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DKWS: A Distributed System for Keyword
Search on Massive Graphs

Jiaxin Jiang, Byron Choi, Xin Huang, Jianliang Xu and Sourav S Bhowmick

Abstract—Due to the unstructuredness and the lack of schemas of graphs, such as knowledge graphs, social networks, and RDF
graphs, keyword search for querying such graphs has been proposed. As graphs have become voluminous, large-scale distributed
processing has attracted much interest from the database research community. While there have been several distributed systems,
distributed querying techniques for keyword search are still limited. This paper proposes a novel distributed keyword search system
called DKWS. First, we present a monotonic property with keyword search algorithms that guarantees correct parallelization. Second,
we present a keyword search algorithm as monotonic backward and forward search phases. Moreover, we propose new tight bounds
for pruning nodes being searched. Third, we propose a notify-push paradigm and PINE programming model of DKWS. The notify-push
paradigm allows asynchronously exchanging the upper bounds of matches across the workers and the coordinator in DKWS. The
PINE programming model naturally fits keyword search algorithms, as they have distinguished phases, to allow preemptive searches to
mitigate staleness in a distributed system. Finally, we investigate the performance and effectiveness of DKWS through experiments
using real-world datasets. We find that DKWS is up to two orders of magnitude faster than related techniques, and its communication
costs are 7.6 times smaller than those of other techniques.

✦

1 INTRODUCTION

KNOWLEDGE graphs, social networks, and RDF graphs
have a wide variety of emerging applications, in-

cluding semantic query processing [48], information sum-
marization [40], community search [14], collaboration and
activity organization [36], and user-friendly query facili-
ties [45]. Such graphs often lack useful schema information
for users to formulate their queries. To make querying such
data easy, keyword search has been proposed. Users can
retrieve information without the knowledge of the schema
or query language. In a nutshell, users only specify a set
of keywords Q as their query on a data graph G. In
recent years, there have been well-known projects that build
graph-structured databases and allow querying with simply
a set of keywords, e.g., BioCyc1 and Google’s knowledge
graph search API.2

The answer of keyword search semantics (cf. [5], [9], [16],
[21], [31], [34], [47]) is generally a set of matches, where each
match is a rooted subtree of G such that query keywords
belong to the labels of leaf vertices. These semantics differ
mainly in the score function of the matches. Interested read-
ers may refer to comprehensive surveys on the keyword
search semantics for more information [39], [43], [46]. For
example, consider a partial knowledge graph shown in
Fig. 1, where a node is an entity and an edge is a relation
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Y CombinatorMicrosoft Harvard University Cornell University

Answer: the red substree rooted at “Paul Graham”

Query description: “Who owns Y Combinator and graduated

from Havard University and Cornell University?”

Query keywords: {“Y Combinator”, “Havard University”,

“Cornell University”}

Fig. 1: Example of keyword search on a knowledge graph

between entities. Assume that a user is identifying “who
owns Y Combinator and graduated from Havard University
and Cornell University?”. He/She may simply provide the
keywords Q={Y Combinator, Havard University, Cornell Uni-
versity} as his/her query. If users apply the keyword search
to the knowledge graph, a substree rooted at Paul Graham
can be returned as an answer (e.g., [9], [16], [31]).

Nowadays, graphs with billions of vertices or edges are
common, and their sizes continue to increase. For exam-
ple, WebUK [3], a large Web graph, contains 106 million
nodes and 3.7 billion edges. Keyword search often involves
numerous traversals of such massive graphs, which are
computationally costly. Indexes (e.g., for shortest distance
computations) on such graphs are often large, e.g., O(|V |2)
in the worst case, where |V | is the number of the vertices.
Still, it is infeasible to load the index into the main memory,
e.g., [16], [22]. As a result, distributed graph processing
systems are a competitive solution. In this paper, we aim
to propose a distributed system to answer the top-k key-
word search on distributed graphs. Intuitively, each worker
computes local top-k matches on a graph partition and the
global top-k matches are generated from such local matches.
However, several major technical challenges of keyword
search have not been addressed by existing generic dis-
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Fig. 2: Illustration of stragglers of distributed keyword
search (grey denotes the worker Pi is busy, whereas white
color denotes the worker Pi is idle.)
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Fig. 3: An example of distributed keyword search

