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Abstract—Time-series shapelets are discriminative subsequences, recently found effective for time series classification (TSC). It is
evident that the quality of shapelets is crucial to the accuracy of TSC. However, major research has focused on building accurate
models from some shapelet candidates. To determine such candidates, existing studies are surprisingly simple, e.g., enumerating
subsequences of some fixed lengths, or randomly selecting some subsequences as shapelet candidates. The major bulk of
computation is then on building the model from the candidates. In this paper, we propose a novel efficient shapelet discovery method,
called BSPCOVER, to discover a set of high-quality shapelet candidates for model building. Specifically, BSPCOVER generates abundant
candidates via Symbolic Aggregate approXimation with sliding window, then prunes identical and highly similar candidates via Bloom
filters, and similarity matching, respectively. We next propose a p-Cover algorithm to efficiently determine discriminative shapelet
candidates that maximally represent each time-series class. Finally, any existing shapelet learning method can be adopted to build a
classification model. We have conducted extensive experiments with well-known time-series datasets and representative
state-of-the-art methods. Results show that BSPCOVER speeds up the state-of-the-art methods by more than 70 times, and the
accuracy is often comparable to or higher than existing works.
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1 INTRODUCTION

T IME series classification (TSC) has attracted considerable
attention from both academia and industry. The classical

approach to solving the TSC problem is the whole series-based
approach [1]. This method combines classifiers, such as 1-Nearest
Neighbor (1NN), and similarity metrics, such as Euclidean Dis-
tance or Dynamic Time Warping distance. A recent trend in TSC is
to find small patterns that represent classes of time series. Among
these patterns, shapelet-based methods (e.g., [7], [9], [20]) have
repeatedly demonstrated superior accuracy. Intuitively, shapelets
can be understood as discriminative subsequences that maximally
represent classes of time series. Recent research has combined
shapelets with learning approaches (e.g., [7], [9]) to learn a few
shapelets that can distinguish time series of different classes.

The two key steps of shapelet-based methods are shapelet
discovery and model building. Recent research on shapelets has
given much attention on accurate model building. In contrast,
this paper shows that shapelet discovery not only significantly
improves the efficiency of model building but also often improves
the accuracy of the model built.

• Guozhong Li, Byron Choi and Jianliang Xu are with the Department of
Computer Science, Hong Kong Baptist University, Hong Kong.
E-mail: {csgzli, bchoi, xujl}@comp.hkbu.edu.hk

• Sourav S Bhowmick is with School of Computing Engineering, Nanyang
Technological University, Singapore.
E-mail: assourav@ntu.edu.sg

• Kwok-Pan Chun is with Department of Geography, Hong Kong Baptist
University, Hong Kong.
E-mail: kpchun@hkbu.edu.hk

• Grace L.H.Wong is with Faculty of Medicine, The Chinese University of
Hong Kong, Hong Kong.
E-mail: wonglaihung@cuhk.edu.hk

Manuscript received XX XX, XXXX;

The fundamental challenge of shapelet discovery is to effi-
ciently discover high-quality shapelets for model building. First,
since shapelet can be any subsequence, whose length is smaller
than or equal to the length of raw time series, the number
of candidates is large. Given an instance of a time series, the
number of shapelet candidates is, however, quadratic to its length.
Second, the shapelets should be discriminative enough to classify
time series [24]. Shapelet discovery is worthwhile because non-
discriminative subsequences harm both the efficiency and accu-
racy of model building. Further, subsequences that discriminate
similar time series instances of one class into different classes do
not improve the accuracy but also adversely affect the efficiency of
model building. Third, due to efficiency issues in model building
for some large datasets, only a relatively small set of candidates
are selected. For example, only shapelets of three different lengths
are used in [9]. It is technically intriguing to systematically select
candidates for efficient model building.

Previous shapelet-based methods can be divided into three
categories. I. Brute force algorithms (e.g., [25]) exhaustively
search shapelets from raw time series sequences. Information
gain is adopted to measure the quality of shapelet candidates.
The time complexity is O(m2n4), where m is the number of
time series instances and n is the length of time series. II. Some
previous studies (e.g., learning time-series shapelets (LTS) [9] and
shapelet transformation (ST) [18]) simply set a few fixed ratios
of the raw time series lengths as the final shapelet lengths and
hence the number of shapelets for model building. These ratios
are sensitive to both datasets and algorithms. For example, the
number of shapelets for the dataset Beef [4] with a length of
470 is 71 (0.15 × n) for LTS and 235 (0.5 × n) for ST. The
complexity is O(Imn2), where the learning approach LTS [9]
is adopted and I is the iteration number. From the experiments
on [7] on Beef , LTS takes more than one week to learn a model
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Fig. 1: The overview of shapelet discovery

TABLE 1: Shapelet discovery and model training time complexity
of some shapelet-based methods [1]

Method FS ST & COTE LTS ELIS BSPCOVER

Shapelet discovery O(mn2) negligible negligible O(mn2 +mn log(mn)) O(mn2)
Model building - O(m2n4) O(Imn2) O(Imn2) O(Imn2)

on training data and do the classification on test data. III. The
state-of-the-art approaches SAX-VSEQL, SAX-VFSEQL [14],
and ELIS [7] exploit symbolic representations of time series. The
symbolic representation methods, such as Piecewise Aggregate
Approximation (PAA) [12], and Symbolic Aggregate approXima-
tion (SAX) [15] can reduce the dimensionality of the original time
series. A technique is derived from TF-IDF to measure the quality
of the candidates for ELIS, which can still be costly. ELIS takes
over six hours to learn a model and do classification for Beef .

In this paper, we propose an efficient shapelet discovery
method, called BSPCOVER, to discover high-quality shapelets for
model building. An overview of BSPCOVER is presented in Fig. 1.

The first step of BSPCOVER follows existing work on shapelets
that simply applies symbolic representation methods, specifically
PAA [12] and SAX [15], to reduce the dimensionality of raw
time series. In particular, they transform raw data into discrete
representations (SAX subsequences, a.k.a SAX words). A sliding
window method is adopted to generate numerous SAX words. The
core of BSPCOVER then consists of three main steps. I. BSPCOVER

derives a bloom filter for each class of time series to efficiently
prune the same SAX words that also exist in other classes. Such
SAX words have less discriminative power and only deteriorate
overall efficiency and accuracy. Since bloom filters do not produce
false negatives, the SAX words of a class that do not exist in
the bloom filters of other classes are definitely not in those other
classes. Such SAX words can be candidates for model building.
II. The second step is a non-metric distance-based pruning of
similar SAX words, which eliminates the effect of similar SAX
words that exist in all classes. First, where the distance between the
raw time series violates triangle inequality, an intrinsic property
of time series, the discrete representation of time series inherits
this property. Second, there are two situations in which similar
SAX words are pruned. First, where similar SAX words exist in
different classes, they are all pruned. In the second case, for words
in the same class, only one representative word may be kept for
further processing. III. For each set of similar SAX words of a
class, we count their term frequency, as weight. Then, we design
weighted bitmap structures of SAX words to quantify the quality
of shapelet candidates, which is utilized to discover a set of SAX
words that have the maximal weight and represent all the instances
in each class. The shapelet selection problem is then formalized
as a weighted bitmap cover problem, which can be reduced from
the classical weighted set cover problem. We propose a heuristic
algorithm to solve this problem. The complexity of the algorithm
is O(mn2) only.

Finally, to complete a TSC solution, we compute the discrim-
inative shapelets from the candidates as follows. We transform
the SAX words back to the raw representation of time series.
Existing learning methods can be applied for modifying the
selected shapelets to improve the accuracy further. In the paper,
we revise LTS [9] to build one-vs-rest classifiers.

We have conducted extensive experiments by running current
state-of-the-art methods and our implementation of BSPCOVER

on well-known time-series datasets. We have obtained consistent
results as they are reported from the paper, unless stated other-
wise. We note that BSPCOVER is faster than most shapelet-based
methods, and its accuracy remains competitive with collective of
transformation-based ensembles (COTE) [2], which is by far the
best classifier today, according to a recent comprehensive survey
of TSC [1].

We summarize the shapelet discovery and model building time
complexity of some shapelet-based methods in Table 1. (While
the complexities of FS are low, its accuracy is lower than other
methods.) Model building of other methods is more costly than
shapelet discovery. Due to shapelet discovery, I of BSPCOVER

can often be 10 times smaller that of LTS and ELIS. Shapelet
discovery makes model building converge much faster in practice.

The contributions of this paper are summarized as follows:

• We propose an approach, BSPCOVER, to discover discrim-
inative shapelets efficiently for classifier model building
for TSC. Bloom filters are adopted and a non-metric
distance measure is proposed to prune non-discriminative
shapelets.

• We design a data structure of SAX words, namely
weighted bitmap, to measure the quality of SAX words.
Then, we formalize a weighted bit cover problem based
on this structure.

• The SAX words selection problem is reduced to the
classical weighted set cover problem by the weighted
bitmap structure, and a heuristic algorithm is introduced
for discovering a set of SAX words to build the classifier
model.

• Extensive experiments on UCR datasets (UCRARCHIVE)
for TSC studies [4] verify that our proposed approach is
significantly more efficient and yet competitive in terms
of accuracy when compared to existing shapelet-based
methods.

Organization. The rest of this paper is organized as follows.
Section 2 reviews related work. Section 3 provides some pre-
liminaries. The details of our proposed method are given in
Section 4. Section 5 reports the experimental results. Section 6
concludes the paper and presents avenues for future work. For
self-containedness, we summarize the adopted learning algorithm
in Appendix A.
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2 RELATED WORK

There are a large number of existing methods for TSC problem.
Interested readers may refer to an excellent review paper [1].
However, the efficiency of TSC has not been the primary concern
of research. In this section, we mainly review two representative
methods, namely the symbolic representation-based methods, and
the shapelet-based methods.

