriate arrival speed?
 - I-4. Is the mechanism robust to tolerate the dynamic changes in the environment and adapt their outcome?

AOC-based Instantaneous DRO Model

The quantitative changes of:

Agents teams of size one:

$$\frac{dq_1(t)}{dt} = (j_0 w(t) - j_1 w(t)) + (l_2 q_2(t))$$

- Wandering agents join idle nodes or existing agent teams
- Queuing agents leave existing agent teams

Agents teams of size two:

$$\frac{dq_2(t)}{dt} = j_1 w(t) - l_2 q_2(t)$$

Wandering agents:

$$\frac{dw(t)}{dt} = l_2 q_2(t) - \sum_{s=0}^{1} j_s w(t)$$

Idle resource nodes:

$$\frac{dq_0(t)}{dt} = -j_0 w(t)$$

$$\frac{dq_1(t)}{dt} = j_0 w(t) - j_1 w(t) + l_2 q_2(t)$$

$$\frac{dq_s(t)}{dt} = j_{s-1}w(t) - j_sw(t) + l_{s+1}q_{s+1}(t) - l_sq_s(t)$$

$$\frac{dq_m(t)}{dt} = j_{m-1}w(t) - l_m q_m(t)$$

$$\frac{dq_0(t)}{dt} = -j_0 w(t)$$

$$\frac{dw(t)}{dt} = \sum_{s=2}^{m} l_s q_s(t) - \sum_{s=0}^{m-1} j_s w(t)$$

$$j_s(t) = \left\{ egin{array}{ll} rac{q_s(t)}{w(t)}, & ext{if } ar{j}_s(t) - rac{q_s(t)}{w(t)} \geq 0, \\ rac{q_s(t)}{w(t)}, & ext{if } rac{\Phi(t)}{\Psi(t)} \geq 1, \\ ar{j}_s(t) + rac{\Phi(t)}{\Psi(t)} (rac{q_s(t)}{w(t)} - ar{j}_s(t)), & ext{otherwise,} \end{array}
ight.$$

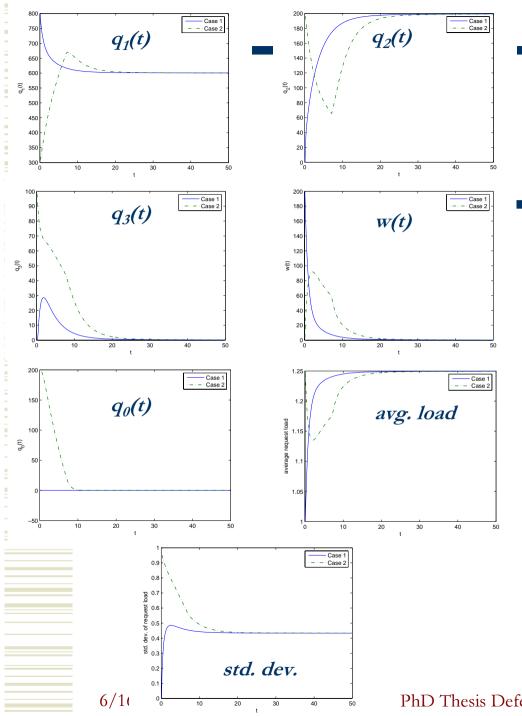
where

$$\bar{j}_s(t) = \frac{j_s^p \cdot j_s^d(t)}{\sum_{i=0}^{m-1} (j_i^p \cdot j_i^d(t))} o$$

$$\Phi(t) = \sum_{i=0}^{m-1} sgn(\bar{j}_s(t) - \frac{q_s(t)}{w(t)})(\bar{j}_s(t) - \frac{q_s(t)}{w(t)}),$$

$$\Psi(t) = \sum_{i=0}^{m-1} sgn(\frac{q_s(t)}{w(t)} - \bar{j}_s(t))(\frac{q_s(t)}{w(t)} - \bar{j}_s(t)),$$

$$sgn(x) = \begin{cases} 1, & \text{if } x > 0, \\ 0, & \text{otherwise.} \end{cases}$$

