Document Decomposition for XML Compression: A
Heuristic Approach

Byron Choi

Nanyang Technological University
kkchoi@ntu.edu.sg

Abstract. Sharing of common subtrees has been reported useful notfonly
XML compression but also for main-memogyiL query processing. This method
compresses subtrees only when they exhibit identicaltstreicEven slight irreg-
ularities among subtrees dramatically reduce the perfocamaf compression
algorithms of this kind. Furthermore, wheamL documents are large, the chance
of having large number of identical subtrees is inhereraly. lin this paper, we
proposed a method of decomposixigL. documents for better compression. We
proposed a heuristic method of locating minor irregulesiinxmL documents.
The irregularities are then projected out from the origirsl. document. We
refered this process to a®cument decompositiokVe demonstrated that better
compression can be achieved by compressing the decomposarhents sepa-
rately. Experimental results demonstrated thatabepressed skeletarfer all
real-world datasets, to our knowledge, fit comfortably im@in memory of com-
modity computers nowadays. Preliminary results on qugrgompressed skele-
tons validate the effectiveness our approach.

1 Introduction

XML has been thdefactostandard for data exchange on the web. Wkile. has been
useful for passing small messages between heterogeneplicsatipns [15],XxML has
also been used to represent large amount of data [19, 17, 8dBever, a major draw-
back of this use okmL is the increase in the size of data, due to the verboseness of
XML syntax. What is desirable is an efficient compression teglaforxmL .

The main reason for storing data agL is that (part of) the documents may need
to be queried efficiently later. The two kinds of compresdiechniques, “syntactic”
and “semantic”, perform differently regarding query pregiag. “Syntactic” compres-
sion (.9.,[22]) treats data as a sequence of bytes. While syntactipoession often
produces good compression performance on a wide range agatat the semantics
of data is often lost during compression. This often redugesy performance on the
compressed data. An alternative is to derive a “semantioipression technique,g.,
[14, 4]. Typically, such technique compresses data baset$ semantics. The seman-
tics embedded in the compressed data has been reportetifasefuery evaluation [4,
3]. In this paper, we shall focus on semantic compressishduld also be remarked
[10] that applying semantic compression followed by sytitatompression often re-
sults in better overall compression and query performance.

.keyword

RH Non-NASA Biology Non-NASA

Fig.1.An XML tree T

@abstract

At the core of the “semanticXmML compression technique [4], it is a procedure of
compressing/sharing identical subtrees. Its performdapends on the number and the
size of identical subtrees being shared. However, when documents are large, the
chance of having large identical subtreeiniserentlylow. Unfortunately, in practice,
we encounter a case where the compressed instance produpgdsilarger than the
size of the memory of a commodity computer nowadays. Woikgeagtery evaluation
on compressegdML [4, 3] assumed the compressed instance was stored in maiR mem
ory. This necessitates further investigationsxei. compression techniques.

To illustrate the problem studied in this paper, we preseadkworld example and
show the result of our proposed solution. Consider the siireg@IMEDLINE bibliogra-
phy dataset [19] shown in Figure 1.MEDLINE document contains a large number of
citations, although four citations are shown in the examgkch citation has an ab-
stract, a title, a list of authors and a list of keywords, amother things. We shall
illustrate the compression presented in [4, 3] with thiswdoent.

Consider a depth-first traversal on the document. Suppaseltining this traversal
we also generate a tree in which each of the text nodes iscegplay a marker#)
indicating the presence of text nodes in the original doauimé/e refer this tree to
as theskeletonof the document. Consider the first two authauatbor) nodes. Once
we have replaced the text nodes by the markers, these nobist édentical struc-
ture. Therefore we can replace them by a single structurg@annhultiple edges from
thecitation /Alist node on top of thauthor node. Moreover, since thesdist -
author edges occuconsecutivelywe can indicate this with a single edge together
with a note of the number of occurrences. Thus, working lettgp, we compress the
skeleton into aDAG as shown in Figure 2. Multiple consecutive edges are inéitat
by an annotatiorin), and an edge without annotation occurs once (incthe). This
technique has been knownssbtree-sharingd, 3].

The edges in the middle of Figure 2 illustrate the reason effitient subtree-
sharing. Thecitaton ~ nodes are not compressed because eaation node has
a slightly different author list and keyword list. In fachet identical sub-structures in
citation dominate the others. Since thitation nodes are not compressed, the
dashed edges are also necessary.

Medline
@)

citation

bstracigitle list gKWlist

1 2 3 4 5 6 7 8 (b)
@)
Fig. 3. (a) The reduced document of Figure 1 and (b) its compressadtek

Biology Non-NASA Non-NASA

@)
Fig. 4. (a) The outlier document of Figure 1 and (b) its compressetesin

In this paper, we proposed an improved compression algoffitih XML . Our tech-
nique is inspired byrojected clustering techniquésr data mining applications (see
Section 4). Our technique projects out the subtrees whigh[8{ from compressing an
input XML . The projected subtrees are grouped iroatlier document. The remaining
documentformed theeduceddocument. We call this procedscument decomposition