2.1 Symbolic representation-based methods
There are a few symbolic representation-based methods such as
PAA [7], SAX [14], [16], SFA [22], DFT and other discretiza-
tion techniques. Another notable example is the dictionary-based
method. These methods approximate and reduce the dimension-
ality of series through transforming raw data into representative
words. Bag-of-Patterns (BOP) [17] builds a classifier from SAX,
calculating the Euclidean distance with the BOP representation
of a new instance to determine its class. Another approach, SAX-
VSM [23], adopts SAX techniques, proposes a vector space model
(VSM), and uses TF-IDF to rank time series patterns. Le et
al. [14] combine various variable-length bag-of-symbolic-words
representations and an efficient linear sequence learning approach
(SAX-VSEQL [11]) for efficient TSC.

2.2 Shapelet-based methods
Ye et al. propose the seminal work of time series shapelets [24].
Shapelets offer interpretable classification but require high compu-
tation time. Lines et al. propose ST [18] for selecting shapelets to
represent the original time series. Classification methods such as
Neural Network and SVM can be applied to determine shapelets.
LTS [9] utilizes logistic regression with stochastic gradient descent
to learn shapelets. It increases the classification accuracy of the
UCR Time Series Classification Archive. However, the training
phase is time-consuming because of the large number of shapelet
candidates. A few parameters, such as the numbers and the
lengths of shapelets, are manually tuned to select candidates for
model building. Grabocka et al. provide fast shapelet discovery
method [10] with an online clustering/pruning technique and
a supervised shapelet selection technique. Rakthanmanon et al.
propose fast shapelets [20] transforming the raw time series data
into SAX words to reduce shapelet discovery time. The execution
time is significantly reduced when compared to [24]. However, the
accuracy is often clearly lower than more recent work [1].

There have been recent works on exploiting deep learning
to solve the TSC problem (e.g., [8]). As motivated, this paper
undertakes the shapelet-based approach due to its interpretability
and competitive accuracy [1].

3 PRELIMINARIES

In this section, we present some preliminaries and summarize the
notations and their meanings in Table 2.
Definition 1. Time series T . A time series T is an ordered-value

sequence T = (t1, t2, · · · , ti, · · · , tn), where n is the length
of T , ti is the value observed at timestamp i. �

Definition 2. Time series dataset D. A time series dataset D
is a set of time series Tj with Cj = label(Tj), j ∈ [1,m],
where Cj ∈ C is the class label of the dataset, C =
{0, 1, 2, · · · , |C| − 1}, and |C| denotes the number of classes.
�
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Fig. 2: An example of PAA with ω = 10 and SAX with |Σ| = 8
from the Beef dataset

Definition 3. Subsequence. Given a time series T , a subsequence
of T is, T (a, b) = (ta · · · , tb), where 1 ≤ a ≤ b ≤ n, a and
b are the beginning and ending positions to the subsequence,
respectively. �

Definition 4. Distance between two sequences [7]. The distance
of sequence Tp of the length np and Tq of the length nq is
denoted as (w.l.o.g. assuming nq ≥ np),

dist(Tp, Tq) = min
j=1,··· ,nq−np+1

1

np

np∑
l=1

(tq,j+l−1 − tp,l)2
.

(1)
�

Definition 5. PAA sequence T̄ [12]. A time series T can be
represented by a PAA sequence T̄ = (t̄1, t̄2, · · · , ¯tdnω e),
where the i-th element of T̄ , t̄i, is calculated by the following
equation:

t̄i =
1

ω

diωe∑
j=d(i−1)ω+1e

tj , (2)

where ω is the number of consecutive values for averaging. �

Hence, ω is sometimes referred as the compression ratio of the
PAA sequence over the raw time series data.

Definition 6. SAX sequence T̂ [15]. A SAX sequence T̂ =
t̂1, t̂2, · · · , ˆtdnω e can be mapped from T̄ with an alphabet
by the breakpoints of values following the Gaussian distri-
bution [13]: The alphabet Σ = {A1, A2, · · · , Ad}, the size of
Σ is the number of characters (a.k.a symbols), denoted as |Σ|.
�

Example 1. Fig. 2 shows a time series data instance (red solid
line) from the Beef dataset with the length n = 470. The
PAA sequence (blue solid line) is with ω = 10, and the SAX
sequence is DEFFF· · ·BBBBB (breakpoints are the light blue
dash lines) with |Σ| = 8 characters. �

Definition 7. Shapelet Si [24]. A shapelet Si of the length L
in class Cj , where Cj ∈ C, is a time series subsequence,
which can represent class Cj and discriminate Cj from other
classes, i.e., C \ {Cj}. That is, dist(Tj , Si) is smaller for
all label(Tj) = Cj , whereas dist(Tj′ , Si) is larger for all
label(Tj′) = C \ {Cj}. �
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TABLE 2: Summary of frequently used notations

Notation Meaning
T time series T = (t1, t2, · · · , tn) of the length n
T̄ the PAA result of time series T
Σ the alphabet set of SAX words, e.g., {A,B,C,D,E}
T̂ the SAX result of time series T
D time series Tj with the class label Cj , 1≤j≤m
C the label set of dataset D
DC the time series instances of class C in D
S the shapelets
ω compression ratio of time series data
θ the threshold for determining ω
φ the minimum sliding window ratio of T̂
τ a small real value

According to Eqn. 1, the distance between the j-th time series
Tj and a shapelet candidate Si of length LSi

is defined as follows:

dji = dist(Tj , Si) (3)

�
Definition 8. Shapelet transformation [18]. Shapelet transfor-

mation is a method to transform a time series Tj , w.r.t.
the shapelets S : {S1, · · · , Sk}, into a new data space
(dj1,· · · ,djk), where dji = dist(Tj , Si), and dist(Tj , Si) is the
distance between Tj and a shapelet Si in S . �

For simplicity, we also use dist(Tj ,S) to denote the distance
between Tj and S , i.e., dist(Tj ,S) = (dj1,· · · ,djk). Shapelets can
be applied to reduce the dataset by using the transformation in
Def. 8. The number of data values of the dataset D is reduced
from m×n to m×k, where k is often much smaller than n.

Putting these together, we are ready to present the problem
statement below.
Problem statement. Given an integer k and a time series dataset
D, where each time series has a class label, we aim to efficiently
discover the shapelets S : {S1, · · · , Sk′}, k′ ≤ k, for each class,
such that

arg max
S

∑
T,T ′∈D

label(T )6=label(T ′)

||dist(T,S)− dist(T ′,S)||. (4)

The shapelets discovered are used to learn a classification
model. The details are presented in Appendix A.

4 EFFICIENT SAX SUBSEQUENCE COMPUTATION

In this section, we present the details of the BSPCOVER approach
for discovering a set of SAX subsequences (a.k.a SAX words)
of high-quality for model building. For presentation clarity, we
present BSPCOVER using Algo. 1-5.
Overview. The raw time series data are reduced to SAX sequences,
then a sliding window is used to generate SAX words of variable
lengths (Algo. 1). Mining some high-quality SAX words from vo-
luminous SAX words is inefficient. Our main techniques compute
a small set of SAX word candidates as follows. I. We construct
a bloom filter for each class to efficiently prune the same SAX
words that exist in all classes, and build a bitmap structure for
each remaining SAX word (Algo. 2); II. We prune similar SAX
words that appear in all classes, and then define a weighted bitmap
of each SAX word (Algo. 3); and III. We formulate the discovery
problem as a weighted set cover problem, and propose a heuristic
method to solve it (Algo. 4 and Algo. 5).
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Fig. 3: The step function π of ω

4.1 SAX transformation
For completeness, this subsection recalls the relevant details of
the transformation this paper adopts. BSPCOVER transforms raw
time series data into PAA sequences, SAX sequences, and then
SAX words to reduce their information but enhance processing
efficiency. The parameters of the transformation can be easily set,
since excessive transformed SAX words are further pruned by our
techniques.

We present the procedure for compressing each time series
T of a dataset D in Algo. 1. It applies PAA to the raw time
series data through averaging ω consecutive data values (Lines 5-
9). After generating the PAA sequence T̄ , Algo. 1 transforms T̄
to SAX sequence T̂ by replacing the PAA sequence value from a
lookup table [16] (Line 10). It then generates SAX words through
sliding windows (Lines 12-15), whose lengths are determined by
the minimum sliding window ratio φ (Line 12). We then elaborate
upon the two parameters ω and φ.

Determining ω. According to the finding in [10], when ω increases
from 1 to 5, the shapelet discovery time is significantly reduced
and the accuracy remains fairly stable. With ω increasing over 5,
the discovery time of shapelets shows no obvious decline but the
accuracy deteriorates slightly. Next, according to the experiment
results from related studies [19] [20], few shapelets are of the full
length of the raw time series. We obtain the same findings from
our experiments.

Based on these two findings, to preserve more information of
time series, and meanwhile to improve efficiency, we set ω to
range from ωmin = 1 to ωmax = 5 for the different datasets, and
specify a step function of ω for n. For instance, the step function
π used in our experiments for determining ω is shown in Fig. 3.

Determining φ. The minimum sliding window ratio φ can be
determined for the different datasets as follows. If the lengths of
subsequences are smaller than Lmin, normally 10, their discrim-
inative power is small. Thus, given the minimum length of the
subsequence, the minimum sliding window ratio of each dataset
can be computed in Line 3 of Algo. 1 and sliding windows of
various lengths are generated in Line 12. By default, Lmin is set
to n× 10%, denoted as φ = 10%. If the default value of Lmin is
smaller than 10, we then set Lmin to 10 to deduce the φ.