tributed processing systems, e.g., [4], [13], [41].
Challenge 1: Straggler problem. Some workers in a dis-
tributed system may take substantially longer than others.
We show the working status of supersteps 1-4 of a cluster
with 8 workers (P1 to P8) as shown in Fig. 2. In each
superstep, there are concurrent computation and barrier
synchronization. The workers start concurrent computa-
tions and become busy (if there is some work) until a
barrier synchronization. In the first superstep, worker P2

take longer than the other 7 workers. They keep waiting idly
and the computing power is not used until P2 completes
its tasks. This is known as the straggler problem. Similarly,
P2 is also the straggler in third superstep and P5 is the
straggler of second and fourth supersteps. This problem can
be caused by either workload imbalance or graph charac-
teristics. Previous studies have frequently focused on rebal-
ancing partitions [8] or predicting machine workloads [10]
during runtime. Nevertheless, these approaches come with
additional costs, including the expenses associated with
data transfer. Moreover, setting up the training model for
keyword search is a non-trivial task.
Challenge 2: Lack of pruning techniques. Another chal-
lenge is that existing sequential keyword search works often
utilize the global graph information (e.g., the upper bound
of the score of the top-k matches) to develop some pruning
techniques, e.g., [16], to avoid exhaustive traversals on the
graph. Consider a graph G in Fig. 3, the upper bound of the
score of top-k matches is 2 when the subtrees of G rooted
at ri (i ∈ {1, 2, 3}) are retrieved. ri (i ∈ {4, 5, 6, 7}) and
xi (i ∈ [1, n]) are not traversed. However, in a distributed
graph system, such pruning techniques can be hardly di-
rectly applied since each machine only maintains a graph
fragment. In Fig. 3, the workers P1 and P2 process the
graph fragments F1 and F2, respectively. There are two
local upper bounds S1 = 2 and S2 = 8 generated on F1

and F2, respectively. The search on F2 can only be pruned
by S2. We show the refinement of bounds after each super-
step in Fig. 4a. The bound values tighten faster with our
techniques. With tighter bounds, unnecessary node visits

 0

 5

 10

 15

 20

 0  1  2  3  4  5  6  7

B
o

u
n

d
 v

a
lu

e

Supersteps

W/o our method (NP paradigm and PINE)
W our method (NP paradigm and PINE)

(a) Pruning bounds

 1

 10

 100

 1000

 10000

 100000

 1x10
6

W/o our method (PINE) W our method (PINE)

Relevant node visiting
Redundant node visiting

(b) Visited nodes

 10

 100

 1000

 10000

 100000

 1x10
6

 1x10
7

 1x10
8

 1x10
9

W/o our method (PINE) W our method (PINE)

Useful messages
Unyielding messages

(c) Messages

Fig. 4: Illustration of the potential of bound refinements, and
messages of distributed keyword search