Let us return to the simplifieEDLINE document. Suppose that we decompose the
documentaP, whereP = {/Medline/citation/Alist J/Medline/citation/KWlist }.
It means that we shall project out the subtrees undernBagind group them in an
outlier document. The reduced document and the outlier meat are shown in Fig-
ure 3 (a) and Figure 4 (a), respectively. We shall compressdtiuced and the outlier
documents by using [3] individually. The compressed skelgbf the reduced and the
outlier documents are presented in Figure 3 (b) and Figut®) dréspectively. Note
that the compressed skeletons contain neither the boldheatadshed edges. The com-
plicated edges in the middle of Figure 1 are encoded by ddtesaThat is, they are
no longerembedded ithe compressed skeleton. Consequently, the decomposed doc
ments can be compressed efficiently. However, we need te #iese (uncompressed)
edges on disk. Furthermore, there is a tradeoff betweertsketompression and query
processing. Queries involving both the reduced and théeoutbcuments require extra
joins to recover the relationship between the two documémthis paper, we proposed
a heuristic method to determine these edges.

The main contributions of this paper are listed as follows.

— We propose an algorithm fomL compression by decomposing:amL document
into a reduced and an outlier document. The decompositiosesairregular sub-
trees to be grouped in the outlier document and leaves theesgbremaining in
the reduced document fairly similar. We noted that the dgumsad-compressed
skeletons of real-worldmML documents fit in main memory comfortably.

— We proposed a query-rewriting algorithm for evaluatingrigseon the decomposed
documents by leveraging existing query evaluation alpor# [3].

— We present experimental results on the effectiveness ofdh#ression and pre-
liminary experimental results on query evaluation on deposed skeletons.

The remainder of this paper is structured as follows. Se@i@ontains notations
used and background information of this paper. Section 8gmts the representation,
the construction and query evaluation of decomposed. Section 4 presents our
heuristic algorithm for determining good decompositioact®n 5 shows an experi-
mental study of our proposed algorithm. We discuss soméexklaork in Section 6.
Conclusions and future work are presented in Section 7.

2 Notations and Background

In this section, we list some notations used in the paper. U¥sider the compres-
sion algorithmvec presented in [3] in this paper. Consider amL document?'.
VEC(T) = (G, V), whereG is the compressed skeleton Bfand V' is the represen-
tation for data nodes. Autis the set of edges at where the decomposition occurs. We
consider the cut to be specified by a set of simple downwaltsgatwhich can also be
considered as “projections” of subtrees. Thus, we may ftr the cut. Suppose the
DTD of T is available. The possible variations in subtree struciitiebe essentially

L indicated by stars “*”. Denote the set of stars in tied to beS. For identifying
irregularities, projections make sense at stars only. titah, we assume that the cuts
in T are not nested. Justifications shall be provided followethieydiscussion of our
solution in Section 4. Given a projectidh we decomposed axmL document into the
reduced documerit?” and the outlier documert?. We may omitP from the nota-
tion if it is clear from the context. Similarly, we denote tHecomposed, compressed
document asVvec: bvec(T,P) = (VEC(T}), VEC(T})) = (G, Vi), (Go, Vb)).

The main challenge of our problem is to determifReat which the document is
decomposed. The search space of the proble®(&°!). This daunting complexity
indicates that there is a need to develop heuristics for thelem. In addition, the
number of subtrees in the documen®i€!”!), where|T | is the number of nodes if.

3 Document Decomposition

Consider a projectio® of an input document’ determined by the heuristic proposed
in Section 4. We discussed the construction of the compdesskiced and outlier doc-
uments in one scan df in Section 3.1 and Section 3.2. Section 3.2 contained no new
ideas but completed the discussions on compresgimon our simplifiedMEDLINE
document. In Section 3.3, we re-write queries®rnto queries o}’ and7F and
discuss how [4, 3] is used for efficient query evaluation.hfegue presented in this
section can be applied recursively to support multiple dgmusitions.

3.1 Construction of the reduced and the outlier documents

In this subsection, we present an algorithm for produciegéuuced documefit. and
the outlier document, of a givenP, shown in Figure 5. The algorithm consists of a
single depth first traversal of the original docum&ntThe construction of, and T’

! For simplicity, we skip the discussions on “?”.

Proceduredecompose (7', P)
Input: A doc. treeT" and a projectiorP
Output: T, andT,
T, = empty;T, = empty;top = true ; ordinal# = 0;r;4s: = null
Depth first traversal o™
On entry of a nodex:
Denotep to be the path from the root teand ¢’,n) to be an edge ifi"
01if pathton’ € P //across the boundary
02 top =false
03 remove#',n) fromT, //dueto Line 14
04 if the last child ofn’ is not an ordinal number
/lfor the reduced doc.
05 append a new ordinal node av.dinal# o and the edger(, o) to T’
06 ordinal#++;top = false
/Ifor the outlier doc.
07 merge_last _subtree (riase,T5)
08 create’ as a clone ob
09 create artificial nodes append’ to olist of r; create an edge(n)
10 7riest =71
else
11 appench and ¢as¢, 7) t0 T,
else
12 if top==true appendr and @', n) to T,
13 else appendn and ¢, n) to ther;,;-subtree

On exit of a noden:
if p € Pthentop =true

Fig. 5. Construction ofl'c andT'3, thedecompose procedure

and the compression algorithwc can be easily incorporated into a single traversal of
T. We decoupled the discussions of the two for simplicity.