Furthermore, it is not necessary to consider subsequences of
all possible lengths but those with a difference of φ. The rationale
is that the discriminative power of subsequence T (p, q) is similar
to the subsequence T (p, q + ∆), if ∆ is tiny,

dist(T (p, q), T (p, q + ∆)) < τ, (5)

where τ is a small value.
If the distance between two subsequences is smaller than

τ , their discriminative powers are considered similar. Thus, the
minimum sliding window ratio is used to generate SAX words
(Lines 3 and 12).
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Algorithm 1: SAX transformation for class C

Input: Time series dataset D = Tm×n

Output: SAX words set ΩC for each class C
1 Initialize ΩC = ∅ ;
2 ω = π(n) ; // Step function shown in Fig. 3
3 φ = Lmin

dnω e
;

4 foreach j ∈ {1, 2, · · · ,m} do
5 {PAA and SAX sequence generation}
6 foreach i ∈ {1, 2, · · · , dnω e} do
7 foreach r ∈ {d(i− 1)ω + 1e, · · · , diωe } do
8 T̄ j×i = T̄ j×i + T j,r ;
9 T̄ j×i = T̄ j×i

ω ;
10 T̂ j×i = SAX lookup table(D, T̄ j×i) [16];
11 {SAX words generation}
12 foreach l ∈ {φ · dnω e, 2 · φ · d

n
ω e, · · · , d

n
ω e} do

13 foreach x ∈ {1, 2, · · · , dnω e − l + 1 } do
14 ê = T̂ (x, x+ l − 1) ;
15 ΩC = ΩC + ê ;
16 return ΩC

Example 2. The SAX transformation process, from raw time
series to PAA sequences and SAX words, is shown in Fig. 4.
Suppose the instance belongs to a class, with a raw time series
length n = 8, a compression ratio ω = 2 and an alphabet
size |Σ| = 4, the raw time series is transformed into CDBD.
The minimum sliding window ratio φ = 0.5; thus, the sliding
window sizes are 2 and 4. The SAX words are {CD, DB, BD,
CDBD} and are appended to the SAX words set Ω1. �

Complexity. The complexity of Algo. 1 is O(mn), which is
composed of two parts. The first PAA sequence part (Lines 6-
10) is O(mn); and the time complexity of SAX words generation
part (Lines 12-15) is O(mnωφ ).

4.2 Bloom filter and bitmap of SAX words
Because of the SAX transformation of Section 4.1, the number
of SAX words generated by Algo. 1 is much larger than those of
LTS [9] and ELIS [7]. Only three lengths (at most) of shapelets
exist in LTS, which are smaller than one-fifth of ours on average.
The maximum length of the compressed times series in ELIS is
50 for the PAA sequences in all datasets, which indicates that the
maximum ω of ELIS is over 10. Identical SAX words often exist
in different classes, which do not have discriminative power. If
these SAX words are selected as candidates for model building,
the accuracy does not improve.

We propose to use bloom filters in BSPCOVER to efficiently
prune the SAX words that do not have discrimination, i.e., those

1

2

3

Ω


1

Ω


2

Ω


3

ACBAC

BCACD
CBCAC

CBCACDCBBA

ACBAC
CBCAC

DCCDB
CCDBC

CBACC

BCACD

BACCB
DCCDA

CCDBC

CBACC

...

...

...

...

...
ABCDCCBDAD

1

0

1

1

...

...

1

0

0

0

0

1

1

...

...

1

1

0

1

0

1

1

...

...

1

0

1

return yes/no

ACBCACDCBB
...

1

0

1

1

...

...

1

0

0

0

0

1

1

...

...

1

1

0

1

0

1

1

...

...

1

0

1

BCBDDBCDAC

Ω1

Ω2

Ω3

query SAX words 

generate bloom filter
if SAX words

only appear in
this class add it

if no, try another bloom
 filter

return yes/no

otherwise, prune 

1

2

3

4

5

6

SAX words Filtered SAX words

Fig. 5: Pruning redundant and non-discriminative SAX words (of
3 classes) using bloom filters

present in all classes.1 The bloom filters using 13 independent
MD5 hash functions are constructed for each class, to achieve low
false positive probability (Lines 3-5, Algo. 2).

4.2.1 Filtering non-discriminative SAX words
In the filtering step, each SAX word is treated as the query. For
class C , all the SAX words are taken as the query for bloom
filters of other classes. There are two types of query results. The
first is “possibly in set”, which means the SAX word exists in
other classes with high probability and is removed in all classes’
candidates. The other is “definitely not in set”, which indicates
that this SAX word is specifically found in its own class, and
therefore, can only represent class C . Thus, it is kept in ΩBFC for
further processing in Section 4.3. The process of pruning is shown
in Lines 8-12 in Algo. 2.

Example 3. The function of bloom filters is illustrated with Fig. 5.
We generate a bloom filter for each class (shown in 1©) and
take one SAX word ê from Ω1 as the query for the other two
bloom filters generated by Ω2 and Ω3 in 2© and 4©. Two kinds
of operations are shown in 6©. If the SAX word can pass the
bloom filters, this SAX word ê may have high discriminative
power and can be inserted into the candidates set ΩBF1 .
Otherwise, the SAX word is pruned, such as BCACD, which
exists in Ω1 and Ω2. Then, we continue the next SAX word
until all words in Ω1 are processed and carry out the same
operation for SAX words of Ω2 and Ω3. �

4.2.2 Building compact representation of SAX words
To quantify the quality of candidate SAX words ΩBFC of a class
C , we propose to generate a bitmap structure for each SAX word
ê (Lines 15-20 in Algo. 2). The length of bitmap is the number of
instances in the class |DC | and the initial value of each bit is set
to 0. If ê exists in the sequence T̂j , then ê.bitmap(j) = 1 and we

1. To the best of our knowledge, this paper is the first work to use bloom
filters to prune SAX words in shapelet discovery. A previous paper [3] utilized
bloom filters to store the SAX words for motif discovery.
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Fig. 6: An example of (partial) constructing bitmaps of SAX words
in Class 1 (C1)

Algorithm 2: Construction of bloom filters and the
SAX words’ bitmaps of class C

Input: SAX words set ΩC
Output: Candidate set with their bitmaps stored in

bloom filter ΩBFC
1 {Constructing bloom filters}
2 Initialize BFC for each C in C;
3 foreach C ∈ C do
4 foreach ê ∈ ΩC do
5 BFC .add(ê) ; // using MD5 hash functions
6

7 {Pruning duplicate SAX words}
8 foreach C ∈ C do
9 Initialize ΩBFC = ∅ ;

10 foreach ê ∈ ΩC do
11 if

∨
C̄=C\{C}

BF C̄ .lookup(ê) == false then

12 ΩBFC .add(ê) ;
13

14 {Constructing bitmaps}
15 foreach C ∈ C do
16 foreach ê ∈ ΩBFC do
17 ê.bitmap = 0|DC | ;
18 for j ∈ {1, 2, · · · , |DC |} do
19 if ê ∈ T̂j then
20 ê.bitmap(j) = 1 ;
21 return ΩBFC

say that ê covers T̂j . That is, the value of j-th position of bitmap
indicates whether the SAX word candidate covers T̂j . The larger
the number of 1 values of the bitmap of ê, the more instances ê
covers and the better the quality of ê.

Algo. 2 computes the bitmaps of all SAX words in Lines 15-
20. In the end, we obtain the candidates set and their bitmaps.
Fig. 6 shows an example of (partial) bitmaps for ΩBF1 .

Complexity. The complexity of Algo. 2 is O(mnωφ |DC |), which
is composed of three parts: Lines 3-5 of O(mnωφ ), Lines 8-12 of
O(mnωφ ) and Lines 15-20 of O(mnωφ |DC |).

4.3 Similar SAX word pruning

In the previous subsection, the bloom filter is proposed to prune
duplicated SAX words that have low discriminative power. There
are still often numerous similar SAX words in different classes.
For example, after the pruning, over 50% of all SAX words of the
dataset Beef are similar. Such similar words in different classes’
shapelet candidates evidently reduce both efficiency and accuracy.

A natural technique for reducing excessive SAX words for
model building is to prune similar SAX words that exist in all
classes. There are two technical details. First, similarity measures

of time series violate triangle inequality. That is, if T1 is similar
to T2 and T2 is similar to T3, T1 is not necessarily similar to T3.
Second, it is required to differentiate the similar SAX words that
exist in self class and other classes and to select one SAX word to
represent similar ones in self class. In this subsection, we define
a non-metric distance measure for the similarity measure of SAX
words. As for the second technical issue, we propose to use term
frequency as the weight of a SAX word to quantify the quality of
SAX words. The greater the weight, the better the quality.

In Def. 10, we propose a non-metric distance for SAX words.
When we use it to determine similar SAX words (Def. 11), we
propose a threshold, which is dependent on the words’ lengths
(specifically, l

φ·dnω e
).

Definition 9. SAX L1 distance (L1D). Given two SAX words
with the same length, ê1 = (x̂1, x̂2, · · · , x̂l) and ê2 =
(ŷ1, ŷ2, · · · , ŷl), the SAX L1 distance between ê1 and ê2 is
defined as follows.