are significantly reduced, and false matches are pruned
early, as shown in Fig. 4b. Existing research studies such
as [16], [22] often rely on indexing distance information
for pruning. However, these types of indexing methods
are typically designed for single-machine algorithms. Each
machine lacks global information, which significantly limits
the potential for pruning.
Challenge 3: Message passing. Since keyword search on
graphs often involves numerous traversals, keyword search
on distributed graphs might cause massive message pass-
ing. For instance, in previous studies [47] and [28], the local
matches rooted at ri (i ∈ [1, 2, 3]) (resp. ri (i ∈ [4, 5, 6])) are
sent from F1 (resp. F2) to the coordinator for verification.
The matches on F2 are not among the final top-k matches,
i.e., most of the computation on F2 does not lead to matches.
As shown in Fig. 4c, the messages not yielding final matches
are significantly reduced in our system. Previous works
such as [24], [29] have often utilized partitioning strategies
to reduce message overhead. However, these studies are
designed for general purposes, where the partitioning is
primarily based on the graph’s structure. In a distributed
environment, the message overhead in keyword search
often depends on the distribution of the query keywords.
This dependency makes these approaches less effective in
such scenarios.
Contributions. In this paper, we propose a system for
answering top-k keyword search called DKWS and show
that all three challenges can be addressed. We investigate
keyword search algorithms in a distributed environment
and the techniques for DKWS as opposed to individual
keyword search semantics (or algorithms).
1) We present the monotonic property with the keyword
search algorithm which leads to correct parallelization. We
show that a sequential keyword search algorithm can be rewrit-
ten into two main phases, (a) backward keyword search
(bkws), and (b) forward keyword search (fkws). We propose
new lower and upper bounds for pruning in fkws. We prove
that bkws and fkws implemented in DKWS are monotonic.
2) We propose a notify-push paradigm for DKWS: (a) each
worker asynchronously notifies the coordinator when the local
upper bound is refined; (b) the coordinator maintains a
global bound. When it receives the notification from work-
ers, it refines the global upper bound and asynchronously
pushes it to all workers. This incurs a small communication
overhead, but the refined global bounds provide global
information to workers to prune some search locally.
3) We propose a PINE programming model that naturally
fits the keyword search algorithm that has distinguished
search phases. DKWS launches a preemptive execution of
the searches. Hence, keyword searches are no longer one
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Fig. 5: An example of frequently used graph notations

blocking operation in the distributed environment. We pro-
pose staleness indicators and a lightweight cost model that
mitigate the straggler problem.
4) Using real-life graphs, we empirically compare the per-
formance of DKWS and two baselines. We verify that (a)
DKWS speeds up the query performance of top-k keyword
search up to two orders of magnitude; (b) The communica-
tion cost of DKWS is 7.6 times smaller than that of baseline;
and (c) DKWS using all optimizations is on average 1.64
times faster than DKWS without them.
5) Due to space limitations, we put the proofs, some opti-
mizations, and more experiments in a technical report [17].
Organization. Sec. 2 provides some background and the
problem statement. In Sec. 3, we illustrate an efficient
monotonic sequential keyword search algorithm. In Sec. 4,
we propose DKWS and its two novel ideas, namely the
notify-push paradigm and the PINE model. Sec. 5 reports
experimental results. Sec. 6, presents the related work. We
conclude the paper and present the future works in Sec. 7.

2 PRELIMINARIES AND PROBLEM STATEMENT

This section presents some background and the problem
statement. Some frequently used notations are summarized
in Table 1.
Graphs. We consider a labeled, weighted, directed graph mod-
eled as G = (V,E,L,Σ, w), where (a) V is a set of ver-
tices; (b) E (⊆ V×V ) is a set of edges; (c) Σ is a set of
keywords; (d) L:V→Σ is a label mapping function such
that for each vertex v ∈ V , L(v) maps v to a subset of
labels/keywords in Σ; and (e) w(e) is a positive weight of
an edge e = (u, v) ∈ E. For simplicity, we may omit L, Σ
and w when they are irrelevant to the discussions. The size
of the graph is denoted by |G|= |V |+|E|.
Example 2.1. Consider a graph G in Fig. 5, a) V =

{v1, v2, v3, v4, v5, v6, v7} is the vertex set, b) E is a set
of edges, e.g., (v1, v2) ∈ E is an edge, c) Σ = {a, b} is a
set of keywords, d) L maps each vertex in V to a subset
of keywords in Σ, e.g., L(v4) = {a} ⊆ Σ, and e) w maps
each edge in E to a positive weight, e.g., w(v1, v2) = 9.