The details of the algorithm is as follows. During the traatiof the document, we
maintained the paremt of the current node and the path from the root ton. We use
a boolean variableop to indicate whether the current node belongg’taandr;,; to
record the last consecutive subtrees crossing the “boyhdba path inP. A counter
#ordinal is used to record the number of cut edges encountered.

Initially, T'. andT, are empty. Line 12-13 show the simplest case where the salver
does not cross the cut:fibp is true (resp. false), we continue to constriic(resp.7,).
If the traversal crosses the boundary of the projection€l0i-10), we modified.
(Line 02-06) andrl, (Line 07-10) as follows. First, we remove the cut edge from
(Line 03). Denoten.l as the tag of a node. #f does not form consecutivenodes with
previously visited children of’ (Line 04), we create a new ordinal (text) nadeith a
unique ordinal numbe#ordinal (Line 05) and appendto 7,.. The construction of the
outlier T, involves grouping subtrees based on their structure. Igtrerd condition in
Line 03 ensures that does not form consecutivesubtrees withr;, ¢, this impliesr;, s
has been completely traversed. We useribegje _last _tree procedure to append,
toagroup, iff,, according to its structure. The grouping can be efficienijylemented
by hashtables [4]. Then we create a newode and append its corresponding ordinal
number tor. r is set to be the new,;-subtree. If the guard condition is satisfied, we

continue to build the-,.:-subtree (Line 11). The algorithm requires exactly one scan
onT and maintains ong,,-subtree in main memory during the scan.

3.2 Compression of the reduced and the outlier documents

The reduced and the outlier documents are yet anothierdocuments. ExistingML
compression techniques can be directly applied to compihese documents. We re-
sume our discussion on compressing the skeletoavef [4]. Skeleton compression is
also implemented in a depth first traversallofThe implementation requires a main-
memory hashtable of subtrees encountered during the savén the exit of a node
n, i.e.,the entire subtree rooted atis traversed, we probe the hashtable and check if
such a subtree (structure) is encountered before. If thiseigase, we compress/share
the subtree by adding a reference to the existing subtr@etine compressed skeleton.
Otherwise, we insert into bothG and the hashtable. For example, the outlier document
shown in Figure 4 (a) is compressed to the structure showigimé& 4 (b).

The data nodes are handled as follows. When a data node isr@roed during the
traversal, weappendhe data node to a container (vector) which is uniquely ifiedt
by the root-to-leaf path. For instance, at the end of theetisad, the data nodes in the
outlier document shown in Figure 4 (a) are listed below.

[root/r/author: [JC, BC, FG, JS, RH, SV]
Iroot/r/keyword: [NASA,ARC,NASA,Non-NASA,Biology,Non -NASA]
[root/r/@olist: [1, 5, 2, 8, 3, 7, 4, 6]

We shall discuss the implementation of the containers fdinat numbers together
with query processing in the next subsection. It should Biscemarked that the com-
pression algorithm can be readily incorporated intoddmpose procedure. Neither
the reduced document nor the outlier document is fully niateed.

3.3 Query evaluation on decomposed documents

In this subsection, we illustrate how a query on a documenetigitten into a query on
its decomposed documents. Subsequently, query evaluaiicompressermL [3] is
reused for evaluating queries on decomposed documents.

Denote the query evaluation of [3] asal. Consider a path queny, /ei/esl...le,,.
The evaluation op on vEC(T') are rewritten into a query obvec(7',P) as follows.

eval(p,VEC(T))
= eval(p, DVEC (T, P))
= eval(p, DVEC.1)
U eval(F(le1, DVEC (T, P))leal...le,,, DVEC.2),
U eval(F(leilez, DVEC (T, P))lesl...le,,, DVEC.2), ...
U eval(F(leilezl...len—1, DVEC (T', P))le,, DVEC.2),
whereF (p, DVEC (T, P)) =for $xin DVEC.2/root
where $x/@0= eval(DVEC.1pltext ())
return $x/r
= eval(p, DVEC.1)
U, ,._; eval(F(leil..le;, DVEC (T, P))le;yal...len, DVEC.2)

Input: T', anxMmL tree;0qup O, Oc, 05, K

Osup: the minimum support of major stamd;;: the minimum entropy of major stars;
Oc: the weight of the query part of Formulads: the weight of the storage part of Formulg| 1;
K the number of scans used in the refinement phase
Output: S: a set of stars where decomposition occurs,

01 (S, N)=infer _major _stars (T, Osup, Om) //Phase 1 and 2
028 =simulated _annealing (S, N, 6¢, 6s) /IPhase 3
03for i from Oto K /IPhase 4

N,: =recover _order (S, 2%
S =simulated _annealing (S, Ny, 0c, 05s)
O4return S

Fig. 6. Algorithm determine _cut(7))

The rewritten query on the right hand side of the formula cosgs two parts. The
first part states that the result efal(p,vEC(T)) includes the results found in the re-
duced documenite. DVEC.1 while the second part states that the resutvaf(p,vEC(T))
also includes the ones found in (1) evaluatindds/.../e; in DVEC.1 followed by (2) eval-
uating &;41/e;49/...le;, on the outlier document,e.pvec.2. This requires joins, de-
noted asF’, of the intermediate results from (1) and (2) on ordinal nersbwhich
recover cross edges betwemvec.1 andDVEC.2.