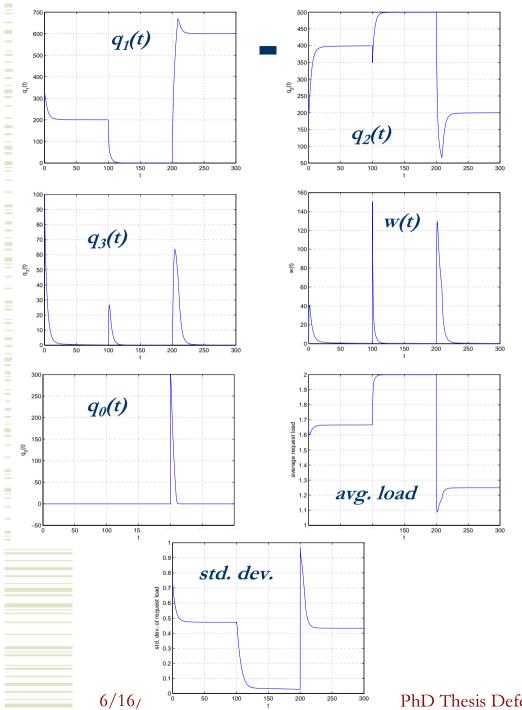

$$sgn(x) = \begin{cases} 1, & \text{if } x > 0, \\ 0, & \text{otherwise.} \end{cases}$$

$$l_s(t) = \begin{cases} \overline{l}_s(t), & \text{if } N = 0, \\ \frac{\overline{l}_s(t)}{N+1,} & \text{otherwise,} \end{cases}$$

where

$$\bar{l}_s(t) = \frac{l_s^p \cdot l_s^d(t)}{\sum_{i=2}^m (l_i^p \cdot l_i^d(t))},$$

and N is the consecutive times when $orall i \in \{1,2,\cdots,N\}$ $j_{s-1}(t-i)>\overline{j}_{s-1}(t-i)$ and $j_{s-1}(t-N-1)\leq$ $_{-1}(t-N-1)$


I-1. Study on: Global stability

Setting

- Case I: $q_0(0)=0$, $q_1(0)=800$, $q_2(0)=0, q_3(0)=0, w(0)=200$
- Case II: $q_0(0)=200$, $q_1(0)=300$, $q_2(0)=200, q_3(0)=100, w(0)=0$

Observations

- Any initial agent distribution \rightarrow
 - a steady state, a load-balanced state, an optimal resource utilization
 - all characterizing parameters, nonnegative
- Different agent distributions → the same steady state → globally stable

I-2. Study on: Robustness and adaptation

Setting:

- m=3, S(0)=1000, $q_1(0)=300$, $q_2(0)=200$, $q_3(0)=100, w(0)=0, Q(0)=600,$ Q(100)=500, and Q(200)=800
- At time t=100:100 nodes fail
- At time t=200:200 new nodes added

Observations

- Successfully enduing relatively largescale resource failures
 - Converging to steady states
- Quickly responding to a drastic increase in the availability of resource nodes so as to re-balance the load
- In general,
 - Robust to tolerate dynamic changes
 - Promptly adapting the results of dynamic changes

AOC-based Ongoing DRO Model

The quantitative changes of:

Agents teams of size one:

$$\frac{dq_1(t)}{dt} = j_0 w(t) - j_1 w(t) + i_2 q_2(t) + f_2 q_2(t) - f_1 q_1(t)$$

- Wandering agents join idle nodes or existing agent teams
- Queuing agents leave existing agent teams
- Old service requests are finished after being served a unit of service time

Agents teams of size two:

$$\frac{dq_2(t)}{dt} = j_1 w(t) - l_2 q_2(t) - f_2 q_2(t)$$

Wandering agents:

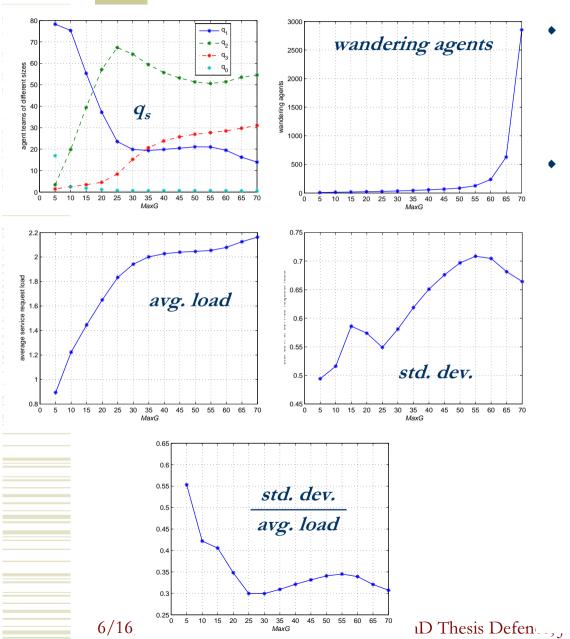
$$\frac{dw(t)}{dt} = l_2 q_2(t) - \sum_{s=0}^{1} j_s w(t) + \underbrace{g(t)}_{s=0}$$

