
Document Decomposition for XML Compression: A
Heuristic Approach

Byron Choi

Nanyang Technological University
kkchoi@ntu.edu.sg

Abstract. Sharing of common subtrees has been reported useful not onlyfor
XML compression but also for main-memoryXML query processing. This method
compresses subtrees only when they exhibit identical structure. Even slight irreg-
ularities among subtrees dramatically reduce the performance of compression
algorithms of this kind. Furthermore, whenXML documents are large, the chance
of having large number of identical subtrees is inherently low. In this paper, we
proposed a method of decomposingXML documents for better compression. We
proposed a heuristic method of locating minor irregularities inXML documents.
The irregularities are then projected out from the originalXML document. We
refered this process to asdocument decomposition. We demonstrated that better
compression can be achieved by compressing the decomposed documents sepa-
rately. Experimental results demonstrated that thecompressed skeletons, for all
real-world datasets, to our knowledge, fit comfortably intomain memory of com-
modity computers nowadays. Preliminary results on querying compressed skele-
tons validate the effectiveness our approach.

1 Introduction

XML has been thedefactostandard for data exchange on the web. WhileXML has been
useful for passing small messages between heterogeneous applications [15],XML has
also been used to represent large amount of data [19, 12, 8, 13]. However, a major draw-
back of this use ofXML is the increase in the size of data, due to the verboseness of
XML syntax. What is desirable is an efficient compression technique forXML .

The main reason for storing data asXML is that (part of) the documents may need
to be queried efficiently later. The two kinds of compressiontechniques, “syntactic”
and “semantic”, perform differently regarding query processing. “Syntactic” compres-
sion (e.g.,[22]) treats data as a sequence of bytes. While syntactic compression often
produces good compression performance on a wide range of datasets, the semantics
of data is often lost during compression. This often reducesquery performance on the
compressed data. An alternative is to derive a “semantic” compression technique,e.g.,
[14, 4]. Typically, such technique compresses data based onits semantics. The seman-
tics embedded in the compressed data has been reported useful for query evaluation [4,
3]. In this paper, we shall focus on semantic compression. Itshould also be remarked
[10] that applying semantic compression followed by syntactic compression often re-
sults in better overall compression and query performance.

Alisttitleabstract KWlist

citation

Alisttitleabstract KWlist

citation

Alisttitleabstract KWlist

citation

Medline

keywordauthorauthor author

SV

keywordkeyword

Biology Non−NASA

keyword author keyword

Alisttitleabstract KWlist

keywordauthor

JS

author

BCJC NASA ARC FG NASA

citation

Non−NASARH

Fig. 1. An XML tree T

citation citation citation citation

Medline

titleabstract KWlist

keyword

KWlist

keyword

Alist

author

Alist

author

(2) (2)

Fig. 2. Skeleton ofT , G

At the core of the “semantic”XML compression technique [4], it is a procedure of
compressing/sharing identical subtrees. Its performancedepends on the number and the
size of identical subtrees being shared. However, whenXML documents are large, the
chance of having large identical subtrees isinherentlylow. Unfortunately, in practice,
we encounter a case where the compressed instance produced by [4] is larger than the
size of the memory of a commodity computer nowadays. Worse still, query evaluation
on compressedXML [4, 3] assumed the compressed instance was stored in main mem-
ory. This necessitates further investigations onXML compression techniques.

To illustrate the problem studied in this paper, we present areal-world example and
show the result of our proposed solution. Consider the simplified MEDLINE bibliogra-
phy dataset [19] shown in Figure 1. AMEDLINE document contains a large number of
citations, although four citations are shown in the example. Each citation has an ab-
stract, a title, a list of authors and a list of keywords, among other things. We shall
illustrate the compression presented in [4, 3] with this document.

Consider a depth-first traversal on the document. Suppose that during this traversal
we also generate a tree in which each of the text nodes is replaced by a marker (#)
indicating the presence of text nodes in the original document. We refer this tree to
as theskeletonof the document. Consider the first two author (author) nodes. Once
we have replaced the text nodes by the markers, these nodes exhibit identical struc-
ture. Therefore we can replace them by a single structure andput multiple edges from
thecitation /Alist node on top of theauthor node. Moreover, since theseAlist -
author edges occurconsecutively, we can indicate this with a single edge together
with a note of the number of occurrences. Thus, working bottom-up, we compress the
skeleton into aDAG as shown in Figure 2. Multiple consecutive edges are indicated
by an annotation(n), and an edge without annotation occurs once (in theDAG). This
technique has been known assubtree-sharing[4, 3].

The edges in the middle of Figure 2 illustrate the reason of inefficient subtree-
sharing. Thecitation nodes are not compressed because eachcitation node has
a slightly different author list and keyword list. In fact, the identical sub-structures in
citation dominate the others. Since thecitation nodes are not compressed, the
dashed edges are also necessary.

Alisttitleabstract KWlist

citation

Medline

Alisttitleabstract KWlist

citation

Alisttitleabstract KWlist

citation

Alisttitleabstract KWlist

citation

1 2 3 4 5 6 7 8

(a)

Alisttitleabstract KWlist

citation

Medline

(4)

(b)

Fig. 3. (a) The reduced document of Figure 1 and (b) its compressed skeleton

keywordauthor author

root

authorauthor authorauthor keywordkeyword

NASA ARC Non−NASA

keywordkeywordkeyword

Biology Non−NASA NASAFG SV

1 5 2 8 3 7 4 6

BCJC JS RH

r r r r r r r r

(a)

author keyword

rr r r

root

(2) (2) (2)(2)

(2) (2)

(b)

Fig. 4. (a) The outlier document of Figure 1 and (b) its compressed skeleton

In this paper, we proposed an improved compression algorithm for XML . Our tech-
nique is inspired byprojected clustering techniquesfor data mining applications (see
Section 4). Our technique projects out the subtrees which stop [3] from compressing an
input XML . The projected subtrees are grouped in anoutlier document. The remaining
document formed thereduceddocument. We call this processdocument decomposition.