Implementation. The overhead introduced by the rewriting involves exacilng on
ordinal numbers and projections on/$. The joins are often needeelg.,queries with
descendant steps “//". Hence, it is desirable to pre-comthg joins as well as the
projection inF'. A clustered index is built on the result of the joins [20].atls, we
do not store the containers for ordinal numbers but the jesult in 7. Consequently,
F are implemented as a scan on the index, as opposed to a fenojoithe-fly. Cost
estimation techniques can be incorporated to further apéirthe joins. We plan to
incorporate these techniques into our method in future.

4 Heuristic algorithm for determining a cut

In previous sections, we illustrated the idea of documenbd®osition and showed
how decomposition may improve compression. The key of tbelpm is to determine
a good cutP of an input documenf'. The pseudo-code of our algorithm for this issue
is shown in Figure 6. The overall algorithm can be roughlyidid into four phases.
(1) We infer a “schema'sS from the input document’. (2) As we constructS, we
construct histogram& to summarize the structural property©{Line 01). We reduce
the number of stars i§ in this phase. (3) Based on the histograms on redceadd
our cost function, we use a simulated-annealing procedune (02) to progressively
search for a good cut. (4) Finally, we refine the solution ivleta (Line 03).

Next, we present a detailed discussion on the four phasas @iroposed solution.
The meaning of the parameters in Figure 6 are discussed aoaedal.
Phase 1. Schema inference phasAs remarked earlier, the major variations of the
structure are indicated by the starsombs. We shall consider stars astfuctural di-

Fig. 7. The prefix tree off" in Figure 1

mensionsof a subtree and subsequently represent a subtree as aadatténpa multi-
dimensional space. In this phase, we shall determine adlijplesstars in a document.
When theDTD of a document is present, we obtain the stars for free. Otkerw
we infer the probable stars from the document. First, we tcoctsa prefix tree of the
document. (The prefix tree will also be used in later phagesidde in a prefix tree
represents a prefix occurred in a document and is associétedw supportsup, of
the prefix in the document. Second, we definsuaport ratiobetween each pair of
parent-child nodesA, B) to estimate the possible location of stars. There are three
possible cases for the support ratio:

1. The supportratio is between 0 to 1. This impligss probablyA’s optional child;

2. The support ratio is 1. This often implies a one-to-onati@hship;

3. The support ratio is greater than one. This often ind&atene-to-many relation-
ship. We regard the edges in this classts edges

There are exceptions of the above implications. Considatlotogical document
in which half of theA nodes do not hav8-child and half of theA nodes have exactly
two B-children. The support ratio indicates a false one-to-@tationship. However,
such exceptions are rare, in practice.

Example 1.We illustrate the support ratio with an example shown in Fégd. The
prefix tree is derived from themL document shown in Figure 1. The support of the
node is indicated inside the square bracket and the supgtiotis indicated on the
edge. We use a “*” to indicate the location of stars.

Phase 2. Initialization phase A subtree can be readily summarized by a vector: each
star is associated with an entry in the vector and the valtleeoéntry is the number of
repetitions of the star edge in the subtree. For examplesidenagain theitation
subtrees in the document shown in Figure 1. The vector ofitheees are (2, 2), (1, 1),
(2, 1) and (1, 2), respectively. Alternatively, subtrees ba viewed as data points in a
structural-dimensional space.

Consider a depth first traversal on a given docurfiesgain. The vector of partially-
traversed subtrees are kept in main memory which requiesS|) space. Typically,
the number of starkS| in a prefix tree is small. However, larg§| causes problems:
(1) Summary structures are built for each stars later; wiérs large, large amount of
memory is required; (2) A search in a high dimensional spaadten inaccurate [2].
Unfortunately, we find a real-world case whe&tés large: The prefix tree GfREEBANK
(linguistic dataset) contains thousands of stars. Thisuaiets us to distinguish major
and minor stars (dimensions) in the initialization phasébsequent search focuses on
the major stars only. This phase consists of two methods.

The first method is to skip processing the stars with smalbertpA star with small
support may lead to small impact on overall compressionughsimple, this method
has been found effective. For example when we considerethiher stars to be the

ones with a support smaller than 0.5% of the total number gésdnT, the method
prunes more than 95% stars in the prefix tregREEBANK.

Another method involves computing the information conteha star (structural
dimension). Specifically, we compute the entrdpyf a (local) histograniV of a stars

eSas: -melog(—), whereB is the set of bins in the histogram, each bin represents
p

x€EB z
a class oef subtreeg,. is the probability of encountering in N, wherex € B and
two s-subtrees belong to the same bin (class) if and only if there liae same number
of outgoings-edges. We build such histogram of each stafim one scan of” and
compute the entropy of such histograms at the end of the teage entropy implies
the corresponding (star) edgesiinare inherently incompressible and are considered
candidates of irregularities ifi. The intuition is to project out these irregularities from
T which may leave the reduced subtree more compressiordfyigdn the contrary, in
later phases, we skip the stars with an entropy smaller ttilareahold.