• g(t): newly generated agents for new tasks

Idle resource nodes:

$$\frac{dq_0(t)}{dt} = -j_0 w(t) + (\hat{f_1} q_1(t))$$

$$\frac{dq_1(t)}{dt} = j_0 w(t) - j_1 w(t) + l_2 q_2(t) + f_2 q_2(t) - f_1 q_1(t)$$


$$\frac{dq_s(t)}{dt} = j_{s-1}w(t) - j_sw(t) + l_{s+1}q_{s+1}(t) - l_sq_s(t) + f_{s+1}q_{s+1}(t) - f_sq_s(t)$$

$$\frac{dq_m(t)}{dt} = j_{m-1}w(t) - l_m q_m(t) - f_m q_m(t)$$

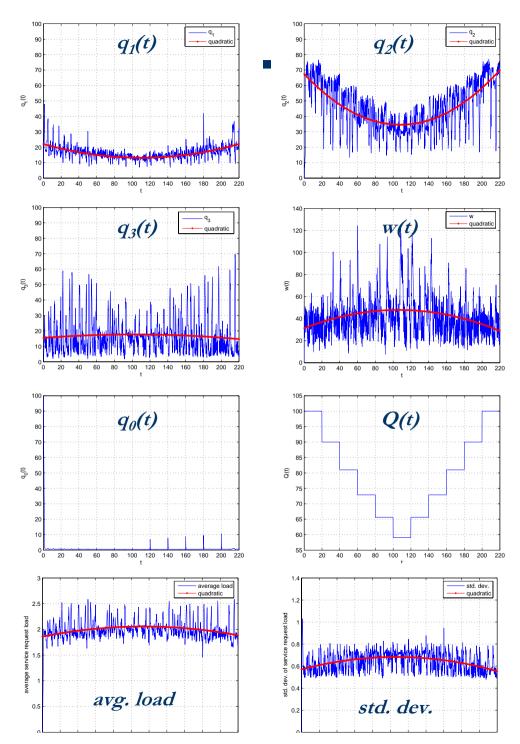
$$\frac{dq_0(t)}{dt} = -j_0 w(t) + f_1 q_1(t)$$

$$\frac{dw(t)}{dt} = \sum_{s=2}^{m} l_s q_s(t) - \sum_{s=0}^{m-1} j_s w(t) + g(t)$$

I-3. Study on: The effects of arrival speeds of service requests

• Setting:

- g(t)=random([1,MaxG])
- $m=3, \lambda =10, Q(0)=100, S(0)=0, q_1(0)=0, q_2(0)=0, q_3(0)=0, w(0)=0$


Observations

- The arrival speed greatly affects the performance of the proposed mechanism.
 Fixing the service time of service requests,
 - A small arrival speed → less-loaded
 - A large arrival speed \rightarrow over-loaded
- Fixing service time λ , an appropriate arrival speed should be set according:

$$MaxG \approx (m \cdot Q)/\lambda$$

The service requests arrived during a unit of service time (i.e., $MaxG \cdot \lambda$) should approximate the capacity of the whole resource environment (i.e., $m \cdot Q$):

$$MaxG \cdot \lambda \approx m \cdot Q$$

I-4. Study on: Robustness and adaptation

Setting:

- MaxG=30
- $m=3, \ \lambda = 10, \ Q(0)=100, \ S(0)=0, \ q_1(0)=0, \ q_2(0)=0, \ q_3(0)=0, \ w(0)=0$
- At the first 100 steps : 0.1 percent of resource nodes failure per 20 steps
 - 0.1 percent of $q_0(t)$, $q_1(t)$, $q_2(t)$, $q_3(t)$ failure, respectively
- At the later 100 steps : 0.1 percent of resource nodes recovered and are added to $q_0(t)$, per 20 steps
- If a resource node with an agent team fails, queuing agents at this node become wandering agents