Let us return to the simplifiedMEDLINE document. Suppose that we decompose the
document atP , whereP = {/Medline/citation/Alist ,/Medline/citation/KWlist }.
It means that we shall project out the subtrees underneathP and group them in an
outlier document. The reduced document and the outlier document are shown in Fig-
ure 3 (a) and Figure 4 (a), respectively. We shall compress the reduced and the outlier
documents by using [3] individually. The compressed skeletons of the reduced and the
outlier documents are presented in Figure 3 (b) and Figure 4 (b), respectively. Note
that the compressed skeletons contain neither the bold nor the dashed edges. The com-
plicated edges in the middle of Figure 1 are encoded by data values. That is, they are
no longerembedded inthe compressed skeleton. Consequently, the decomposed docu-
ments can be compressed efficiently. However, we need to store these (uncompressed)
edges on disk. Furthermore, there is a tradeoff between skeleton compression and query
processing. Queries involving both the reduced and the outlier documents require extra
joins to recover the relationship between the two documents. In this paper, we proposed
a heuristic method to determine these edges.

The main contributions of this paper are listed as follows.

– We propose an algorithm forXML compression by decomposing anXML document
into a reduced and an outlier document. The decomposition causes irregular sub-
trees to be grouped in the outlier document and leaves the subtrees remaining in
the reduced document fairly similar. We noted that the decomposed-compressed
skeletons of real-worldXML documents fit in main memory comfortably.

– We proposed a query-rewriting algorithm for evaluating queries on the decomposed
documents by leveraging existing query evaluation algorithms [3].

– We present experimental results on the effectiveness of thecompression and pre-
liminary experimental results on query evaluation on decomposed skeletons.

The remainder of this paper is structured as follows. Section 2 contains notations
used and background information of this paper. Section 3 presents the representation,
the construction and query evaluation of decomposedXML . Section 4 presents our
heuristic algorithm for determining good decomposition. Section 5 shows an experi-
mental study of our proposed algorithm. We discuss some related work in Section 6.
Conclusions and future work are presented in Section 7.

2 Notations and Background

In this section, we list some notations used in the paper. We consider the compres-
sion algorithmVEC presented in [3] in this paper. Consider anXML documentT .
VEC(T) ≡ (G, V), whereG is the compressed skeleton ofT andV is the represen-
tation for data nodes. Acut is the set of edges at where the decomposition occurs. We
consider the cut to be specified by a set of simple downward pathsP , which can also be
considered as “projections” of subtrees. Thus, we may referP to the cut. Suppose the
DTD of T is available. The possible variations in subtree structurewill be essentially
1 indicated by stars “*”. Denote the set of stars in theDTD to beS. For identifying
irregularities, projections make sense at stars only. In addition, we assume that the cuts
in T are not nested. Justifications shall be provided followed bythe discussion of our
solution in Section 4. Given a projectionP , we decomposed anXML document into the
reduced documentT P

r and the outlier documentT P
o . We may omitP from the nota-

tion if it is clear from the context. Similarly, we denote thedecomposed, compressed
document asDVEC: DVEC(T ,P) ≡ (VEC(Tr), VEC(To)) ≡ ((Gr, Vr), (Go, Vo)).

The main challenge of our problem is to determineP at which the document is
decomposed. The search space of the problem isO(2|S|). This daunting complexity
indicates that there is a need to develop heuristics for the problem. In addition, the
number of subtrees in the document isO(2|T |), where|T | is the number of nodes inT .

3 Document Decomposition

Consider a projectionP of an input documentT determined by the heuristic proposed
in Section 4. We discussed the construction of the compressed reduced and outlier doc-
uments in one scan ofT in Section 3.1 and Section 3.2. Section 3.2 contained no new
ideas but completed the discussions on compressionVEC on our simplifiedMEDLINE

document. In Section 3.3, we re-write queries onT into queries onT P
r andT P

o and
discuss how [4, 3] is used for efficient query evaluation. Technique presented in this
section can be applied recursively to support multiple decompositions.

3.1 Construction of the reduced and the outlier documents

In this subsection, we present an algorithm for producing the reduced documentTr and
the outlier documentTo of a givenP , shown in Figure 5. The algorithm consists of a
single depth first traversal of the original documentT . The construction ofTo andTr

1 For simplicity, we skip the discussions on “?”.

Proceduredecompose (T , P)
Input : A doc. treeT and a projectionP
Output : Tr andTo

Tr = empty;To = empty;top = true ; ordinal# = 0;rlast = null

Depth first traversal onT :
On entry of a noden:
Denotep to be the path from the root ton and (n′,n) to be an edge inT
01 if path ton′ ∈ P //across the boundary
02 top = false
03 remove (n′,n) from Tr //due to Line 14
04 if the last child ofn′ is not an ordinal number

//for the reduced doc.
05 append a new ordinal node w.ordinal# o and the edge (n′, o) to Tr

06 ordinal#++; top = false
//for the outlier doc.