L1D(ê1, ê2) = Σli=1|x̂i − ŷi| (6)

�

Definition 10. Matching distance of SAX words (MATCHD).
Given two SAX words of the same length, ê1 =
(x̂1, x̂2, · · · , x̂l) and ê2 = (ŷ1, ŷ2, · · · , ŷl), four kinds of
subsequences are defined as ê1+i

1 = (x̂1+i, x̂2+i, · · · , x̂l),
êl−i2 = (ŷ1, ŷ2, · · · , ŷl−i), êl−i1 = (x̂1, x̂2, · · · , x̂l−i), and
ê1+i

2 = (ŷ1+i, ŷ2+i, · · · , ŷl), where i ∈ [1, l
φ·dnω e

].
The matching distance of SAX words ê1 and ê2, denoted as
MATCHD(ê1, ê2), is defined below.

MATCHD(ê1, ê2) = min{L1D(ê1+i1 , êl−i2 ), L1D(ê1+i2 , êl−i1 )}, (7)

�
Some SAX words do not match well may be just because

they are generated by sliding window and they do not align well.
Hence, we generate ê1+i

1 and êl−i1 by removing i characters
(i ∈ [1, l

φ·dnω e
]) from the beginning and the end of ê1. We

generate ê1+i
2 and êl−i2 similarly. MATCHD uses them to compute

the smallest distance between the matching of the middle parts of
ê1 and ê2. Such definition leads to effective pruning of similar
SAX words.

Example 4. Consider the dataset Beef and two of its SAX
words ê1 = BCCDA and ê2 = CCDAA. I. For the L1
distance, L1D(ê1, ê2) = 1+0+1+3+0 = 5; II. For MATCHD,
the maximum removing number of these two SAX words is

5
d0.05× 470

5 e
= 1, MATCHD between them is the minimum of

two following situations, one is removing the first character of
ê1 and the last character of ê2 L1D(BCCD,CCDA) = 5; an-
other is L1D(CCDA,CCDA) = 0. Hence, MATCHD(ê1, ê2)
= 0. �

Definition 11. Similar SAX words. Given two SAX
words of the same length, ê1 = (x̂1, x̂2, · · · , x̂l) and
ê2 = (ŷ1, ŷ2, · · · , ŷl), ISSIMILAR is defined as follows:
ISSIMILAR(ê1, ê2) =

true, MATCHD(ê1, ê2) = 0, or
L1D(ê1, ê2) ≤ l

φ·dn
ω
e and

∧
i∈[1,l]

|x̂i − ŷi| ≤ 1,

false, otherwise.

(8)

�
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Algorithm 3: Computing the weights for non-similar
SAX words

1 Input: Candidates set with bloom filter ΩBF

Output: Weighted candidates after pruning, Ωsim

2 {Pruning similar words}
3 foreach C ∈ C do
4 foreach ê1 ∈ ΩBFC do
5 foreach ê2 ∈ ΩBFC\{C} do
6 if ISSIMILAR (ê1, ê2) then
7 ΩBFC\{C}.remove(ê2) ;
8 flag = true;
9 if flag then

10 ΩBFC .remove(ê1) ;
11

12 {Counting the weights of remaining SAX words}
13 foreach C ∈ C do
14 Initialize ΩsimC = ∅ ;
15 while ΩBFC 6= ∅ do
16 ê1 = ΩBFC .pop() ;
17 ΩsimC .add(ê1) ;
18 foreach ê2 ∈ ΩBFC \ {ê1} do
19 if ISSIMILAR(ê1, ê2) then
20 ê1.weight++ ;
21 ê2.weight++ ;
22 return Ωsim

Formula 8 states that ê1 and ê2 are similar if there is a match using
MATCHD. Alternatively, two SAX words are similar if they are of
the same length l and the distance (Def. 9) is no larger than a ratio
between l and the minimum sliding window size φ · dnω e. Since
the SAX words are generated by φ · dnω e, l can be divisible by the
minimum sliding window size (Line 3, Algo. 1).

The pseudocode of pruning similar SAX words and counting
the weights of the remaining SAX words are shown in Algo. 3.
If a SAX word ê1 has similar SAX words in another class (Line
5), Algo. 3 prunes those similar words, according to Eqn. 8 (Lines
6-7). ê1 is also pruned (Line 10) because it is not discriminative.

Next, in Lines 12-21, we compute the weight of each SAX
word, which records the number of similar SAX words in its class.
Algo. 3 records each weighted SAX word in the set ΩsimC . ΩsimC
is initialized to an empty set (Line 14). Algo. 3 calculates the
similarity with Eqn. 8 between each SAX word and others in ΩBFC
(Lines 18-19) and updates the weight (Lines 20-21).

Complexity. The complexities of Lines 1-10 and Lines 12-21
are both O(m( n

ωφ )
2
). Hence, the time complexity of Algo. 3 is

O(m( n
ωφ )

2
).

4.4 SAX word cover for model building
In this subsection, the details of the BSPCOVER method to compute
SAX words for model building are presented. In a nutshell, the
problem is formulated as a weighted bitmap cover problem,
through finding the minimum subset to cover the time series
instances rather than discovering the SAX words directly. We
provide some definitions for explaining the approach below.
Definition 12. p-Cover. A SAX word ê covers a SAX sequence

T̂j if and only if there is a subsequence of T̂j that is identical to
ê. SAX sequence T̂j is p-Covered if and only if T̂j is covered
by p distinct SAX words. �

To implement the covering relationships between SAX words
and SAX sequences of class C , we utilize the bitmap struc-
ture.The number of bits of bitmap is |DC |, and ê.bitmap (j)
= 1 if and only if ê covers T̂j ∈ DC .
Definition 13. Weighted bitmap cover (WBC) problem. Given a

dataset DC and a set of SAX words ΩsimC = {ê1, · · · , êq},
the weighted bitmap cover problem is to determine a subset
Ωfin of ΩsimC such that:

• all T̂j are p-covered by Ωfin, and
• the total weight of Ωfin is maximized. �

When p = 1, the weighted bitmap cover problem is equivalent
to the weighted set cover problem, which is an NP-complete
problem. The p value of the WBC problem is not smaller than
1 and hence, WBC is also an NP-complete problem.

It is known that the weighted set cover problem can be
practically solved by Chvatal [5], which follows one rule: choosing
the set that contains the largest number of uncovered elements at
each stage. The approximation ratio is log q, where q is the number
of SAX subsequences in ΩsimC . Therefore, we extend the greedy
algorithm to Algo. 4 to solve the WBC.

Algo. 4 finds candidate SAX words for each class C . It
initializes the final SAX word set ΩfinC and a special bitmap,
called BitmapC . Its length is |DC | and all of its bits have a value
of 0 (Lines 3-4), where Bitmap[i] = 1 when the instance has been
covered by some of the SAX words in ΩfinC , or 0 otherwise. Next,
Algo. 4 sorts the SAX words based on the time series they cover
and then the number of similar SAX words (i.e., the number of 1
values and weight of their bitmaps) in descending order (Line 5).
A larger number of 1 values and a greater weight indicate that the
SAX word is of a higher quality.

Algo. 4 selects the next SAX words from ΩsimC , adds it into
ΩfinC (Lines 8-9), then adds its bitmap to Bitmap (Line 10). Then,
if Bitmap = 1, all instances of the class are covered by the current
SAX words, and Algo. 4 breaks the loop and finds SAX words
for the next class (Lines 11-12). Otherwise, Bitmap is not equal
to 1 and the similar SAX words of ê1 in ΩsimC are removed so
that they are not passed to the potentially costly model building
phase (Lines 15-17). The remaining candidates are sorted, similar
to Line 5, at the positions that are not covered by ΩsimC (Lines 18-
19). Then, Algo. 4 processes the remaining SAX words iteratively,
from Line 20.

Analysis. The complexity of Algo. 4 is O(m( n
ωφ )

2
). The approx-

imation ratio of Algo. 4 is log q.
Example 5. Fig. 7 shows the whole process of finding SAX

words from raw time series. All the time series instances are
transformed into SAX words, as shown in 1©. Then, the SAX
words are utilized to build the bloom filter BFC for each
class C , which prunes identical SAX words in other classes
(blue dotted rectangle). Next, the bitmap structures for the
remaining SAX words are built to quantify their qualities (red
dotted rectangle). 2© The procedure prunes similar SAX words
in all classes. The red SAX words DCCCC and DCCCD of
different classes are similar, whereas the blue SAX words of
the same class are similar. The red ones are pruned and the blue
ones are passed to compute their weights. 3© Algo. 4 utilizes
the weight bitmap structures (the last rectangle) to select the
minimum subset of bitmaps to cover all the instances. �

Algo. 5 (Lines 2-7) applies Algo. 4 p times to determine the
p-cover SAX words. The approximation ratio is (log q)

p.



8

.

.

.

.

.

.

1

2

1 1 ... 1 0
1 0 ... 1 1

1 0 ... 0 1

1 1 ... 1 1

1 1 ... 1 0

0 1 ... 1 1

1
0
1
0

0
0
1
1

0
1
1
0

1
1
0
1

Raw time series

BCDCB

DCCCC
CDCBB

CDCBBCBCB
BCDCBBCBC
...

CCDCC
CDCCC
DCCCD...
CCDCCCDBB
CDCCDBBAB

BCDCB

DCCCC...
CDCBBCBCB

CDCCC

...
CCDBBABCD

DCCCD

...

BCDBC

CBCBDBDBA

...

✓1 1 ... 1 0
0 1 ... 1 1 ✓

×1 0 ... 0 1
...

✓1 1 ... 1 1
1 1 ... 1 0 ✓

✓1 0 ... 0 1
...

0 0 ... 1 0

0 0 ... 1 0 ×

1 0 ... 0 0 ×1 0 ... 0 0
ACBDC

BCDCBBCBC...

CDCBC

BBABC

...