Observation

- The avg. service requst load and its std. dev. : no great changes
 - Successfully enduring resource failures
 - Quickly responding to increases in the availability of resource nodes
- In general, the proposed mechanism is robust
 - It can tolerate failures and recovery of resource nodes without being greatly affected its performance

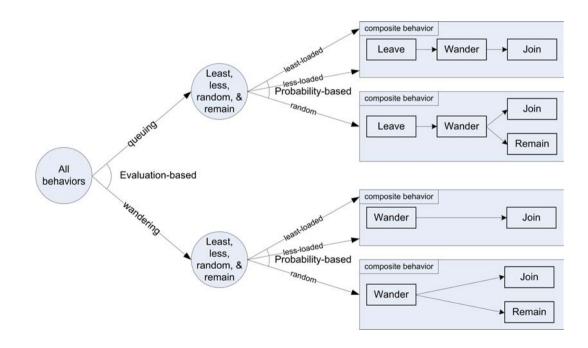
fen _____

Summary

- Instantaneous DRO Scenario
 - Given any initial agent distribution → a steady, load-balanced state
 - Different initial agent distributions → the same steady state → the proposed mechanism is globally stable
 - The proposed mechanism can tolerate large-scale failures and recovery of resource nodes → it is robust to endure dynamic changes occurred, adapt them, and finally reach a new steady state

- Ongoing DRO scenario
 - The arrival speed of service requests greatly affects the performance of the proposed mechanism
 - An appropriate arrival speed of service requests should be set according to: $MaxG \approx \{m \cdot Q\}/\lambda$
 - The proposed AOC-based DRO mechanism is robust and adaptive to tolerate failures and recovery of resource nodes without being greatly affected its performance

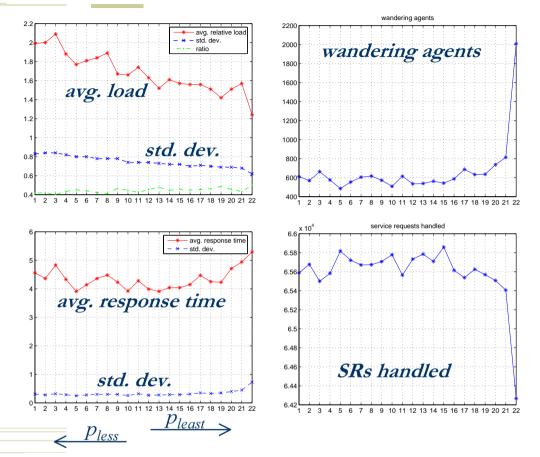
Q-4-B: DRO in heterogeneous environments


Characterization of Heterogeneous Environments

- Heterogeneous resources & heterogeneous service requests
- Topology of resource networks
 - scale-free with a power of 3
- Service request characterization
 - interarrival times, sizes, and service times ~ exponential distribution
 - λ_{iat} : exponential distribution of interarrival times
 - λ_{ts} : exponential distribution of sizes
- Failures and recovery of resource nodes
 - Exponential distributions
 - λ_{fii} : exponential distribution of failures
 - λ_{rti} : exponential distribution of recovery

Refined AOC Mechanism and Formulation

- Three composite behaviors: combinations of the primitive behaviors
 - Least-loaded move
 - Less-loaded move
 - Random move
 - ◆ State description
 - Probabilities vector: pcb=(p_{least}, p_{less}, p_{random})
 - p_{least} , p_{less} , p_{random} are fixed p_{least} & p_{less} : relatively large
 - p_{random} : relatively small


Behavioral rules

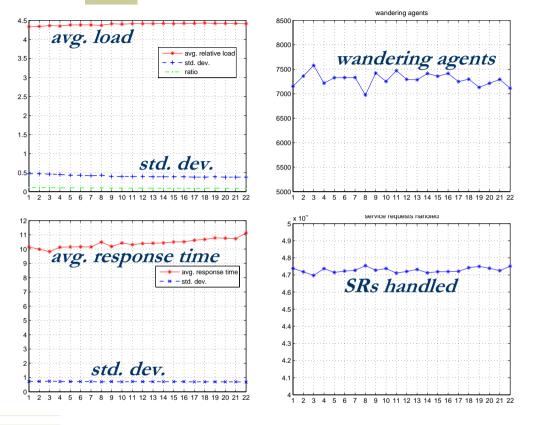
Performance Studies

- II-1. How does the probability combination affect the performance of the proposed mechanism? Are all composite behaviors necessary?
 - II-1-A. Unsaturated situations
 - II-1-B. (Approximately) saturated situations
- II-2. Whether the proposed mechanism is robust to endure the failures and recovery of resource nodes, and adapt the outcome?