07 merge last subtree (rlast,To)
08 createo′ as a clone ofo
09 create artificial nodesr; appendo′ to olist of r; create an edge (r, n)
10 rlast = r

else
11 appendn and (rlast, n) to To

else
12 if top == true appendn and (n′, n) to Tr

13 else appendn and (n′, n) to therlast-subtree

On exit of a noden:
if p ∈ P then top = true

Fig. 5. Construction ofT r
P andT o

P , thedecompose procedure

and the compression algorithmVEC can be easily incorporated into a single traversal of
T . We decoupled the discussions of the two for simplicity.

The details of the algorithm is as follows. During the traversal of the document, we
maintained the parentn′ of the current noden and the pathp from the root ton. We use
a boolean variabletop to indicate whether the current node belongs toTr andrlast to
record the last consecutive subtrees crossing the “boundary” of a path inP . A counter
#ordinal is used to record the number of cut edges encountered.

Initially, Tr andTo are empty. Line 12-13 show the simplest case where the traversal
does not cross the cut: iftop is true (resp. false), we continue to constructTr (resp.To).
If the traversal crosses the boundary of the projection (Line 01-10), we modifiedTr

(Line 02-06) andTo (Line 07-10) as follows. First, we remove the cut edge fromTr

(Line 03). Denoten.l as the tag of a node. Ifn does not form consecutivel nodes with
previously visited children ofn′ (Line 04), we create a new ordinal (text) nodeo with a
unique ordinal number#ordinal (Line 05) and appendo to Tr. The construction of the
outlierTo involves grouping subtrees based on their structure. If theguard condition in
Line 03 ensures thatn does not form consecutivel-subtrees withrlast, this impliesrlast

has been completely traversed. We use themerge last tree procedure to appendrlast

to a group, inTo, according to its structure. The grouping can be efficientlyimplemented
by hashtables [4]. Then we create a newr node and append its corresponding ordinal
number tor. r is set to be the newrlast-subtree. If the guard condition is satisfied, we

continue to build therlast-subtree (Line 11). The algorithm requires exactly one scan
onT and maintains onerlast-subtree in main memory during the scan.

3.2 Compression of the reduced and the outlier documents

The reduced and the outlier documents are yet anotherXML documents. ExistingXML

compression techniques can be directly applied to compressthese documents. We re-
sume our discussion on compressing the skeleton ofXML [4]. Skeleton compression is
also implemented in a depth first traversal ofT . The implementation requires a main-
memory hashtable of subtrees encountered during the traversal. On the exit of a node
n, i.e., the entire subtree rooted atn is traversed, we probe the hashtable and check if
such a subtree (structure) is encountered before. If this isthe case, we compress/share
the subtree by adding a reference to the existing subtree inG, the compressed skeleton.
Otherwise, we insertn into bothG and the hashtable. For example, the outlier document
shown in Figure 4 (a) is compressed to the structure shown in Figure 4 (b).

The data nodes are handled as follows. When a data node is encountered during the
traversal, weappendthe data node to a container (vector) which is uniquely identified
by the root-to-leaf path. For instance, at the end of the traversal, the data nodes in the
outlier document shown in Figure 4 (a) are listed below.

/root/r/author: [JC, BC, FG, JS, RH, SV]
/root/r/keyword: [NASA,ARC,NASA,Non-NASA,Biology,Non -NASA]
/root/r/@olist: [1, 5, 2, 8, 3, 7, 4, 6]

We shall discuss the implementation of the containers for ordinal numbers together
with query processing in the next subsection. It should alsobe remarked that the com-
pression algorithm can be readily incorporated into thedecompose procedure. Neither
the reduced document nor the outlier document is fully materialized.

3.3 Query evaluation on decomposed documents

In this subsection, we illustrate how a query on a document isrewritten into a query on
its decomposed documents. Subsequently, query evaluationon compressedXML [3] is
reused for evaluating queries on decomposed documents.

Denote the query evaluation of [3] aseval. Consider a path queryp, /e1/e2/.../en.
The evaluation ofp on VEC(T) are rewritten into a query onDVEC(T ,P) as follows.

eval(p,VEC(T))
≡ eval(p, DVEC (T , P))
≡ eval(p, DVEC.1)
∪ eval(F (/e1, DVEC (T , P))/e2/.../en, DVEC.2),
∪ eval(F (/e1/e2, DVEC (T , P))/e3/.../en, DVEC.2), ...
∪ eval(F (/e1/e2/.../en−1, DVEC (T , P))/en, DVEC.2),

whereF (p, DVEC (T , P)) = for $x in DVEC.2/root
where $x/@o= eval(DVEC.1,p/text ())
return $x/r

≡ eval(p, DVEC.1)
⋃

1..n−1 eval(F (/e1/../ei, DVEC (T , P))/ei+1/.../en, DVEC.2)

Input: T , anXML tree;θsup θH , θC , θS , K
θsup: the minimum support of major stars;θH : the minimum entropy of major stars;
θC : the weight of the query part of Formula 1;θS : the weight of the storage part of Formula 1;
K: the number of scans used in the refinement phase
Output: S : a set of stars where decomposition occurs,
01 (S , N) = infer major stars (T , θsup, θH) //Phase 1 and 2
02S = simulated annealing (S , N , θC , θS) //Phase 3
03 for i from 0 to K //Phase 4

N2i = recover order (S , 2i)
S = simulated annealing (S , N2i , θC , θS)

04 return S

Fig. 6.Algorithm determine cut(T)