1

bitmap

Symbolic
representation

2

4

Weighted bitmap
cover problem

Bloom filter pruning duplicate

Ω


1

Ω


2

Ω
���
2

Ω
���
1

Ω1

Ω2

�1

�2

CDCBBCBCA

DCCCC...
CDCBBCBCB

CBCBDBDBA

CDCBC

...
CCDBBABCD

DCCCD

BCDBC

BCDCBBCBC

3

Pruning similar 
SAX words

Section 4.1 Section 4.2 Section 4.3 Section 4.4

Ω
���

2

Ω
���

1

Fig. 7: An example of finding SAX words for model building (The figure is best viewed in color)

Algorithm 4: ONESAXCOVER: Heuristic algorithm
for the weighted bitmap cover problem

1 Input: Candidate set after pruning Ωsim

Output: Final candidate set ΩfinC , for all C ∈ C
2 foreach C ∈ C do
3 Initialize ΩfinC = ∅ ;
4 BitmapC = 0|DC | ; // all pos. are uncovered
5 ΩsimC .sort() ; // by the number of 1 values and

then the weight of bitmap of SAX words in ΩsimC
6 {Select k SAX words}
7 do
8 ê1 = ΩsimC .pop();
9 ΩfinC .add(ê1) ;

10 BitmapC = BitmapC + ê1.bitmap ; // mark
covered pos. by ê1

11 if BitmapC == 1|DC | then
12 break ; // fully covered
13 else
14 {Pruning similar SAX words}
15 foreach ê2 ∈ ΩsimC \ {ê1} do
16 if ISSIMILAR(ê1, ê2) then
17 ΩsimC .remove(ê2) ;
18 Pos = BitmapC .pos() ; // uncovered pos.
19 ΩsimC .sort(Pos) ; // by the number of 1

values from uncovered pos., then the weight
of bitmap of SAX words in ΩsimC

20 while BitmapC 6= 1 // pos. are not fully covered;
21 return ΩfinC (for all C ∈ C)

It should be noted that the SAX words ΩfinC after the loop
(Lines 3-7) may cover some time series instances more than p
times. A large ΩfinC reduces the efficiency of model building.
Hence, if ΩfinC has more than k shapelets, we greedily prune some
SAX words (Lines 13-19 of Algo. 5). This is again implemented
by a bitmap BitmapC . BitmapC [j] records the number of times
Tj is covered by ΩfinC (Lines 11-12). If there is a Tj covered more
than p times and the number of shapelets is still larger than k (Line
13), we implement a function mincost (Line 14) to compute an
ê has the smallest cost and after the removal of ê, Ωfin is still a
p-cover. The cost of ê is the number of time series ê covers. If
there is such an ê, we remove it from ΩfinC (Lines 18-19).

Algorithm 5: PSAXCOVER: Determining p-Cover
SAX words

1 Input: Ωsim, p, k
Output: Final candidates Ωfin

2 Initialize Ωfin = ∅ and i = 0 ;
3 while i < p do
4 Ωfin

′
= ONESAXCOVER(Ωsim) ;

5 Ωfin = Ωfin + Ωfin
′

;
6 Ωsim = Ωsim − Ωfin

′
;

7 i++ ;
8 {Pruning ΩfinC to avoid overly-covered time series}
9 if |ΩfinC | > k then

10 foreach C ∈ C do
11 Initialize BitmapC = 0|DC | ;
12 foreach ê ∈ ΩfinC do
13 BitmapC = BitmapC + ê.bitmap ;
14 while ∃ j s.t. BitmapC [j] > p and |ΩfinC | > k

do
15 ê = ΩfinC .mincost() ;
16 if ê is null then
17 break ;
18 else
19 ΩfinC .remove(ê) ;
20 BitmapC = BitmapC − ê.bitmap ;
21 return Ωfin

4.5 Parameter settings

Determining p. The pseudocode of Algo. 6 shows how to deter-
mine p. In Lines 3 and 6, BSPCOVER denotes the composition of
Algo. 1-5. First, we call BSPCOVER using p = 1 and then learn
a model to compute its accuracy. In the do-while loop, Algo. 6
computes the model at p + 1 (Lines 6-7), and the ratio between
accuracy and time (Line 8). If the ratio is smaller than the user-
specified threshold (∆), p is returned (Lines 9-10, 15). Otherwise,
the current accuracy of p is updated by that of p+ 1, the value of
p is updated and the loop continues (Lines 11-14).

Cost model for setting parameters. We then present a cost model
for BSPCOVER to analyze its efficiency for a dataset D. The effi-
ciency of BSPCOVER is mainly contributed by three components:
I. the number of iterations I; II. the number of cover times p; and
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Algorithm 6: Determining p for BSPCOVER

1 Input: Accuracy threshold ∆, and time series dataset
D, number of shapelets k

Output: p
2 Initialize p = 1 ;
3 Ωfin = BSPCOVER(D, p, k) ;
4 accp = SHAPELETSLEARNING(Ωfin) ; // LTS [9]
5 do
6 Ωfin

′
= BSPCOVER(D, p+ 1, k) ;

7 accp+1 = SHAPELETSLEARNING(Ωfin
′
) ;

8 ∆cur =
accp+1−accp
Tp+1−Tp

;
9 if ∆cur > ∆ then

10 break ;
11 accp = accp+1 ;
12 p = p+ 1 ;
13 Ωfin = Ωfin

′
;

14 while true;
15 return p

III. other factors ε, such as program initialization and operating
system. From the experiments, we observe that the relationships
between time and the factors are linear. Thus, the total time cost
can be estimated as follows.

TBSPCOVER = TI + Tp + ε = c1I + c2p+ ε, (9)

where both I and p ∈ N. TI represents the time of iterations; Tp
denotes the time caused by the covering time p; and ci,i∈1,2 are
the constants scaling factors for I and p.

Remarks. The SAX words discovered by BSPCOVER (Ωfin) are
passed to a model learning algorithm. This paper has revised [9].
For completeness, we summarize the algorithm in Appendix A.
We remark that BSPCOVER can be incorporated with other model
learning algorithms.

5 EXPERIMENTAL RESULTS

This section presents an experimental evaluation of BSPCOVER

applied to the well-known benchmark datasets used for TSC

research. The major findings are that BSPCOVER is both effi-
cient and accurate, more so than two methods used as bench-
mark classifiers, Rotation Forest [1] and 1NN-DTW [21], and
many other shapelet-based methods including ST [18], LTS [9],
ELIS [7], Fast shapelets [20], Scalable Shapelet Discovery [10]
and COTE [2]. In addition, we present some performance char-
acteristics of BSPCOVER by varying some important parameters.
The source code used for this experiment is publicly available at
https://goo.gl/sN9Kz7.

5.1 Environment

We implemented the proposed algorithms in JAVA. The model
building (shapelet learning) part was implemented using mul-
tithreading, whereas other parts of our algorithms were single-
threaded. All the experiments were conducted on a machine with
a Xeon E5-2630 v4 @ 2.2GHz (2S/10C) / 256GB RAM / 128GB
SWAP, running on CentOS 7.6 (64-bit). The parameters of the
bloom filters of each dataset can be easily set because they are
memory efficient.

TABLE 3: Datasets and parameters

Dataset Train Test Class Length λ I p

ArrowHead 36 175 3 251 0.01 1000 5
Beef 30 30 5 470 0.01 1000 5
Beetle/Fly 20 20 2 512 0.01 1000 6
CBF 30 900 3 128 0.01 1000 4
ChlorineConcentration 467 3840 3 166 0.01 3000 3
Coffee 28 28 2 286 0.01 1000 2
Computers 250 250 2 720 0.1 1000 3
CricketZ 390 390 12 300 0.1 1000 5
DiatomSizeReduction 16 306 4 345 0.01 3000 5
DistalPhalanxOutlineCorrect 276 600 2 80 0.01 1000 1
Earthquakes 139 322 2 512 0.1 1000 1
ECG200 100 100 2 96 0.1 1000 2
ECG5000 500 4500 5 140 0.1 1000 1
ECGFiveDays 23 861 2 136 0.01 1000 1
ElectricDevices 8926 7711 7 96 0.01 1000 1
FaceAll 560 1690 14 131 0.01 1000 3
FaceFour 24 88 4 350 1 1000 4
FacesUCR 200 205 14 131 1 3000 6
FordA 1320 3601 2 500 0.1 1000 1
GunPoint 50 150 2 150 0.1 1000 3
Ham 109 105 2 431 0.1 1000 1
HandOutlines 370 1000 2 2709 0.01 1000 1
Haptics 155 308 5 1092 0.1 1000 2
InlineSkate 100 550 7 1882 0.01 1000 6
InsectWingbeatSound 220 1980 11 256 0.01 1000 2
LargeKitchenAppliances 375 375 3 720 0.1 1000 2
Mallat 55 2345 8 1024 0.01 1000 3
Meat 60 60 3 448 0.1 1000 2
NonInvasiveFetalECGThorax1 1800 1965 42 750 0.1 1000 1
OSULeaf 200 242 6 427 0.1 3000 4
Phoneme 214 1896 39 1024 0.01 1000 1
RefrigerationDevices 375 375 3 720 0.01 1000 1
ShapeletSim 20 180 2 500 0.1 5000 6
SonyAIBORobotSurface1 20 601 2 70 0.01 5000 5
SonyAIBORobotSurface2 27 953 2 65 0.01 1000 3
Strawberry 370 613 2 235 0.1 1000 4
Symbols 25 995 6 398 0.1 1000 4
SyntheticControl 300 300 6 60 0.1 1000 2
ToeSegmentation1 40 228 2 277 0.01 1000 1
TwoLeadECG 23 1139 2 82 0.1 5000 5
TwoPatterns 1000 4000 4 128 0.01 2000 3
UWaveGestureLibraryY 896 3582 8 315 0.01 1000 2
Wafer 1000 6164 2 152 0.1 1000 4
WormsTwoClass 77 181 2 900 0.1 1000 4
Yoga 300 3000 2 426 0.01 5000 5

5.2 Datasets and parameters

A well-known benchmark of TSC datasets, namely UCRAR-
CHIVE [4], was tested. Due to space limitations, we selected 45
representative datasets from the data type Device (4), ECG (5),
Image (11), Motion (7), Sensor (8), Stimulated (5), and Spectro
(5); the number in parentheses is the number of datasets of the
type (about half of each data type). Table 3 shows the settings of
the experiments with the datasets, where Train, Test, Class, and
Length are the numbers of time series in the training set and the
testing set, the number of classes, and the length of time series,
respectively.