Specifically, we use two parametets,, andfy to specify the minimum support
and entropy of a major star. Any star with a support (respopy) smaller thard,,,),
(resp.fx) is considered aninor star. We shall remove minor stars fro and pass
a reducedsS to the next phase for determining good cuts. We refer thisgs® to as
reduction of structural dimensions of subtrees

We remark that the histograms constructed in this phase suingriocal structural
information only. This method is sound: The entropy of higtoms with global infor-
mation is at least as large as the one with local informafidre reduction based on
local information, though space-efficient, may exclude sgtobally optimal cuts.
Phase 3. Simulated-annealing phaseSimilar to most data-mining algorithms, our
algorithm consists of a simulated-annealing phase whicignassively improves the
quality of the solution. We represent a subtree as a veet@ fubint in the reduced di-
mensions. For each star, a histogram of reduced vectorastrooted. Our search finds
a set of star#.,,- whose decomposition cost is minimized, in the reduced dgoes.

Initially, we randomly choose &.,,.. We assume that the stars i, are not
nested. This property is preserved as the search procédestefl stars iP.,,. are
nested cuts, which interact and cause a model inaccurdte.simulated-annealing
process is guided by the costk.a.energy) function defined in Formula 1 and 2.

energy(T, P) = 0c x Z s.sup + s X Z |s.N| x s.sup x f(s, P), Q)
sePU{r} sePU{r}
wherer is the root of the document and
1 ifn#r

) Teep(t = £(5) where
f(n, P) = f(8) =1lacacs a-sup/S(a).sup
where A(s) = s.ancestors and S(a) = a.siblings U {a} ifn=r
&)
The cost function models the query cost and the storage ¢a@stot P. The pa-
rameterd andfs are used to model the relative importance of the query cabtlan
storage cost, respectively. Below describes the meanitigedbrmulae for these costs.
Query cost.The query cost is linearly proportional to the total numbfezadges across
the cut. The reason is that when a query involves multipleogosed skeletons, joins

are required to reconstruct (part of) the skeletons. Witldano join algorithms, the

joins can be implemented with runtime linear to the numbeedides across the cut.

Hence, we have Z s.sup in Formula 1.

sePU{r}
Storage cost.The storage cost models the size of the compressed skekdftensle-
composition. Assume that the size of compressed skelefomoortional to the num-
ber of structurally distinct subtrees i Furthermore, as we shall see in experiments,
nested projections often lead to small advantages in casjpmes. Since such projec-
tions are typically hard to estimate accurately and indeedpticated our model, we
assume nested projections are not allowed. Based on thasmpisons, we define the
storage cost as follows. (1) The space required to stemebtrees is proportional to
the size of the histogram af|s.N| and the number of-subtreesup . Hence we have

Z|3.N| x s.sup . (2) To model the size of the reduced documéset (the r-subtree),

seP
we need to model the effect of projecting dubn ther-subtree. We define an additional

function f for this purpose. Consider an edgg {(n») in a prefix tree. We assume the
storage required to store-subtrees is proportional ti(n.), the percentage of;.sup
among all children ofuy, i.e., na.sup/S(ns).sup, whereS(ns) is the siblings ofn,
together withn,. We model the cost of storing; after projecting ouh:o-subtree to be
1 - f(no). Since we want to compute the effect of projecting @subtrees on the root
r, we “propagate” the effect to the root by multiplying thewlof f () for all a in the
ancestors of. Therefore, we yield Formula 2.

The two costs described above interact in a non-trivial reani) A stars with a
small depth often implies a smaflip and a small query cost. (2) However, the number
of structurally distincts-subtrees|s. V|, could be large. (3) Projectinghas proximate
impact on the compressionofmodeled byf(r, P). The reverse of the three conditions
applies to stars with a large depth.

Phase 4. Refinement phasén this phase, we handle the node order (Line 04 of Fig-
ure 6). The order of nodes may causefél3e negativewhen the entropy oV is small
but identical subtrees occur mainly alternately orfé?3e positivavhen the entropy of
N is large but consecutive identical subtrees are frequéntlgd. Possible false posi-
tives/negatives can be detected by additional scafifs &imilar to string compression,
we construct histograms éfconsecutive-subtrees. The order avL is recovered as
the value ofk increases. The stars with sharp increase (resp. decreaseyopy as:
increases are the candidates of false positives (resptiveg)a

Complexities. The construction of prefix tree and the initialization phase imple-
mented in one scan @f. The simulated-annealing phase requires a scdhfof build-
ing histograms in the reduced dimension. Depending on tpeitance of the ordered-
ness in determining the cut f@r, anotherK scans oril” are needed in the refinement
phase. Hence, the I/O cost of the algorithm is (R} x |T|.