The rewritten query on the right hand side of the formula comprises two parts. The
first part states that the result ofeval(p,VEC(T)) includes the results found in the re-
duced document,i.e.,DVEC.1 while the second part states that the result ofeval(p,VEC(T))
also includes the ones found in (1) evaluating /e1/e2/.../ei in DVEC.1 followed by (2) eval-
uating /ei+1/ei+2/.../en on the outlier document,i.e.,DVEC.2. This requires joins, de-
noted asF , of the intermediate results from (1) and (2) on ordinal numbers, which
recover cross edges betweenDVEC.1 andDVEC.2.
Implementation. The overhead introduced by the rewriting involves exactly joins on
ordinal numbers and projections on $x/r. The joins are often needed,e.g.,queries with
descendant steps “//”. Hence, it is desirable to pre-compute the joins as well as the
projection inF . A clustered index is built on the result of the joins [20]. That is, we
do not store the containers for ordinal numbers but the join result inF . Consequently,
F are implemented as a scan on the index, as opposed to a few joins on-the-fly. Cost
estimation techniques can be incorporated to further optimize the joins. We plan to
incorporate these techniques into our method in future.

4 Heuristic algorithm for determining a cut

In previous sections, we illustrated the idea of document decomposition and showed
how decomposition may improve compression. The key of the problem is to determine
a good cutP of an input documentT . The pseudo-code of our algorithm for this issue
is shown in Figure 6. The overall algorithm can be roughly divided into four phases.
(1) We infer a “schema”S from the input documentT . (2) As we constructS, we
construct histogramsN to summarize the structural property ofT (Line 01). We reduce
the number of stars inS in this phase. (3) Based on the histograms on reducedS and
our cost function, we use a simulated-annealing procedure (Line 02) to progressively
search for a good cut. (4) Finally, we refine the solution obtained (Line 03).

Next, we present a detailed discussion on the four phases of our proposed solution.
The meaning of the parameters in Figure 6 are discussed as we proceed.
Phase 1. Schema inference phase.As remarked earlier, the major variations of the
structure are indicated by the stars inDTDs. We shall consider stars as “structural di-

Medline

citation

title [4] Alist [4]

author[6]

abstract KWlist[4]

keyword

[4]

[4]

[1]
*

* *

[6]

4

1 1 11

1.5 1.5

Fig. 7.The prefix tree ofT in Figure 1

mensions” of a subtree and subsequently represent a subtree as a data point in a multi-
dimensional space. In this phase, we shall determine all possible stars in a document.

When theDTD of a document is present, we obtain the stars for free. Otherwise,
we infer the probable stars from the document. First, we construct a prefix tree of the
document. (The prefix tree will also be used in later phases.)A node in a prefix tree
represents a prefix occurred in a document and is associated with the support,sup, of
the prefix in the document. Second, we define asupport ratiobetween each pair of
parent-child nodes (A, B) to estimate the possible location of stars. There are three
possible cases for the support ratio:

1. The support ratio is between 0 to 1. This impliesB is probablyA’s optional child;
2. The support ratio is 1. This often implies a one-to-one relationship;
3. The support ratio is greater than one. This often indicates a one-to-many relation-

ship. We regard the edges in this class asstar edges.

There are exceptions of the above implications. Consider a pathological document
in which half of theA nodes do not haveB-child and half of theA nodes have exactly
two B-children. The support ratio indicates a false one-to-one relationship. However,
such exceptions are rare, in practice.

Example 1.We illustrate the support ratio with an example shown in Figure 7. The
prefix tree is derived from theXML document shown in Figure 1. The support of the
node is indicated inside the square bracket and the support ratio is indicated on the
edge. We use a “*” to indicate the location of stars.

Phase 2. Initialization phase.A subtree can be readily summarized by a vector: each
star is associated with an entry in the vector and the value ofthe entry is the number of
repetitions of the star edge in the subtree. For example, consider again thecitation

subtrees in the document shown in Figure 1. The vector of the subtrees are (2, 2), (1, 1),
(2, 1) and (1, 2), respectively. Alternatively, subtrees can be viewed as data points in a
structural-dimensional space.

Consider a depth first traversal on a given documentT again. The vector of partially-
traversed subtrees are kept in main memory which requiresO(d|S|) space. Typically,
the number of stars|S| in a prefix tree is small. However, large|S| causes problems:
(1) Summary structures are built for each stars later; when|S| is large, large amount of
memory is required; (2) A search in a high dimensional space is often inaccurate [2].
Unfortunately, we find a real-world case whereS is large: The prefix tree ofTREEBANK

(linguistic dataset) contains thousands of stars. This motivates us to distinguish major
and minor stars (dimensions) in the initialization phase. Subsequent search focuses on
the major stars only. This phase consists of two methods.

The first method is to skip processing the stars with small support. A star with small
support may lead to small impact on overall compression. Though simple, this method
has been found effective. For example when we considered theminor stars to be the

ones with a support smaller than 0.5% of the total number of edges inT , the method
prunes more than 95% stars in the prefix tree ofTREEBANK.

Another method involves computing the information contentof a star (structural
dimension). Specifically, we compute the entropyH of a (local) histogramN of a stars

∈ S as: -
∑

x∈B

pxlog(
1

px

), whereB is the set of bins in the histogram, each bin represents

a class of subtrees,px is the probability of encounteringx in N , wherex ∈ B and
two s-subtrees belong to the same bin (class) if and only if they have the same number
of outgoings-edges. We build such histogram of each star inS in one scan ofT and
compute the entropy of such histograms at the end of the scan.Large entropy implies
the corresponding (star) edges inT are inherently incompressible and are considered
candidates of irregularities inT . The intuition is to project out these irregularities from
T which may leave the reduced subtree more compression-friendly. On the contrary, in
later phases, we skip the stars with an entropy smaller than athreshold.