By running experiments and referencing previous work [7] [9],
we tuned several important parameters of our method, including
the learning rate η, the regularization λ, the number of iterations I
in shapelet learning and the optimal p of the WBC algorithm. The
default value of η was set to a small value 0.1 in consideration
of the performance and the chances of reaching local minima.
λ was chosen from {0.01, 0.1, 1}, while I was selected from
{1000, 2000, 3000, 5000}. The range of p was from [1, 6]. The
values of the parameters of each dataset are shown in Table 3.

5.3 Baselines

We compared BSPCOVER with ten different methods. Due to
space restrictions, we provide only brief details of each method.
Interested readers may refer to the original paper for details.
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• Two benchmarks [1]. Two benchmark classifiers (RotF
and DTW-Rn-1NN) are more competitive than many
methods. Hence, we include them in our experiments.

• Shapelet Transformation (ST) [18]. This method com-
bines a weighted ensemble of standard classifiers, and new
time series are classified with a weighted vote.

• Learning Time-Series Shapelets (LTS) [9]. Logis-
tic regression with gradient descent adjusts the selected
shapelets for TSC. It has significantly improved accuracy.

• Fast Shapelets (FS) [20]. FS combines SAX and
random masking techniques to enhance efficiency.

• Scalable Shapelet Discovery (SD) [10]. SD filters out
candidates improving classification with an online cluster-
ing/pruning technique. The dimensionality reduction ratio
r is set to 1/2 and pruning distance percentile p is 25 for
simplicity if there is no support from [10].

• ELIS [7]. ELIS is the current state-of-the-art of efficient
shapelet-based methods. It employs PAA and TF-IDF to
improve the efficiency of discovering shapelet candidates.
Then, the logistic regression classifier is applied to ad-
just the shapelets. We follow ELIS [7] to set parameters
whenever possible. Otherwise, the parameters are fixed as
follows: the iteration number is 1000; the regularization λ
is 0.01; and the learning rate η is set to 0.1.

• COTE [2]. COTE is the meta ensemble method, which
is a combination of classifiers.

• ResNet [8]. The main characteristic of ResNet is the
shortcut residual connection between consecutive convo-
lutional layers.

• BSPCOVER-Random. (abbrev. Random) The only dif-
ference between this algorithm and BSPCOVER is that it
randomly selects the same number of final SAX word
candidates as BSPCOVER does. That is, Random replaces
our heuristic algorithm (in Sec. 4.4) with random selection.

5.4 Experiments on efficiency

We observe from our results that the efficiency of ELIS is about
two orders of magnitude faster than that of LTS [7]. On the other
hand, we find that COTE and ST are slower than LTS [1]. Thus, we
compare FS and ELIS with BSPCOVER to investigate efficiency.

5.4.1 Comparison with ELIS and FS,SD
We present the runtime of the total time of ELIS, FS, SD and
our method BSPCOVER, and the improvement of FS and SD over
BSPCOVER and that of BSPCOVER over ELIS, in Table 4. (The
unit of the numbers is seconds by default, and we use d and h to
denote for days and hours, respectively.)

On these 45 datasets, BSPCOVER is consistently faster than
ELIS: 70 times (on average) faster in terms of total time. In
particular, it is the fastest method on MoteStrain, whose
efficiency is 315 times superior to ELIS. One reason is that
our method finds the discriminative shapelets more efficiently
prior to model building. This can be verified with the shapelet
discovery time, which is 26 times faster than ELIS on average. The
iteration number of our method is smaller, enhancing efficiency 80
times over in model building. It confirms the shapelet candidates
discovered by our method of high quality. Compared to FS and
SD, BSPCOVER is slower in most datasets. While FS and SD are
13 and 488 times faster than BSPCOVER on average, it is known
to result in a significant drop in accuracy. Our results also reveal

TABLE 4: Efficiency of our method and related methods on
UCRARCHIVE (units is second; d and h denotes days and hours)

Dataset SD FS ELIS BSPCOVER SD vs
BSP-
COVER

FS vs
BSP-
COVER

BSPCOVER
vs
ELIS

ArrowHead 2.83 7.68 3.4h 55.57 19.63 7.23 220.83
Beef 0.87 52.13 6.9h 131.17 150.77 2.52 188.97
Beetle/Fly 1.62 13.96 122.87 42.92 26.49 3.08 2.86
CBF 1.19 2.04 518.49 16.43 13.81 8.07 31.56
ChlorineConcentration 1.82 128.56 31.8h 173.86 95.53 1.35 659
Coffee 0.98 4.1 53.3 10.96 11.18 2.67 4.86
Computers 55.6 398.47 34.4h 1049.52 18.88 2.63 117.9
CricketZ 7.84 741.89 40.6h 5.8h 2663.27 28.3 6.96
DiatomSizeReduction 1.02 4.33 749.03 30.04 29.45 6.94 24.93
DistalPhalanxOutlineCorrect 4.05 15.2 1.1h 52.39 12.93 3.45 73.61
Earthquakes 39.75 1152.06 2.7h 2957.36 73.4 2.57 3.27
ECG200 1.12 2.96 325.94 48.34 43.16 16.35 6.74
ECG5000 6.95 36.89 7.5h 600.37 86.38 16.27 44.76
ECGFiveDays 1.31 1.01 24.16 1.38 1.05 1.37 17.51
ElectricDevices 1.7h 782.76 27.4d 5.8h 3.5 26.64 113.73
FaceAll 12.34 155.43 11.3h 1541.8 124.93 9.92 26.54
FaceFour 1.51 17.15 181.63 32.67 21.64 1.91 5.56
FacesUCR 4.83 40.91 10.7h 1265.7 262.05 30.94 30.33
FordA 301.9 4.5h 548.78 10.4h 124.01 2.32 0.01
GunPoint 1.09 1.69 486.48 8.97 8.23 5.31 54.23
Ham 2.07 172.19 2.02h 126.1 60.92 0.73 57.67
HandOutlines 72.88 10.9h / 1.2h 59.28 0.11 /
Haptics 6.45 2086.17 3.6d 3.2h 1786.05 5.52 27.23
InlineSkate 5.42 2.1h 8.5d 4.2h 2856.09 1.97 48.66
InsectWingbeatSound 7.94 147.67 1.1d 646.49 81.42 4.38 144.77
LargeKitchenAppliances 650.37 1018.59 4.2d 3.9h 21.59 13.72 25.68
Mallat 4.34 419.98 3.9h 2896.15 667.32 6.9 4.87
Meat 1.94 34.62 2975.9 44.02 22.69 1.27 67.6
NonInvasiveFatalECGThorax1 30.34 5.6h / 11.1h 1317.07 1.99 /
OSULeaf 7.41 381.4 18.02h 1.9h 923.08 17.71 9.61
Phoneme 462.23 2.6h 53.7d 12.7h 98.91 4.82 101.4
RefrigerationDevices 80.87 1.3h 3.5d 2.5h 111.29 1.9 34.08
ShapeletSim 3.24 26.23 28.33 455.23 140.5 17.35 0.06
SonyAIBORobotSurface1 1.15 0.85 271.38 4.19 3.64 4.91 64.77
SonyAIBORobotSurface2 0.93 0.83 292.42 3.78 4.06 4.54 77.36
Strawberry 5.02 93.33 8.4h 235.17 46.84 2.52 128.15
Symbols 1.04 16.17 2315.93 90.43 86.95 5.59 25.61
SyntheticControl 1.91 8.87 1.5h 249.29 130.52 28.11 20.99
ToeSegmentation1 2.04 7.75 1.9h 19.91 9.76 2.57 343.61
TwoLeadECG 1.86 0.91 397.09 20.32 10.92 22.22 19.54
TwoPatterns 7.71 195.12 20.99h 4.96h 2315.95 91.69 4.22
UWaveGestureLibraryY 35.89 1231.53 5.9d 2.2d 5296.18 157.26 2.65
Wafer 6.39 64.15 2.7h 825.96 129.26 12.88 11.58
WormsTwoClass 5.75 2085.67 6.3h 1124.08 195.49 0.54 20.24
Yoga 5.81 333.24 1.2d 2.9h 1796.9 31.79 9.46
Average 488.09 13.84 67.07
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Fig. 8: Efficiency vs p (of p-Cover)

that BSPCOVER is clearly more accurate than FS and SD, which
exhibit the worst accuracies among all compared methods.