Partition strategy. Given a number m, a strategy Par parti-
tions a graph G into fragments F = {F1, . . . , Fm} such that
each Fi = (Vi, Ei, Li) is a subgraph of G, E =

⋃︁
i∈[1,m] Ei,

V =
⋃︁

i∈[1,m] Vi and Li = L, and Fi resides at worker Pi,
where i ∈ [1,m] is the fragment id. There are two special
sets of nodes for each fragment.
• Fi.I ⊂ Vi: the set of nodes v ∈ Vi such that there is an

edge (v′, v) incoming from a node v′ in Fj (i ̸= j); and

TABLE 1: Frequently used notations

Notation Meaning

Q a set of query keywords Q = {q1, q2, . . . ql}
τ the threshold of the distance between a distinct root

and its leaf nodes
T a match to query (Q, τ)

scr(u) the score of a match T rooted at u
bfkws/bkws/fkws Sequential keyword search/backward search/forward

search
matu/matbu/matfu the (partial) match found by bfkws/bkws/fkws

dist(u, v) the shortest distance between u and v
A the answer, which contains top-k matches

P0, Pi P0: the coordinator; Pi: workers, where i ∈ [1,m]
Par graph partition strategy
F fragmentation (a.k.a. partition) {F1, . . . , Fm}
Mi messages designated to worker Pi

TABLE 2: Representative keyword search involved traver-
sals and shortest distance computation or estimation

Keyword search
semantics bkws fkws

Indexing techniques
Exact index Apx. index

Distinct root trees [16], [47], [9], [31] [47] [16] [19], [47]
Group Steiner trees [5], [21] [5], [21], [34] [34] −

Other semantics [20], [44] [20], [33] [20], [22] [30]

• Fi.O: the set of nodes v′ such that there exists an outgoing
edge (v, v′) in E, v ∈ Vi and v′ is in some Fj (i ̸= j).

In addition, we denote F .O =
⋃︁

i∈[1,m] Fi.O, and F .I =⋃︁
i∈[1,m] Fi.I . We refer to the nodes in Fi.I ∪ Fi.O as the

border nodes (a.k.a. portal nodes) of Fi w.r.t. Par. Partition
strategies (e.g., [24]) are orthogonal to our work. In this
paper, we utilize the edge-cut partitioning approach, where
vertices are assigned to different partitions. As a result,
edges may span across two partitions.
Platform. In this work, we propose our system, DKWS,

built on top of the code-base of GRAPE [13]. GRAPE exem-
plifies a generic approach to parallel computations through
a programming model that consists of three functions for
implementing user-defined algorithms - PEval, IncEval, and
Assemble. These functions together form the PIE program
paradigm. GRAPE parallelizes the sequential algorithms
(and minor revisions are required). GRAPE inherits all opti-
mization strategies available for sequential algorithms and
graphs, such as indexing. DKWS inherits the strengths of
GRAPE while introducing a novel efficient paradigm PINE
(detailed in Sec. 4) and novel optimizing such as indexing
techniques for keyword search.
Semantics of keyword search (kws) for graphs. Several key-
word query semantics have been proposed, e.g., [16], [22],
[47]. They are driven by various interesting applications. We
list some representative works of keyword search and their
characteristics in Tab. 2. Many of them involve backward
search (bkws) and/or forward search (fkws). We consider
the same query semantic of [9], [16], [31], which is the most
popular semantic among the others.3 A keyword query is
a binary tuple (Q, τ ) which contains a set of keywords
Q={q1,. . .,ql} and a distance threshold τ . Given a graph
G = (V,E), a match of Q in G is a subgraph of G, denoted
by T = {u, ⟨v1, . . . vl⟩}, such that (i) T is a tree rooted at u;
(ii) ∀i ∈ [1, l], vi is a leaf vertex of T and qi ∈ L(vi); and

3. According to Google scholar in Jun 2023, the total number of
citations of the query semantic [16] received 718 citations.
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(iii) dist(u, vi) ≤ τ , where dist(u, vi) is the shortest distance
between u and vi. Existing works design indexes for dis-
tance estimation/computations. However, the indexes for
computing exact matches are large on massive graphs and
also non-trivial to be adapted in a distributed environment.
On the other hand, the indexes for approximate match
computation return bounds for pruning false matches. This
work proposes new bounds for pruning false matches and
adopts a lightweight index.