Specifically, we use two parametersθsup andθH to specify the minimum support
and entropy of a major star. Any star with a support (resp. entropy) smaller thanθsup

(resp.θH) is considered aminor star. We shall remove minor stars fromS and pass
a reducedS to the next phase for determining good cuts. We refer this process to as
reduction of structural dimensions of subtrees.

We remark that the histograms constructed in this phase summarize local structural
information only. This method is sound: The entropy of histograms with global infor-
mation is at least as large as the one with local information.The reduction based on
local information, though space-efficient, may exclude some globally optimal cuts.
Phase 3. Simulated-annealing phase.Similar to most data-mining algorithms, our
algorithm consists of a simulated-annealing phase which progressively improves the
quality of the solution. We represent a subtree as a vector/data point in the reduced di-
mensions. For each star, a histogram of reduced vectors is constructed. Our search finds
a set of starsPcur whose decomposition cost is minimized, in the reduced dimensions.

Initially, we randomly choose aPcur. We assume that the stars inPcur are not
nested. This property is preserved as the search proceeds. (Nested stars inPcur are
nested cuts, which interact and cause a model inaccurate.) The simulated-annealing
process is guided by the cost (a.k.a.energy) function defined in Formula 1 and 2.
energy(T,P) = θC ×

∑

s∈P∪{r}

s.sup + θS ×
∑

s∈P∪{r}

|s.N | × s.sup × f(s, P), (1)

wherer is the root of the document and

f(n, P) =















1 if n 6= r
∏

s∈P (1 − f(s)) where
f(s) =

∏

a∈A(s) a.sup/S(a).sup

where A(s) = s.ancestors and S(a) = a.siblings ∪ {a} if n = r
(2)

The cost function models the query cost and the storage cost of a cutP . The pa-
rameterθC andθS are used to model the relative importance of the query cost and the
storage cost, respectively. Below describes the meaning ofthe formulae for these costs.
Query cost.The query cost is linearly proportional to the total number of edges across
the cut. The reason is that when a query involves multiple decomposed skeletons, joins
are required to reconstruct (part of) the skeletons. With modern join algorithms, the

joins can be implemented with runtime linear to the number ofedges across the cut.
Hence, we have

∑

s∈P∪{r}

s.sup in Formula 1.

Storage cost.The storage cost models the size of the compressed skeletonsafter de-
composition. Assume that the size of compressed skeleton isproportional to the num-
ber of structurally distinct subtrees inT . Furthermore, as we shall see in experiments,
nested projections often lead to small advantages in compressions. Since such projec-
tions are typically hard to estimate accurately and indeed complicated our model, we
assume nested projections are not allowed. Based on these assumptions, we define the
storage cost as follows. (1) The space required to stores-subtrees is proportional to
the size of the histogram ofs |s.N | and the number ofs-subtreessup . Hence we have
∑

s∈P

|s.N | × s.sup . (2) To model the size of the reduced document (i.e., ther-subtree),

we need to model the effect of projecting outP on ther-subtree. We define an additional
functionf for this purpose. Consider an edge (n1, n2) in a prefix tree. We assume the
storage required to storen2-subtrees is proportional tof (n2), the percentage ofn2.sup

among all children ofn1, i.e., n2.sup /S(n2).sup , whereS(n2) is the siblings ofn2

together withn2. We model the cost of storingn1 after projecting outn2-subtree to be
1 - f (n2). Since we want to compute the effect of projecting outs-subtrees on the root
r, we “propagate” the effect to the root by multiplying the value off (a) for all a in the
ancestors ofs. Therefore, we yield Formula 2.

The two costs described above interact in a non-trivial manner: (1) A stars with a
small depth often implies a smallsup and a small query cost. (2) However, the number
of structurally distincts-subtrees,|s.N |, could be large. (3) Projectings has proximate
impact on the compression ofr, modeled byf (r, P). The reverse of the three conditions
applies to stars with a large depth.
Phase 4. Refinement phase.In this phase, we handle the node order (Line 04 of Fig-
ure 6). The order of nodes may cause (1)false negativeswhen the entropy ofN is small
but identical subtrees occur mainly alternately or (2)false positivewhen the entropy of
N is large but consecutive identical subtrees are frequentlyfound. Possible false posi-
tives/negatives can be detected by additional scans onT : Similar to string compression,
we construct histograms ofk-consecutives-subtrees. The order ofXML is recovered as
the value ofk increases. The stars with sharp increase (resp. decrease) in entropy ask
increases are the candidates of false positives (resp. negatives).
Complexities. The construction of prefix tree and the initialization phaseare imple-
mented in one scan ofT . The simulated-annealing phase requires a scan ofT for build-
ing histograms in the reduced dimension. Depending on the importance of the ordered-
ness in determining the cut forT , anotherK scans onT are needed in the refinement
phase. Hence, the I/O cost of the algorithm is (2 +K) × |T |.