5.4.2 Efficiency by varying p
Fig. 8 presents the total time with the increase of p. For the first
three datasets Beetle/Fly,Diatom.,FaceFour, the times
maintain an approximate linear relationship with p. Regarding
TwoLeadECG, there is a similar relationship when p is small.
However, the total time stabilizes when p exceeds 5. The reason
is that all the candidates for representing the classes have been
discovered when p = 5. The model building time is significantly
more computationally costly than BSPCOVER’s, which is observed
in the “discover” and “train” columns of “Ours” of Table 5.
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TABLE 5: Efficiency of our method and ELIS on UCRARCHIVE

Dataset ELIS (seconds) Ours (seconds) Improvement

discover train test total discover train test total discover total
Beef 109.61 24675.86 1.70 24847.17 15.72 114.32 1.13 131.17 6.97 188.42
Beetle/Fly 51.80 70.68 0.39 122.87 14.35 28.12 0.45 42.92 3.61 2.86
Bird/Chicken 60.14 42.46 0.26 102.86 11.14 21.97 0.07 33.18 5.40 3.10
Coffee 50.56 2.73 0.01 53.3 1.96 8.86 0.14 10.96 25.80 4.86
Diatom. 60.42 688.05 0.56 749.03 2.62 26.06 1.36 30.04 23.06 24.93
ECGFiveDays 13.79 9.7 0.67 24.16 0.36 0.48 0.55 1.38 38.31 17.51
FaceFour 117.33 63.62 0.68 181.63 3.06 28.87 0.74 32.67 38.34 5.56
GunPoint 40.99 444.54 0.95 486.48 0.67 8.09 0.21 8.97 61.18 54.23
ItalyPower 0.72 636.7 0.55 637.97 0.06 1.85 0.23 2.14 12.00 298.12
Lighting7 554.88 15838.13 3.68 16396.69 21.4 573.67 1.72 596.79 25.93 27.47
MoteStrain 3.84 1470.2 1.2 1475.24 0.19 3.74 0.74 4.67 20.21 315.90
SonyAIBO1 2.31 268.76 0.31 271.38 0.24 3.34 0.61 4.19 9.63 64.77
Symbols 227.58 2082.63 5.72 2315.93 6.04 91.83 5.17 103.04 37.68 22.48
Trace 374.78 73.11 0.37 448.26 5.92 44.02 0.3 50.24 63.31 8.92
TwoLeadECG 4.45 391.49 1.15 397.09 0.19 19.35 0.78 20.32 23.42 19.54
Average 26.32 70.58

5.4.3 Cost model
We conducted an experiment to compute the constants ci,i∈1,2

for each factor in a cost model and validate whether it can fit the
runtimes of BSPCOVER. As discussed in Section 4.4, the efficiency
of BSPCOVER is mainly contributed to by three components. The
total time cost is estimated as follows. For the illustration purpose,
we present only the dataset Beef to derive the constants ci and
the same procedure can be utilized to explore ci for other datasets.
The main idea is to compute the constant through modifying one
parameter and fixing others for each factor as control variables.
For instance, below is the cost model for Beef ;

TBSPCOVER = c1I + c2p+ ε = 90 · I + 4, 667 · p+ 27, 389 (10)

where both I and p ∈ N and I is often a multiple of 1000.
The standard deviation of c1, c2 and ε are 2.57, 8.94, and

14.58; and the root-mean-square error of TBSPCOVER is 979.26,
less than 1 second. Hence, users can employ the above method
to reasonably estimate the runtimes and determine the values of I
and p for the datasets.

5.5 Experiments on accuracy

The experiment accuracy results for baselines (with the except of
Random) are all taken from the paper [1] with a single train/test.
The accuracy results for 45 datasets are presented in Table 6.

5.5.1 Comparison with other methods
While the current most accurate classifier remains COTE, our
method is very competitive. In particular, it is close to ST and
ResNet, and superior to the others on average. BSPCOVER exhibits
the highest accuracy in 11 datasets. Its accuracy is ranked the 3rd,
with a rank mean of 3.78 and the rank of most datasets is top-
three among all nine methods. The 1-to-1 wins numbers for RotF,
DTW Rn 1NN, LS, FS, SD, ELIS and Random are all more than
half of all the datasets. It is not surprising that BSPCOVER is more
efficient than COTE (and all other shapelet-based methods except
FS and SD). In other words, BSPCOVER shows that it is possible
to make a small sacrifice in accuracy to achieve a significant
improvement in efficiency.

We conducted the Friedman test [6] among all the methods
and Wilcoxon signed-rank test between other ten methods and our
BSPCOVER. The Friedman test is a well-known non-parametric
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Fig. 9: Accuracy of Random vs BSPCOVER in box plots

statistical test, to detect the differences in 45 datasets across 11
methods. Our result is that p = 0.00, which is smaller than 0.05.
Thus, we can reject the null hypothesis, and there is a difference
among these 11 methods. However, we cannot figure out the
difference from exactly which methods only according to the
Friedman test. We further conducted the Wilcoxon test against all
baselines and found out that all results are statistically significant
at p < 0.05, except ST, ResNet (larger than 0.05) and COTE
(based on opposite ranks) from the last row in Table 6.

5.5.2 Comparison with BSPCOVER-Random

From the last two columns of Table 6, we can observe that
the results of BSPCOVER are better than those of BSPCOVER-
Random in all the datasets, which proves the superiority of
our heuristic algorithm. We compared the accuracy of two
methods with box plots, generated from ten runs for each
dataset. Due to limitations of space, some representative datasets
are shown in Fig. 9. The box plots show the minimum,
first quartile, median, third quartile, and maximum values of
four datasets, namely Beetle/Fly,Diatom.,FaceFour, and
TwoLeadECG. The metrics of the box plot in our BSPCOVER

method are better than those of the BSPCOVER-Random method.
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TABLE 6: Accuracy of our method and related methods on UCRARCHIVE

Dataset RotF DTW Rn 1NN ST LS FS SD COTE ELIS ResNet Random BSPCOVER

ArrowHead 73.71 80 73.71 84.57 59.43 65.7 81.14 81.43 84.5 75.33 80.57
Beef 86.67 66.67 90 86.67 56.67 50.7 86.67 63.33 75.3 54.21 73.33
BeetleFly 90 65 90 80 70 75 80 85 85 80 90
CBF 92.89 99.44 97.44 99.11 94 97.5 99.56 90.44 99.5 92.58 99.67
ChlorineConcentration 84.74 65 69.97 59.24 54.64 55.3 72.71 27.39 84.4 45.63 61.22
Coffee 100 100 96.43 100 92.86 96.1 100 96.43 100 93.47 100
Computers 70 62.4 73.6 58.4 50 58.8 74 50 81.5 57.74 67.2
CricketZ 65.64 73.59 78.72 74.1 46.41 67.3 81.54 78.95 81.2 68.91 74.1
DiatomSizeReduction 87.25 93.46 92.48 98.04 86.6 89.6 92.81 89.86 30.1 81.69 87.25
DistalPhalanxOutlineCorrect 75.72 72.46 77.54 77.9 75 71.7 76.09 57.83 77.1 77.52 83.17
Earthquakes 74.82 72.66 74.1 74.1 70.5 63.6 74.82 77.64 71.2 75.49 81.68
ECG200 85 88 83 88 81 81.8 88 80 87.4 85 92
ECG5000 94.58 92.51 94.38 93.22 92.27 92.4 94.6 72.69 93.4 92.64 94.44
ECGFiveDays 90.82 79.67 98.37 100 99.77 95.3 99.88 95.45 97.5 89.95 100
ElectricDevices 78.58 63.08 74.7 58.75 57.9 59.3 71.33 8.65 72.9 18.19 24.24
FaceAll 91.12 80.77 77.87 74.85 62.6 71.4 91.78 75.56 83.9 72.44 76.33
FaceFour 81.82 89.77 85.23 96.59 90.91 82 89.77 95.46 95.5 93.32 96.59
FacesUCR 80.29 90.78 90.59 93.9 70.59 84.7 94.24 63.63 95.5 72.14 78.29
FordA 84.47 66.52 97.12 95.68 78.71 77.6 95.68 67.6 92.0 90.12 96.31
GunPoint 92 91.33 100 100 94.67 93.1 100 97.57 99.1 87.38 100
Ham 71.43 60 68.57 66.67 64.76 61.9 64.76 63.81 75.7 71.87 76.19
HandOutlines 91.08 87.84 93.24 48.11 81.08 79.9 91.89 / 91.1 75.28 86.7
Haptics 43.83 41.56 52.27 46.75 39.29 35.6 52.27 41.56 51.9 41.31 45.13
InlineSkate 37.09 38.73 37.27 43.82 18.91 38.5 49.45 35.46 37.3 32.67 38.73
InsectWingbeatSound 63.64 57.37 62.68 60.61 48.94 44.1 65.25 59.55 50.7 50.82 57.42
LargeKitchenAppliances 60.8 79.47 85.87 70.13 56 57.1 84.53 33.33 90 82.37 86.13
Mallat 94.93 91.43 96.42 95.01 97.61 92.6 95.39 81.58 97.2 72.51 76.8
Meat 96.67 93.33 85 73.33 83.33 93.3 91.67 55 96.8 70.14 75
NonInvasiveFatalECGThorax1 90.53 82.9 94.96 25.9 71.04 81.4 93.13 / 94.5 82.36 91.47
OSULeaf 57.02 59.92 96.69 77.69 67.77 56.6 96.69 76.45 97.9 75.39 83.88
Phoneme 12.97 22.68 32.07 21.84 17.35 15.8 34.92 15.19 33.4 17.27 20.73
RefrigerationDevices 56.53 44 58.13 51.47 33.33 46.1 54.67 40 52.5 59.91 54.67
ShapeletSim 41.11 69.44 95.56 95 100 67.2 96.11 100 77.9 79.25 84.44
SonyAIBORobotSurface1 80.87 69.55 84.36 81.03 68.55 85 84.53 87.85 95.8 80.06 88.35
SonyAIBORobotSurface2 80.8 85.94 93.39 87.51 79.01 78 95.17 93.17 97.8 79.93 93.49
Strawberry 97.3 94.59 96.22 91.08 90.27 88.4 95.14 83.85 98.1 89.57 94.29
Symbols 79.3 93.77 88.24 93.17 93.37 90.1 96.38 78.29 90.6 86.23 93.37
SyntheticControl 97.33 98.33 98.33 99.67 91 98.3 100 99.33 99.8 95.57 99.67
ToeSegmentation1 53.07 75 96.49 93.42 95.61 88.2 97.37 98.24 96.3 81.71 96.49
TwoLeadECG 97.01 86.83 99.74 99.65 92.45 86.7 99.3 99.82 100 92.19 99.65
TwoPatterns 92.8 99.85 95.5 99.33 90.83 98.1 100 99.75 100 92.64 99.8
UWaveGestureLibraryY 71.44 70.18 73.03 70.3 59.58 67.1 75.85 69.32 67.0 57.15 64.01
Wafer 99.45 99.59 100 99.61 99.68 99.3 99.98 99.43 99.9 96.49 99.81
WormsTwoClass 68.83 58.44 83.12 72.73 72.73 64.1 80.52 71.82 74.7 71.24 74.59
Yoga 82.43 84.3 81.77 83.43 69.5 62.5 87.67 83.9 87.0 81.27 88.2
Total best acc 4 1 10 6 2 0 14 2 11 0 11
Ours 1-to-1 Wins 28 29 18 25 40 36 13 34 19 45 -
Ours 1-to-1 Draws 3 2 3 7 1 0 3 1 1 0 -
Ours 1-to-1 Losses 14 14 24 13 4 9 29 8 25 0 -
Rank Mean 6.34 6.68 3.78 5.16 8.43 8.58 3.02 7.46 3.65 8.21 3.78
Wilcoxon Test p-vlaue 0.003 0.001 0.079 0.048 0.00 0.00 0.002 0.00 0.122 0.00 -