II-1-A. Study on: the probability combination in an unsaturated situation

• Setting:

- $\lambda_{iat} = 0.75, \lambda_{ts} = 100$
- Processing speeds of services 1 & 2: 200 & 100


• Observations

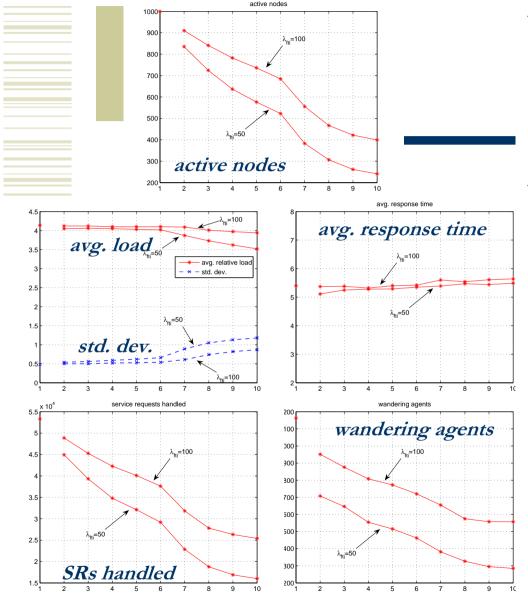
- An experiment $p_{random} = 1.0$:
 - Avg load: 2.5 + Std. Dev.: 3.1
 - The mechanism: effective
- Large p_{least} , \rightarrow small std_{rl} \rightarrow more optimized utilization
 - a large number of wandering agents
 - a low service request load
- Large p_{less} → large std_{rl} → low degree of resource optimization

 Large p_{less} → relatively short response time → the less-loaded move is necessary

- Random move is also necessary
 - $p_{random} = 0$ → wandering agents are relatively hard to find suitable resource nodes → a lot of wandering agents
 - Random move helps agents move to new areas such that they can possibly find suitable resource nodes
- In general, in a relatively optimal combination
 - p_{least} and p_{less} : close 0.5
 - p_{random} : a relatively small, nonzero value, say, $0.01 \sim 0.1$

II-1-B. Study on: the probability combination in a saturated situation

• Setting:


- $\lambda_{iat} = 0.45, \lambda_{ts} = 100$
- Processing speeds of services 1 & 2: 200 & 100

Observations

- An experiment $p_{random} = 1.0$:
 - Avg load : 4.5 + Std. Dev. : 2.8
 - The mechanism: effective
- Random move, not necessary
 - All regions may have the same load situation
 - Least-loaded move or lessloaded move is enough for agents

- Different p_{least} and $p_{less} \rightarrow$ different performance
 - Since a least-loaded move is computationally harder than a less-loaded move, only performing less-loaded move is more reasonable for agents
- In general,
 - If saturated: less-loaded move only
 - If unsaturated: relatively large p_{least} and p_{less} , and relatively small p_{random}

II-2. Study on: Robustness and adaptation

Setting:

 $\lambda_{iat} = 0.45, \lambda_{ts} = 100$

#	1	2	3	4	5	6	7	8	9	10	
λ_{fti}	_	100	100	100	100	100	100	100	100	100	
λ_{rti}	—	10	20	30	40	100 50	100	150	200	250	
$\overline{\lambda_{fli}}$	-	50	50	50	50 40	50	50	50	50	50	
λ_{rti}	–	10	20	30	40	50	100	150	200	250	
Note: '-' denotes that in this case, no resource											

nodes fail and recover.