5 Experimental Evaluation

We conducted an experimental evaluation on the proposednaerat decomposition
and the heuristic algorithm. We focused mainly on the qualithe cuts returned by the
heuristics presented in Section 4 and briefly studied querippmance on decomposed

Table 1. Compression result

Doc [TVT[GMGFI] GlY) el
TREEBANK | 7.1M|475K| 1.3M| 475K+0K | 1.3M+0M
XMARK |1.7M| 73K |381K| 15K+45K | 44K+272K

DBLP 2.6M|4.4K|225K| 1.0K+0.4 | 83K+1K

Shakespr.|180K| 1.5K| 32K | 0.5K+0.5K | 2.6K+2.2K
SWISSPROT 3M | 59K |778K| 2K+7K | 33K+241K
ML (3yr) |36M |586K|5.8M|9.5K+219K|324K+2.1M
ML (all) | NA | NA | NA |54K + 2.8M|6.9M + 66M
SKYSERVER 5.2G| 372 | 371| 372+0 371+0

documents. To evaluate the query performance on decomgosathents, we used the
query modules in [3]. We have implemented a prototype of theistics and decompo-
sition algorithm in C/C++. The prototype is run oneux box runningREDHAT 9.0.
Thecpuwas 1.8GHz2ENTIUM 4, while the system had 2GB of physical memory. We
allowed the heuristics five tries and a maximum 100K seamghsstWe defined a vari-
ablel, ranges from 0 to 1, whose value is directly proportionah®rmaximum number
of stars (paths) allowed in a cut. We considered the stalstivit support less than 0.5%
of the total number of edges in the document as minor sfgrandfs are the weights
of the query component and the storage component of Formudspectively.

Experiments on different datasetsWe have applied the heuristics/decomposition al-
gorithm on a fewkML datasets: the PenmREEBANK linguistic dataset, themL bench-
mark XMARK with scaling factor 1, the computer science bibliographtagetpbBsLP,
Shakespeare plays kML, protein dataseswiSSPROT MEDLINE biological dataset,
and thesSKYSERVER astronomical datasef. and 65/6- are 1. We summarized our
results in Table 171V!, GVl and,GLY,| are the number of nodes in skeleton with-
out compression, compressed skeleton and decomposedessag skeletons, respec-
tively. Similarly, we usg E| to denote the number of edges in these three structures.

We begin our discussions with the simple cases. The resolts TREEBANK and
SKYSERVER show that document decomposition produces negligible ampwove-
ment on compressiomMREEBANK contains numerous linguistic trees, where each tree
often exhibits a unique structure. Almost all stars in thefigrtree of TREEBANK are
minor. Hence document decomposition does not yield morencamsubtrees, when it
is compared to the one without. In contrast,y SERVERdataset encodes a large rela-
tion; its prefix tree contains one star. The heuristics ablyeeturns an empty cut.

For the remaining datasets exceptARK, the heuristics returned cuts which im-
proved compression ovaiready compressed skeletoog using five tries only. The
number of nodes in decomposed skeletons ranges from E»UsSPROJ to 66%
(Shakespeare) of that of original compressed skeletonjth@dumber of the edges in
decomposed skeletons is reduced to 15% (Shakespeare) toED0INE) of the orig-
inal compressed skeleton. Furthermore, by decomposigMabLINE dataset (39G
bytes), we can store its compressed skeletons in main meoi@gommodity com-
puter, which was impossible before.

When the heuristics is applied ¥MARK , we observed that the heuristics hits false
local maxima frequently. The reason can be illustrated thighexample shown in Fig-
ure 8. Figure 8 (a) shows a simplifie1ARK data, in which open and closed auctions

i losed_aucti

open_auction closed_auction
. Ismﬁwar

Fig. 8. Problematic case iRMARK: (a) sketch ofxMARK; (b) compressed skeleton without de-
composition; (c) compressed skeletons with decomposition
[T]0]o02[04][06]08] 1] [T] 0J02[04]06]08] 1 |
G 73k [58K | 66K | 64K [58K [68K | [GIV]]4.4K]2.1K]1.5K] 2.0K[1.2K] 1.6K
G‘T’f,‘ 381K|303K|339K|315K|300K|329K| G1E11225K[153K] 65K [130K]| 59K [134K
Fig. 9. Dec. skeleton size vs cut size (XMark)Fig. 10.Dec. skeleton size vs cut size (DBLP)

contain lists of paragraphs, specificallytpar-subtrees. Common subtree-sharing does
not perform efficiently onistpar-subtrees because there are many distinct paragraph
structures irKMARK . Hence, we encountered the complicated edges shown ineRgur
(b). The heuristics sometimes placeS§Mark/closed_auction (alone) into the cut be-
cause this would separagemeproblematic subtrees from the original document. How-
ever, after this decompositiohpthdocuments contain the problematic subtrees (see
Figure 8 (c)). To project out alistpar-subtrees fronxMARK, a path like//listpar is
needed. Unfortunatelyistpar is recursive. This meangiistpar specifies nested cuts,
which is not modeled by our formulas. Worst stillstpar-subtrees appear at a few
places inXMARK s prefix tree which lead to many false local maxima in the cear
space. Since the current heuristics does not model caoela¢tween stars, the search
skips such local maxima by chance only.

Experiments on parameters.We conducted another set of experiments to study the
effects of some parameters of our methodxemRrRkK andbBLP datasets. We reported
theaverageof the local maxima returned by five tries of the heuristice. filledf /05

to be 1 and varied the cut size by varyihgNhen is 0, there is no decomposition.

For bothxMARK andDBLP datasets, we noted that the effectiveness of our approach
increases as the value bfincreases until is close to 1. The size of the search space
of the heuristics increases adncreases. Thus, the heuristics has a higher chance of
returning good cuts. However, whéris close to 1, the search space, hence the number
of local maxima, becomes too large. In such cases, the gudlituts returned by the
heuristics reduces. The results framARK andDBLP datasets exhibited similar trends.
However, the average case DBLP (Figure 10) is relatively closer to the results in
Figure 1, which were obtained from the best of the five trigBs Tan be explained by
the problematic case MARK discussed earlier.