5 Experimental Evaluation

We conducted an experimental evaluation on the proposed document decomposition
and the heuristic algorithm. We focused mainly on the quality of the cuts returned by the
heuristics presented in Section 4 and briefly studied query performance on decomposed

Table 1.Compression result

Doc T |V | G|V | G|E| G
|V |
r,o G

|E|
r,o

TREEBANK 7.1M 475K 1.3M 475K+0K 1.3M+0M
XMARK 1.7M 73K 381K 15K+45K 44K+272K

DBLP 2.6M 4.4K 225K 1.0K+0.4 83K+1K
Shakespr. 180K 1.5K 32K 0.5K+0.5K 2.6K+2.2K

SWISSPROT 3M 59K 778K 2K+7K 33K+241K
ML (3 yr) 36M 586K 5.8M 9.5K+219K 324K+2.1M
ML (all) NA NA NA 54K + 2.8M 6.9M + 66M

SKYSERVER 5.2G 372 371 372+0 371+0

documents. To evaluate the query performance on decomposeddocuments, we used the
query modules in [3]. We have implemented a prototype of the heuristics and decompo-
sition algorithm in C/C++. The prototype is run on aLINUX box runningREDHAT 9.0.
TheCPU was 1.8GHzPENTIUM 4, while the system had 2GB of physical memory. We
allowed the heuristics five tries and a maximum 100K search steps. We defined a vari-
ableI, ranges from 0 to 1, whose value is directly proportional to the maximum number
of stars (paths) allowed in a cut. We considered the stars with the support less than 0.5%
of the total number of edges in the document as minor stars.θC andθS are the weights
of the query component and the storage component of Formula 1, respectively.

Experiments on different datasets.We have applied the heuristics/decomposition al-
gorithm on a fewXML datasets: the PennTREEBANK linguistic dataset, theXML bench-
mark XMARK with scaling factor 1, the computer science bibliography datasetDBLP,
Shakespeare plays inXML , protein datasetSWISSPROT, MEDLINE biological dataset,
and theSKYSERVER astronomical dataset.I and θS /θC are 1. We summarized our
results in Table 1.T |V |, G|V | and,G|V |

r,o are the number of nodes in skeleton with-
out compression, compressed skeleton and decomposed-compressed skeletons, respec-
tively. Similarly, we use|E| to denote the number of edges in these three structures.

We begin our discussions with the simple cases. The results from TREEBANK and
SKYSERVER show that document decomposition produces negligible or noimprove-
ment on compression.TREEBANK contains numerous linguistic trees, where each tree
often exhibits a unique structure. Almost all stars in the prefix tree ofTREEBANK are
minor. Hence document decomposition does not yield more common subtrees, when it
is compared to the one without. In contrast,SKYSERVERdataset encodes a large rela-
tion; its prefix tree contains one star. The heuristics correctly returns an empty cut.

For the remaining datasets exceptXMARK , the heuristics returned cuts which im-
proved compression overalready compressed skeletonsby using five tries only. The
number of nodes in decomposed skeletons ranges from 15% (SWISSPROT) to 66%
(Shakespeare) of that of original compressed skeleton; Andthe number of the edges in
decomposed skeletons is reduced to 15% (Shakespeare) to 41%(MEDLINE) of the orig-
inal compressed skeleton. Furthermore, by decomposing (all) MEDLINE dataset (39G
bytes), we can store its compressed skeletons in main memoryof a commodity com-
puter, which was impossible before.

When the heuristics is applied toXMARK , we observed that the heuristics hits false
local maxima frequently. The reason can be illustrated withthe example shown in Fig-
ure 8. Figure 8 (a) shows a simplifiedXMARK data, in which open and closed auctions

XMark

1 2 111

open_auction closed_auction

XMark

1’ 2’

listpar listpar

1’ 2’

closed_auction

1’ 2’

open_auction

XMark

listpar listpar listpar listpar

open_auction closed_auction

2

listparlistpar listpar listpar listpar listpar

(a) (b) (c)

Fig. 8. Problematic case inXMARK : (a) sketch ofXMARK ; (b) compressed skeleton without de-
composition; (c) compressed skeletons with decomposition

I 0 0.2 0.4 0.6 0.8 1

G
|V |
r,o 73K 58K 66K 64K 58K 68K

G
|E|
r,o 381K 303K 339K 315K 300K 329K

Fig. 9. Dec. skeleton size vs cut size (XMark)

I 0 0.2 0.4 0.6 0.8 1

G
|V |
r,o 4.4K 2.1K 1.5K 2.0K 1.2K 1.6K

G
|E|
r,o 225K 153K 65K 130K 59K 134K

Fig. 10.Dec. skeleton size vs cut size (DBLP)

contain lists of paragraphs, specificallylistpar-subtrees. Common subtree-sharing does
not perform efficiently onlistpar-subtrees because there are many distinct paragraph
structures inXMARK . Hence, we encountered the complicated edges shown in Figure 8
(b). The heuristics sometimes places/XMark/closed auction (alone) into the cut be-
cause this would separatesomeproblematic subtrees from the original document. How-
ever, after this decomposition,bothdocuments contain the problematic subtrees (see
Figure 8 (c)). To project out alllistpar-subtrees fromXMARK , a path like//listpar is
needed. Unfortunately,listpar is recursive. This means//listpar specifies nested cuts,
which is not modeled by our formulas. Worst still,listpar-subtrees appear at a few
places inXMARK ’s prefix tree which lead to many false local maxima in the search
space. Since the current heuristics does not model correlation between stars, the search
skips such local maxima by chance only.
Experiments on parameters.We conducted another set of experiments to study the
effects of some parameters of our method onXMARK andDBLP datasets. We reported
theaverageof the local maxima returned by five tries of the heuristics. We fixedθC /θS

to be 1 and varied the cut size by varyingI. WhenI is 0, there is no decomposition.
For bothXMARK andDBLP datasets, we noted that the effectiveness of our approach

increases as the value ofI increases untilI is close to 1. The size of the search space
of the heuristics increases asI increases. Thus, the heuristics has a higher chance of
returning good cuts. However, whenI is close to 1, the search space, hence the number
of local maxima, becomes too large. In such cases, the quality of cuts returned by the
heuristics reduces. The results fromXMARK andDBLP datasets exhibited similar trends.
However, the average case ofDBLP (Figure 10) is relatively closer to the results in
Figure 1, which were obtained from the best of the five tries. This can be explained by
the problematic case inXMARK discussed earlier.