Observations

- The proposed mechanism is robust
 - it can endure failures and recovery of resource nodes
- The effects are mainly determined by the distributions of the f&R time intervals, i.e., λ_{fii} and λ_{rti}
 - $\lambda_{fii} > \lambda_{rti}$: no much effect on the average load
 - $\lambda_{fii} < \lambda_{rt}$: the effects becomes remarkable: low average load + high standard deviation
 - The smaller the value of λ_{fti} (or, the larger the value of λ_{rti}), the greater the effects
- The effects on the average response time are not obvious

Summary

- In an unsaturated resource environment
 - Less-loaded move & random move : necessary
 - The probability combination determines the performance
 - In an optimized probability combination: $p_{least} \sim p_{less} \sim 0.5$ and $p_{random} \sim$ small, but nonzero
- In a saturated resource environment
 - The probability combination has no great effect
 - Least-loaded move and random move: not necessary
 - Less-loaded move is enough
- Robustness and adaptation
 - The mechanism is robust to endure failures and recovery and adapt to the outcome
 - If resource nodes can quickly recover from failure, no great effects will be caused

Conclusions and Future Work

- Conclusions & contribution
 - Surveyed related work on Web Intelligence (WI) and Autonomy Oriented Computing (AOC) (Chapter 2)
 - Presented a brief DRO perspective on WI. Specifically, gave a generalized view of distributed resources on the Web, and described a generalized and abstracted scenario for DRO (Chapter 4)
 - Provided an AOC-based DRO mechanism and the corresponding AOC formulation (Chapter 5)
 - Presented an AOC-based DRO mechanism for homogeneous resource environments and validated it through macroscopical characterization, numerical simulation, and experimentation (Chapter 6)

Conclusion and Future Work (Cont.)

- Presented an AOC-based DRO mechanism for heterogeneous resource environments and validated it through experimentation (Chapter 7)
- Validated AOC as an effective methodology for distributed resource optimization on the Web in that it satisfies the WI requirements, e.g., adaptive, robust, optimized, etc.. (Chapters 6 & 7)
- Future work
 - Service request interdependency
 - Agent behavioral variation
 - Implementation in a realistic Web environment

Acknowledgement

- Heartfelt gratitude to Prof. Jiming Liu
- ◆ Thanks to Prof. Yuan-Yan Tang, Dr. Kwok-Wai Cheung, Dr. Yiu-Ming Cheung, Dr. Chun-Hung Li, and other professors in our department
- Special thanks to Mr. Hoi Fung Lam
- **♦**

Publications

• Books (3)

- Jiming Liu, **Xiaolong Jin**, and Kwok Ching Tsui, *Autonomy Oriented Computing: From Solving Computational Problems to Characterizing Complex Behavior*, Springer, December, 2004, http://www.springeronline.com/sgw/cda/frontpage/0,11855,5-147-72-36093939-0,00.html;
- Jiming Liu, **Xiaolong Jin**, Shiwu Zhang, and Jianbing Wu, *Multi-Agent Systems: Models and Experimentation* (in Chinese), Tsinghua University Press, November, 2003;
- Jiming Liu (Author), **Xiaolong Jin** and Shiwu Zhang (Translators), *Multi-Agent Systems: Principles and Techniques* (in Chinese), Tsinghua University Press, November, 2003.

• Thesis (1)

■ **Xiaolong Jin**, Autonomy Oriented Computing (AOC) for Web Intelligence (WI): A Distributed Resource Optimization Perspective, PhD thesis, Department of Computer Science, Hong Kong Baptist University, March, 2005.

Edited Proceedings (1)

■ Xiaolong Jin and Jianliang Xu, eds., *Proceedings of the First HKBU-CSD Postgraduate Research Symposium (PG Day)*, Department of Computer Science, Hong Kong Baptist University, Technical Report COMP-05-002, January, 2005.

• Invited Book Chapters (5)

- Xiaolong Jin and Jiming Liu, Autonomy Oriented Computing (AOC) for Web Intelligence (WI): A Distributed Resource Optimization Perspective, N. Zhong, J. Liu, eds., Annual Review of Intelligent Informatics, 2005;
- Jiming Liu, **Xiaolong Jin**, and Kwok Ching Tsui, *Autonomy Oriented Computing (AOC)*, Submitted to the Encyclopedia of Computer Science and Computer Engineering, John Wiley & Sons, 2005;
- **Xiaolong Jin** and Jiming Liu, From Individual Based Modeling to Autonomy Oriented Computation, Matthias Nickles, Michael Rovatsos, and Gerhard Weiss, eds., Agents and Computational Autonomy, LNAI 2969, pp. 151-169, Springer, 2004;

Publications (Cont.)