Consider each pair of adjacent columns in Figure 9 and FigQr&Ve obtained the
best compression improvement whewas switched from 0 to 0.2. The improvement
between other consecutive columns was relatively minas ifildicated that in practice,
if decomposition helped compression at all, a small numbstass was sufficient.

In the next experiment, we altered the valu# gfandf- and observed the quality
of cuts returned by the heuristickhas been set to 0.8. The numbers reported are the
average of local maxima returned by five tries. In additioe, neported the number
of edges across the cl(f|. The results were summarized in Figure 11 and Figure 12.
The heuristics reports better compression but wgt$easd-/0s decreases. The trend

[0c/6s[0.01] 0.1 1 | 10 [100] [0c/fs[0.01] 0.1 1 | 10 [100]

GV 71K | 74K | 70K | 74K | 71K GV 3K [2.8K[2.9k[2.9K][3.6K
GVE] [360K]370K|351K|372K| 356K GVE] 1163K] 156K|166K| 164K| 195K
[C] | 35K | 38K [35K | 32K | 32K [CT [1.2M[932K|944K|810K|808K|
Fig. 11.Dec. skeleton size W-/0s (XMark) Fig. 12.Dec. skeleton size &-/0s (DBLP)
X I e A = I I o
0 24K 225K 0 3.
1 [1.0K+0.6K| 83K+2K 359K &
3 [(0.6K+48) H(25K + 0.1K) H{ 359K + -
(0.5K +36) | (2K +67) [(116K + 153K ; l I
Fig. 13. Efficiency of recursive cuts on DBLP T " %

Fig. 14. Performance of XMark queries
involving cross edges
is not observable from the results ¥f1ARK dataset as it contains poorly-compressed
subtreesd.g./istpar) not modeled by the cost function.

Figure 13 presented the effect of applying decompositionngvely onDBLP dataset.
Consider the first decomposition. The number of nodes andsitigthe decomposed
skeletons are reduced to 23% and 37% of their original valdewever, extra storage
is needed to store 359K edges crossing the cut in data vedttien decomposition is
applied on the reduced document, further improvement orpcession (40% for the
nodes and 70% for the edges) can be achieved with an overhetmtiog 116K cross
edges. Not surprisingly, when the outlier document is ferrttecomposed, the improve-
ment on compression is negligible: The heuristics aimedepating compression-
unfriendly subtrees from the original skeleton and grouiesn in the outlier docu-
ment. Furthermore, the decomposition of the outlier documequires storing addi-
tional 153K edges. This experiment showed that the comjoregaprovement of our
method reduces as more decompositions are applied.

Experiments onXMARK queries.We conducted an experiment on queryfgARK
dataset with or without decomposition. The paths in the etitrned by our heuristics
are listed below.

/site/regions/europe/item/incategory

/site/regions/namerica/item/incategory

/site/people /person/watches/watch
/site/open_auctions/open_auction/annotation/description/parlist/listitem
/site/closed_auctions/closed_auction/annotation/description/parlist/listitem

ExceptQ6, Q7,Q15,Q19, all queries ikMARK benchmark [17] can be evaluated
by using the reduced document alone and hence query perioamsa improved by
evaluating the queries on smaller skeletons. We summatiregerformance of the
queries involving cross edges in Figure {4, Q2 and@3 are renaming of the relevant
path queries iY6/Q19,Q15 and@7 in [17], respectively.

Sort-merge join algorithm is used for the joins on data vesstmcoding the cross edges.
The result ofQ1 and@3 are similar. The outlier skeleton participates the query b
cause of the descendant step in the path queries. The jolreandss edges introduces

a significant overhead on query processing. We noted regotigply that the outlier
skeleton is small and the queries on the outlier skeletans\aluated to empty sets. In
this case, the join could be eliminated by evaluating theesponding path queries on
the two skeletons prior to the join. By doing so, query parfance on skeletons with
and without decomposition were comparable. The selegifit)2 is low. The join in
Q@2 required less time than the joinsdnl and@3. In addition, path evaluation on the
decomposed skeletons is faster simply because smalletskeslare being processed.