Consider each pair of adjacent columns in Figure 9 and Figure10. We obtained the
best compression improvement whenI was switched from 0 to 0.2. The improvement
between other consecutive columns was relatively minor. This indicated that in practice,
if decomposition helped compression at all, a small number of stars was sufficient.

In the next experiment, we altered the value ofθS andθC and observed the quality
of cuts returned by the heuristics.I has been set to 0.8. The numbers reported are the
average of local maxima returned by five tries. In addition, we reported the number
of edges across the cut|C|. The results were summarized in Figure 11 and Figure 12.
The heuristics reports better compression but worse|C| asθC /θS decreases. The trend

θC/θS 0.01 0.1 1 10 100

G
|V |
r,o 71K 74K 70K 74K 71K

G
|E|
r,o 360K 370K 351K 372K 356K
|C| 35K 38K 35K 32K 32K

Fig. 11.Dec. skeleton size vsθC /θS (XMark)

θC/θS 0.01 0.1 1 10 100

G
|V |
r,o 3K 2.8K 2.9K 2.9K 3.6K

G
|E|
r,o 163K 156K 166K 164K 195K
|C| 1.2M 932K 944K 810K 808K

Fig. 12.Dec. skeleton size vsθC /θS (DBLP)

dp. G
|V |
r,o G

|E|
r,o |C|

0 4.4K 225K 0
1 1.0K + 0.6K 83K + 2K 359K
3 (0.6K + 48) +(25K + 0.1K) + 359K +

(0.5K + 36) (2K + 67) (116K + 153K)

Fig. 13.Efficiency of recursive cuts on DBLP
Fig. 14. Performance of XMark queries
involving cross edges

is not observable from the results ofXMARK dataset as it contains poorly-compressed
subtrees (e.g.,listpar) not modeled by the cost function.

Figure 13 presented the effect of applying decomposition recursively onDBLP dataset.
Consider the first decomposition. The number of nodes and edges in the decomposed
skeletons are reduced to 23% and 37% of their original values. However, extra storage
is needed to store 359K edges crossing the cut in data vectors. When decomposition is
applied on the reduced document, further improvement on compression (40% for the
nodes and 70% for the edges) can be achieved with an overhead of storing 116K cross
edges. Not surprisingly, when the outlier document is further decomposed, the improve-
ment on compression is negligible: The heuristics aimed at separating compression-
unfriendly subtrees from the original skeleton and groupedthem in the outlier docu-
ment. Furthermore, the decomposition of the outlier document requires storing addi-
tional 153K edges. This experiment showed that the compression improvement of our
method reduces as more decompositions are applied.

Experiments on XMARK queries.We conducted an experiment on queryingXMARK

dataset with or without decomposition. The paths in the cut returned by our heuristics
are listed below.
/site/regions/europe/item/incategory

/site/regions/namerica/item/incategory

/site/people/person/watches/watch

/site/open auctions/open auction/annotation/description/parlist/listitem

/site/closed auctions/closed auction/annotation/description/parlist/listitem

ExceptQ6,Q7,Q15,Q19, all queries inXMARK benchmark [17] can be evaluated
by using the reduced document alone and hence query performance is improved by
evaluating the queries on smaller skeletons. We summarizedthe performance of the
queries involving cross edges in Figure 14.Q1,Q2 andQ3 are renaming of the relevant
path queries inQ6/Q19,Q15 andQ7 in [17], respectively.
Sort-merge join algorithm is used for the joins on data vectors encoding the cross edges.
The result ofQ1 andQ3 are similar. The outlier skeleton participates the query be-
cause of the descendant step in the path queries. The join on the cross edges introduces

a significant overhead on query processing. We noted retrospectively that the outlier
skeleton is small and the queries on the outlier skeletons are evaluated to empty sets. In
this case, the join could be eliminated by evaluating the corresponding path queries on
the two skeletons prior to the join. By doing so, query performance on skeletons with
and without decomposition were comparable. The selectivity of Q2 is low. The join in
Q2 required less time than the joins inQ1 andQ3. In addition, path evaluation on the
decomposed skeletons is faster simply because smaller skeletons are being processed.

6 Related Work

XML compression techniques can be roughly categorized into syntactic technique and
semantic technique. The compression technique consideredin this paper is a seman-
tic compression technique derived from sharing of common subtrees [4, 3]. Semantic
compressions have also been proposed to support data miningapplications [1, 10, 11].
The objective of their schemes is to compute representativetuples of a relation. How-
ever, [1, 10, 11] assumed relational data and their support on XML remains unexplored.