- Xiaolong Jin, Jiming Liu, and Yuanshi Wang, *Agent-Supported WI Infrastructure: Case Studies in Peer-to-Peer Networks*, Y.-Q. Zhang, A. Kandel, T. Y. Lin, and Y. Y. Yao, eds., Computational Web Intelligence: Intelligent Technology for Web Applications, Chapter 24, pp. 515-538, World Scientific Publishing, 2004;
- Xiaolong Jin and Jiming Liu, *Agent Networks: Topological and Clustering Characterization*, N. Zhong, J. Liu, eds., Intelligent Technologies for Information Analysis, Chapter 13, pp. 291-310, Springer, 2004.

Journal Papers (6)

- Bingcheng Hu, Jiming Liu, and **Xiaolong Jin**, *Multi-Agent RoboNBA Simulation: From Local Behaviors to Global Characteristics*, Accepted by the Special Issue on Agent-Directed Simulation at Simulation;
- Jiming Liu, **Xiaolong Jin**, and Yuanshi Wang, *Agent-Based Load Balancing on Homogeneous Minigrids: Macroscopic Modeling and Characterization*, IEEE Transactions on Parallel and Distributed Systems, vol. 16, no. 7, pp. 586-598, 2005;
- **Xiaolong Jin** and Jiming Liu, *Characterizing Autonomic Task Distribution and Handling in Grids*, Engineering Applications of Artificial Intelligence, vol. 17, no. 7, pp. 809-823, 2004;
- Jiming Liu, **Xiaolong Jin**, and Kwok Ching Tsui, *Autonomy Oriented Computing (AOC): Formulating Computational Systems with Autonomous Components*, IEEE Transaction On Systems, Man, and Cybernetics Part A: Systems and Humans (in press);
- Jiming Liu, **Xiaolong Jin**, and Yi Tang, *Multi-Agent Collaborative Service and Distributed Problem Solving*, Cognitive Systems Research, vol. 5, no. 3, pp. 191-206, 2004;
- Jiming Liu, **Xiaolong Jin**, and Jing Han, *Distributed Problem Solving without Communication An Examination of Computationally Hard Satisfiability Problems*, International Journal of Pattern Recognition and Artificial Intelligence, vol. 16, no. 8, pp. 1041-1064, 2002.

Conference Papers (17)

Xiaolong Jin and Jiming Liu, Resource Optimization in Heterogeneous Grid Environments, Submitted to the 2005 IEEE/WIC/ACM International Conference on Web Intelligence (WI'05), in Compiegne University of Technology, France, September 2005;

Publications (Cont.)