6 Related Work

XML compression techniques can be roughly categorized intastjo technique and
semantic technique. The compression technique considetleid paper is a seman-
tic compression technique derived from sharing of commdaireas [4, 3]. Semantic
compressions have also been proposed to support data maipptigations [1, 10, 11].
The objective of their schemes is to compute representatples of a relation. How-
ever, [1,10,11] assumed relational data and their suppotta. remains unexplored.
Closest to our work is theTOREDsystem [7]. The system transformsiL into a
set of relations and subsequently, store, query and managén a relational database
system. The major distinction between our schemesar@REDIs that we shrekmL
to XML, as opposed to relations. Note also that an extreme of ouradetull decom-
position, yields the edge table of an input document, whkedeton compression is
no longer relevant. At the core &fTOREDIs a data-mining algorithm for typical tree
structures [21] in a set of trees. However, without profatdi as discussed in [7], [21]
would generate a relational schema that covers only a smoglbp of the data. Due to
the impedance mismatch of the tree model and the relatioodémstoring the outliers
(irregular or dissimilar structures) in relations can baaginefficient. In comparison,
we treat the outliers as atmML document and compress them witkiL compression.
There is a host of work on mining transactional data [9]. Tafly, a database con-
sists of a set of transactions, each of which representsad getns. There is a natural
connection between our algorithm and this class of algmsttSubtrees can be readily
regarded as transactions. Unfortunately, the number afesibtructures in a document
is O(2!1). We tackled this problem by pruning the minor subtreesr§ttirough a
coarse estimation followed by a scalable way of summarittiegsubtree structures.
Finally, efforts are spent on syntactieiL compressors [6, 16,5, 18]. [6, 16, 18, 5]
treatxMmL data as tokens of elements, attributes and text. Custorsizadctic com-
pression is derived for handling these data separatelgelteehniques(g.,arithmetic
coding, dictionary-based static coding) are fundamenthfferent from ours.

7 Conclusions and Future Work

We have proposed a heuristic approach of decomposing document for yielding
better compression. By using our method, we have not enepaoha real-world dataset
whose decomposed-compressed skeletons could not be fthmtmain memory of a

commodity computer, which was not the case before. Dedpiteriprovement on com-
pression, the new compressed representation may intradeckeead on query process-
ing. This paper presented an experimental study on the dsasition and the heuristic
algorithm and preliminary results on querying decompaosaupressed skeletons.

We have planed to extend our algorithm for optimizing corspi@n in the presence
of query workload and statistics to optimize queries. Weirestigating on applying
the decomposition as a data partition algorithm of distedxmL query processing.

References

1. S. Babu, M. N. Garofalakis, and R. Rastogi. Spartan: A ibdsed semantic compression
system for massive data tables.SHtGMOD, pages 283—294, 2001.
2. S. Berchtold, C. Bohm, D. A. Keim, and H.-P. Kriegel. A castdel for nearest neighbor
search in high-dimensional data spacePDDS pages 78-86, 1997.
3. P.Buneman, B. Choi, W. Fan, R. Hutchison, R. Mann, and @a¥i Vectorizing and query-
ing large xml repositories. IICDE, pages 261-272, 2005.
4. P. Buneman, M. Grohe, and C. Koch. Path Queries on ConguteddL. In VLDB, pages
141-152, 2003.
5. J. Cheney. Compressing XML with multiplexed hierarchRBM models. InData Com-
pression Conferenc@ages 163—-172, 2001.
6. J. Cheng and W. Ng. Xgzip: Querying compressed xml usingstral indexing. IrEDBT,
pages 219-236, 2004.
7. A. Deutsch, M. F. Fernandez, and D. Suciu. Storing senuired data with STORED. In
SIGMOD, pages 431-442. ACM Press, Jun. 1999.
8. J. Gray, D. Slutz, A. Szalay, A. Thakar, J. vandenBerg, Ung£t, and C. Stoughton. Data
mining the SDSS Skyserver database. Technical Report MBRJ02-01, Microsoft, 2002.
9. J. Han and M. KambebData Mining: Concepts and Techniquddorgan Kaufmann, 2000.
10. H. V. Jagadish, J. Madar, and R. T. Ng. Semantic commnessid pattern extraction with
fascicles. InVLDB, pages 186—-198, 1999.
11. H. V. Jagadish, R. T. Ng, B. C. Ooi, and A. K. H. Tung. Itcoegs: An iterative semantic
compression algorithm. IICDE, pages 646-657, 2004.
12. Language and Information in Computation at Penn. Perebénk project. Available at
http://www.cis.upenn.edu/ ~treebank/
13. M. Ley. Dblp bibliography. Available atttp://www.informatik.uni-trier.
de/ ~ley/db/ , Mar 2005.
14. H. Liefke and D. Suciu. XMill: an efficient compressor %KL data. In SIGMOD, pages
153-164, 2000.
15. E. Miller, R. Swick, D. Brickley, B. McBride, J. Hendle®. Schreiber, and D. Connolly.
Semantic Web. W3C Working Group, August 200%p://www.w3.0rg/2001/sw/ .
16. J.-K. Min, M.-J. Park, and C.-W. Chung. Xpress: a quégi@lompression for xml data. In
SIGMOD pages 122-133, 2003.
17. A. Schmidt, F. Waas, M. Kersten, M. J. Carey, |. Manolesnd R. Busse. XMark: A
benchmark for XML data management. \lh DB, pages 974-985, 2002.
18. P. M. Tolani and J. R. Haritsa. Xgrind: A query-friendigikcompressor. INCDE, pages
225-234, 2002.
19. U.S. National Library of Medicine. MEDLINE distributeéd XML format. Available at
http://www.nlm.nih.gov/bsd/licensee/data_elements_d oc.html
20. P. Valduriez. Join indice.0ODS 12(2):218-246, 1987.
21. K. Wang and H. Liu. Discovering typical structures of do@nts: a road map approach. In
SIGIR pages 146-154, 1998.
22. J. Ziv and A. Lempel. A Universal Algorithm for Sequehtizata Compression.IEEE
Transactions on Information Theqr3(3):337-343, May 1977.