5.5.3 Accuracy by varying p
To investigate the performance of p-Cover value, a set of experi-
ments is designed to verify the trend between p-Cover value and
accuracy. Four datasets, Beetle/Fly,Diatom.,FaceFour,
and TwoLeadECG are selected. We can observe in Fig. 10
that as the p-Cover value increases, the accuracy also rises at the
beginning. The accuracy typically stabilizes after p-Cover reaches
the optimal value.

5.5.4 Accuracy by varying I
The quality of the shapelets discovered can be enhanced by
increasing the number of iterations I in model building. Hence,
we conducted another experiment that varies I and studied the
accuracies of BSPCOVER and the most recent approach, ELIS. We
chose four datasets due to their difference in iteration numbers
for convergence is not significant. We observe in Fig. 11 that the
accuracy in all four subfigures increases with the iteration number.
Our BSPCOVER discovers high-quality shapelets in three datasets,
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Fig. 10: Accuracy vs p (of p-Cover)

GunPoint,SonyAIBO1, and Symbols and the accuracy
stabilizes early.
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Fig. 12: ECGFiveDays shapelets encodes hyperacute T wave

5.6 Experiments on interpretability
One of the strengths of shapelets is their interpretability, which
can help practitioners to understand their data. This experiment
investigates whether the shapelets discovered by our method are
interpretable. We present results from two datasets because they
do not require much domain background. We calculate the best
matching score (best matching location) of each shapelet in the
raw time series and users can exploit them to greedily select a
small set of shapelets.

5.6.1 Interpretability of ECGFiveDays Shapelets
Fig. 12 shows how the shapelets discriminate the different classes
of the ECGFiveDays dataset. ECG stands for Electrocardio-
graphy. The time series in Fig. 12 (a) (b) belong to Class 1
(abnormal ECG) and those in Fig. 12 (c) (d) belong to Class 2
(normal ECG). Our selected shapelets are colored in green and
black for Class 2. More importantly, the shapelets highlight the
major different fragments in two classes. (Shapelet 1 is QRS
complex and Shapelet 2 is T wave of ECG.) Intuitively, the peak
of T wave is larger than that of QRS complex in Class 1. It is
indeed called hyperacute T wave in medicine, due to ischemia or
hyperkalemia or other diseases.

5.6.2 Interpretability of ItalyPowerDemand Shapelets
Another interpretability result comes from the
ItalyPowerDemand dataset, shown in Fig. 13. The
time series instances in Fig. 13 (a) (b) belong to Class 1 (summer
months, from April to September), and those in Fig. 13 (c) (d)
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Fig. 13: A shapelet of ItalyPowerDemand highlighting the
morning heating demand difference of summer and winter months

exist in Class 2 (winter months, from October to March). The
most representative shapelet selected by BSPCOVER for Class 1
illustrates the difference between the two classes. The difference
is that the power demand in Class 1 is lower than that in Class
2 from 4am to 12pm, which turns out to be the heating in the
morning during the winter time. (Air conditioning was still fairly
rare in Italy when the data was collected.)

6 CONCLUSION

This paper has proposed an efficient method of shapelet discovery,
called BSPCOVER. BSPCOVER has four steps: it transforms raw
time series by adopting PAA and SAX techniques; it adopts bloom
filters to prune duplicate SAX words and proposes an algorithm to
prune similar non-discriminative SAX words; and it computes a
subset of shapelet candidates with maximal weights to cover each
class p times. Hence, potentially costly learning algorithms are
applied to a discriminative subset only. Our experiments verify
that BSPCOVER is more efficient than almost all shapelet-based
methods (with the sole exception of FS) and its accuracy is
comparable to or slightly lower than the most accurate classifier,
COTE.

In future work, we plan to study the TSC problem with
multivariate time series and missing values. A shapelet-based
approach for multivariate TSC is, however, in its infancy. Since
multivariate time series contain multiple variables, instead of only
one variable, shapelet candidates of different variables can be of
different lengths, and the qualities of shapelets are hence hard to
measure. We will apply the techniques to time series of tidal water
level and time series in electronic patient records, respectively.
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APPENDIX A
LEARNING THE SHAPELETS

To make the paper self-contained, we illustrate the approach of
utilizing the logistic regression to adjust the final SAX words
candidates Ωfin, which transforms SAX words discovered from
Section 4 back to the raw time series data. In this work, we build
the traditional one-vs-rest binary classifier for time series datasets
D with |C| labels. Each classifier has its own shapelets Sk to
distinguish it.

The rationale of this section is that the real shapelets which
have the highest discriminative power may not occur in the
training time series datasets. Thus, we try to utilize the learning
logistic regression model with gradient descent to modify the
shapelets for enhancing the accuracy of classification.

Similar to ELIS [7], BSPCOVER determines shapelets per
class, whereas LTS [9] does not compute shapelets of each class
separately. The advantages of the former approach are twofold.
The first is on the interpretability. It is convenient to follow up the
shapelets of each class. The second is to improve accuracy, e.g.,
the accuracy results in Table 6.

We summarize the key steps of learning time-series shapelets,
which can be fit to this work, as follows.

Soft-minimum function. Due to the non-differentiability of Eqn. 3,
the minimum distance function is replaced by a soft-minimum
function,

Msoft(T
i
j , Sk) =

∑n−lSk+1

i=1 Dj,k,ie
αDj,k,i∑n−lSk+1

i′=1 eαDj,k,i′
(11)

where α is a fixed number, equals to −25 and

Dj,k,i = dist(T ij , Sk) (12)

Learning model. The model we use is a linear learning one which
can predict target values Ŷ .

Ŷ = W0 +
kC∑
k=1

Msoft(T
i
j , Sk)Wk, ∀j ∈ {1, · · · ,m} (13)

where W0 and Wk are linear weights and kC is the number of
shapelets for class C .

Logistic sigmoid function. Here we adopt a Sigmoid function for
prediction of target variable Ŷ via a logistic regression loss,

σ(Ŷ ) =
1

1 + e−Ŷ
(14)

Loss function. The loss function is denoted as:

L(Ŷ , Y ) = −Y lnσ(Ŷ )− (1− Y ) ln(1− σ(Ŷ )), (15)

where Y is the true target value.

Objective function. The objective function for class C is therefore
presented as follows:

arg min
S,W

F = arg min
S,W

m∑
j=1

L(Ŷj , Yj) + λW ||W ||2 (16)

where S is the set of shapelets for class C ,W is the weight vector,
λW is the regularization parameter, Ŷj and Yj are the predicted

Algorithm 7: Shapelet learning [7]
1 Input : Time series T , Final SAX words candidates Ωfin,

Learning Rate η, Iteration I , Regularization λW
Output: Shapelets S and Classification weights W for each class

2 Initializing S : {S1, · · · , Sk} from Ωfin, and W for each class;
3 {Learning Shapelets and Classification Weights}
4 for iter = {1, 2, · · · , I} do
5 for j = {1, 2, · · · ,m} do
6 foreach C ∈ C do
7 {Pre-compute soft-minimum function}
8 for s = {1, 2, · · · , kC} do
9 ξ[C][s] = Msoft(Tj , S[C][s]) ;

10
11 {Predict target value}
12 Ŷ = W [C][0] ;
13 for s = {1, 2, · · · , kC} do
14 Ŷ+ = ξ[C][s] ∗W [C][s]

15 Σ[C] = σ(Ŷ ) ;
16
17 {Learning S and W}
18 W [C][0]− = η

∂Fj

∂W [C][0]
;

19 for s = {1, 2, · · · , kC} do
20 S[C][s]− = η

∂Fj

∂S[C][s]
;

21 W [C][s]− = η
∂Fj

∂W [C][s]
;

22 return S, W

and ture target values of jth time series for class C respectively.
And the objective function Fj for per instance Tj is

Fj = L(Ŷj , Yj) +
λW
m

kc∑
k=1

W 2
k (17)

The learning shapelets algorithm is presented in Algo.7. The
complexity is O(Imn2).