- Xiaolong Jin and Jiming Liu, AOC-Based Load Balancing on Homogeneous Minigrids, Submitted to the 2005 IEEE/WIC/ACM International Conference on Intelligent Agent Technology (IAT'05), in Compiegne University of Technology, France, September 2005;
- Tingting Wang, Jiming Liu, and **Xiaolong Jin**, *Minority Game Strategies for Dynamic Multi-Agent Role Assignment*, in Proceedings of the 2004 IEEE/WIC/ACM International Conference on Intelligent Agent Technology (IAT'04), pp. 316-322, Beijing, China, September 2004;
- Bingcheng Hu, Jiming Liu, and **Xiaolong Jin**, From Local Behaviors to Global Performance in a Multi-Agent System, in Proceedings of the 2004 IEEE/WIC/ACM International Conference on Intelligent Agent Technology (IAT'04), pp. 309-315, Beijing, China, September 2004;
- Xiaolong Jin, Jiming Liu, and Yuanshi Wang, Modeling Agent-Based Task Handling in a Peer-to-Peer Grid, in Proceedings of the 2004 IEEE/WIC/ACM International Conference on Intelligent Agent Technology (IAT'04), pp. 288-294, Beijing, China, September 2004;
- Yi Tang, Jiming Liu, and **Xiaolong Jin**, Aggregating Local Behaviors Based upon Lagrange Method, in Proceedings of the 2004 IEEE/WIC/ACM International Conference on Intelligent Agent Technology (IAT'04), pp. 413-416, Beijing, China, September 2004;
- Xiaolong Jin and Jiming Liu, *The Dynamics of Peer-to-Peer Tasks: An Agent-Based Perspective*, in Proceedings of the Third International Workshop on Agents and Peer-to-Peer Computing (AP2PC 2004), New York, USA, July 2004;
- Long Gan, Jiming Liu, and **Xiaolong Jin**, *Agent-Based, Energy Efficient Routing in Sensor Networks*, in Proceedings of the Third International Joint Conference on Autonomous Agents and Multi Agent Systems (AAMAS'04), New York, USA, July 2004;
- Xiaolong Jin and Jiming Liu, *Properties of Clustering Coefficient in Random Agent Networks* (Excellent Paper Award), in Proceedings of the Second International Conference on Active Media Technology (ICAMT'03), pp. 73-82, Chongqing, China, May 2003;
- Bingcheng Hu, Jiming Liu, and **Xiaolong Jin**, *Phase Transitions in RoboNBA*, in Proceedings of the 5th ACM Postgraduate Research Day (Hong Kong), pp. 73-79, Hong Kong, January 2004;
- Xiaolong Jin, Jiming Liu, and Yuanshi Wang, *Modeling Agent-Based Task Handling in a Peer-to-Peer Grid*, in Proceedings of the 5th ACM Postgraduate Research Day (Hong Kong), pp. 87-96, Hong Kong, January 2004;
- Yuanshi Wang, Jiming Liu, and **Xiaolong Jin**, *Modeling Agent-Based Load Balancing with Time Delays*, in Proceedings of the 2003 IEEE/WIC International Conference on Intelligent Agent Technology (IAT'03), pp. 189-195, Halifax, Canada, October 2003;

Publications (Cont.)

- Xiaolong Jin and Jiming Liu, Efficiency of Emergent Constraint Satisfaction in Small-World and Random Networks, in Proceedings of the 2003 IEEE/WIC International Conference on Intelligent Agent Technology (IAT'03), pp. 304-310, Halifax, Canada, October 2003;
- Xiaolong Jin and Hongge Liu, Research on the Completeness of Pangu Knowledge Base, in Proceedings of the 2003 International Conference on Machine Learning and Cybernetics (ICMLC'03), Xi'an, China, August 2003;
- Xiaolong Jin and Jiming Liu, *Agent Network Topology and Complexity*, in Proceedings of the Second International Joint Conference on Autonomous Agents and Multi Agent Systems (AAMAS'03), pp. 1020-1021, Melbourne, Australia, July 2003;
- Yi Tang, Jiming Liu and **Xiaolong Jin**, *Adaptive Compromises in Distributed Problem Solving*, in Proceedings of the Fourth International Conference on Intelligent Data Engineering and Automated Learning (IDEAL'03), LNCS 2690, pp. 31-40, Springer, Hong Kong, China, March 2003;
- Xiaolong Jin and Jiming Liu, Multiagent SAT (MASSAT): Autonomous Pattern Search in Constrained Domains, in Proceedings of the Third International Conference on Intelligent Data Engineering and Automated Learning (IDEAL'02), LNCS 2462, Hujun Yin et. al. Eds., pp. 318-328, Springer, Manchester, UK, August 2002;

Technical Reports (4)

- Jiming Liu, Xiaolong Jin, and Yuanshi Wang, Agent-Based Load Balancing on Homogeneous Minigrids: Macroscopic Modeling and Characterization, Department of Computer Science, Hong Kong Baptist University, Technical Report Comp-04-005, September 2004;
- Xiaolong Jin, Jiming Liu, and Yuanshi Wang, *Characterizing the Dynamics of Agent-Based Peer-to-Peer Computing*, Department of Computer Science, Hong Kong Baptist University, Technical Report Comp-04-004, May 2004;
- **Xiaolong Jin** and Jiming Liu, *An Autonomy-Oriented, Distributed Approach to Satisfiability Problems*, Department of Computer Science, Hong Kong Baptist University, Technical Report Comp-04-003, May 2004;
- Jiming Liu, **Xiaolong Jin**, and Kwok Ching Tsui, *Autonomy Oriented Computing (AOC): Formulating Computational Systems with Autonomous Components*, Department of Computer Science, Hong Kong Baptist University, Technical Report Comp-04-001, March 2004.

Thank you!

Q. & A.