Closest to our work is theSTOREDsystem [7]. The system transformsXML into a
set of relations and subsequently, store, query and manageXML in a relational database
system. The major distinction between our scheme andSTORED is that we shredXML

to XML , as opposed to relations. Note also that an extreme of our method, full decom-
position, yields the edge table of an input document, where skeleton compression is
no longer relevant. At the core ofSTORED is a data-mining algorithm for typical tree
structures [21] in a set of trees. However, without projections, as discussed in [7], [21]
would generate a relational schema that covers only a small portion of the data. Due to
the impedance mismatch of the tree model and the relational model, storing the outliers
(irregular or dissimilar structures) in relations can be space-inefficient. In comparison,
we treat the outliers as anXML document and compress them withXML compression.

There is a host of work on mining transactional data [9]. Typically, a database con-
sists of a set of transactions, each of which represents a setof items. There is a natural
connection between our algorithm and this class of algorithms. Subtrees can be readily
regarded as transactions. Unfortunately, the number of subtree structures in a document
is O(2|T |). We tackled this problem by pruning the minor subtrees (stars) through a
coarse estimation followed by a scalable way of summarizingthe subtree structures.

Finally, efforts are spent on syntacticXML compressors [6, 16, 5, 18]. [6, 16, 18, 5]
treatXML data as tokens of elements, attributes and text. Customizedsyntactic com-
pression is derived for handling these data separately. These techniques (e.g.,arithmetic
coding, dictionary-based static coding) are fundamentally different from ours.

7 Conclusions and Future Work

We have proposed a heuristic approach of decomposingXML document for yielding
better compression. By using our method, we have not encountered a real-world dataset
whose decomposed-compressed skeletons could not be fit intothe main memory of a

commodity computer, which was not the case before. Despite the improvement on com-
pression, the new compressed representation may introduceoverhead on query process-
ing. This paper presented an experimental study on the decomposition and the heuristic
algorithm and preliminary results on querying decomposed-compressed skeletons.

We have planed to extend our algorithm for optimizing compression in the presence
of query workload and statistics to optimize queries. We areinvestigating on applying
the decomposition as a data partition algorithm of distributedXML query processing.

References

1. S. Babu, M. N. Garofalakis, and R. Rastogi. Spartan: A model-based semantic compression
system for massive data tables. InSIGMOD, pages 283–294, 2001.

2. S. Berchtold, C. Bohm, D. A. Keim, and H.-P. Kriegel. A costmodel for nearest neighbor
search in high-dimensional data space. InPODS, pages 78–86, 1997.

3. P. Buneman, B. Choi, W. Fan, R. Hutchison, R. Mann, and S. Viglas. Vectorizing and query-
ing large xml repositories. InICDE, pages 261–272, 2005.

4. P. Buneman, M. Grohe, and C. Koch. Path Queries on Compressed XML. In VLDB, pages
141–152, 2003.

5. J. Cheney. Compressing XML with multiplexed hierarchical PPM models. InData Com-
pression Conference, pages 163–172, 2001.

6. J. Cheng and W. Ng. Xqzip: Querying compressed xml using structural indexing. InEDBT,
pages 219–236, 2004.

7. A. Deutsch, M. F. Fernandez, and D. Suciu. Storing semistructured data with STORED. In
SIGMOD, pages 431–442. ACM Press, Jun. 1999.

8. J. Gray, D. Slutz, A. Szalay, A. Thakar, J. vandenBerg, P. Kunszt, and C. Stoughton. Data
mining the SDSS Skyserver database. Technical Report MSR-TR-2002-01, Microsoft, 2002.

9. J. Han and M. Kamber.Data Mining: Concepts and Techniques. Morgan Kaufmann, 2000.
10. H. V. Jagadish, J. Madar, and R. T. Ng. Semantic compression and pattern extraction with

fascicles. InVLDB, pages 186–198, 1999.
11. H. V. Jagadish, R. T. Ng, B. C. Ooi, and A. K. H. Tung. Itcompress: An iterative semantic

compression algorithm. InICDE, pages 646–657, 2004.
12. Language and Information in Computation at Penn. Penn treebank project. Available at

http://www.cis.upenn.edu/ ˜ treebank/ .
13. M. Ley. Dblp bibliography. Available athttp://www.informatik.uni-trier.

de/ ˜ ley/db/ , Mar 2005.
14. H. Liefke and D. Suciu. XMill: an efficient compressor forXML data. InSIGMOD, pages

153–164, 2000.
15. E. Miller, R. Swick, D. Brickley, B. McBride, J. Hendler,G. Schreiber, and D. Connolly.

Semantic Web. W3C Working Group, August 2005.http://www.w3.org/2001/sw/ .
16. J.-K. Min, M.-J. Park, and C.-W. Chung. Xpress: a queriable compression for xml data. In

SIGMOD, pages 122–133, 2003.
17. A. Schmidt, F. Waas, M. Kersten, M. J. Carey, I. Manolescu, and R. Busse. XMark: A

benchmark for XML data management. InVLDB, pages 974–985, 2002.
18. P. M. Tolani and J. R. Haritsa. Xgrind: A query-friendly xml compressor. InICDE, pages

225–234, 2002.
19. U.S. National Library of Medicine. MEDLINE distributedin XML format. Available at

http://www.nlm.nih.gov/bsd/licensee/data_elements_d oc.html .
20. P. Valduriez. Join indices.TODS, 12(2):218–246, 1987.
21. K. Wang and H. Liu. Discovering typical structures of documents: a road map approach. In

SIGIR, pages 146–154, 1998.
22. J. Ziv and A. Lempel. A Universal Algorithm for Sequential Data Compression.IEEE

Transactions on Information Theory, 23(3):337–343, May 1977.