Keyword searches can yield numerous matches, particu-
larly within a massive graph. However, users are often con-
cerned with interpreting most compact matches. As such,
our focus is on the top-k query that determines the top-k
matches as the query answers. To facilitate this approach for
top-k queries, each vertex can serve as the root match only
once. The more compact, the higher the rank. Accordingly,
we augment the query structure from (Q, τ) to (Q, τ, k),
where τ is the distance threshold between the root vertex
and the leaf vertices.

It is well-received that an ideal match is a compact
structure that contains all keywords. Hence, existing studies
assign a score to each match T , using the root u as a basis.
This score is denoted as scr(u). In this context, a lower
score for T signifies a more compact match, considered
preferable. Specifically, we employ the same score function
as presented in [9], [16], [31]. This function is defined as
follows.
Definition 2.1 (Score function scr(u)). Given a match, T =

{u, ⟨v1, . . . vl⟩}, to the query (Q, τ, k), the score of T is
denoted by scr(u) =

∑︁
i∈[1,l] dist(u, vi), where dist(u, vi)

is the shortest distance between u and vi.

Problem statement. Given a graph G, a keyword query
(Q, τ, k), we investigate a distributed system to compute
the top-k matches A (i.e., the answer) of the query on G.

3 BACKWARD AND FORWARD KEYWORD SEARCH

In this section, we discuss the monotonic property of key-
word search (kws) algorithms, which is crucial for its correct
parallelization [13]. Specifically, backward and forward key-
word search (bfkws) consists of two phases, namely, back-
ward keyword search (bkws) and forward keyword search
(fkws). Intuitively, bkws starts from the vertices that contain
the query keywords and performs a backward search to
identify potential vertices that might serve as the roots of
a match. fkws initiates its search from these identified roots
and proceeds forward. The objective of fkws is to discover
any missing keywords within the subtrees that consider
these vertices as roots. We prove that both bkws and fkws
have the monotonic property (detailed at the end of Sec. 3.2
and 3.3, respectively). The monotonic property of a few
popular keyword search algorithms, such as [9], [16], [31],
can be analyzed similarly, which is omitted.

3.1 Monotonic algorithms for keyword search
This subsection presents how the keyword search algorithm
has the monotonic property. More specifically, the mono-
tonic property is defined with a partial order of match vari-
ables from a finite domain. Intuitively, the shortest distance
between the root u and a query keyword q ∈ Q, denoted

as dist(u, q) (i.e., dist(u, q) = min{dist(u, v)|q ∈ L(v)}), is
of a finite domain. When the monotonic property holds,
its value decreases or remains unchanged during query
processing and converges to the exact shortest distance after
query processing ends. Before providing further details, we
present the structure of the match variable, matu, which
maintains the substree rooted at u.
Definition 3.1 (Match matu). For a given graph G and a

query (Q, τ, k), a match matu with its root at u repre-
sents a map. ∀q ∈ Q, if dist(u, q) ≤ τ , matu[q] is set to
dist(u, q). Otherwise, matu[q] is set to null.

Complete matches and partial matches. matu[q] is ini-
tialized to null. Throughout the search process, certain key-
words for all u may be discovered within matu and matu[q]
is set to dist(u, q), while others may remain null. Formally,
a match matu is referred to as a partial match if and only if
∃q ∈ Q, matu[q] is null (i.e., some keyword is not matched).
Otherwise, matu is a complete match.
Definition 3.2 (Monotonic kws algorithm). Given a graph

G = (V,E), where each node u ∈ V is associated with
matu. A monotonic keyword search algorithm kws satisfies
the following conditions:

1) matu of all vertices are in a finite domain; and
2) there exists a partial order ⪯ on matu such that, ∀u ∈ V ,

kws updates matu in the order of ⪯.

We next illustrate the details of the monotonic property
of kws in relation to a finite domain and a partial order on
the matches.
(1) Finite domain of kws. To illustrate a finite domain of
match variables, we encode null with a constant large value
+∞ larger than

∑︁
ei∈E w(ei). Consider the value of matu[q].

matu[q] ∈ {
∑︁

ei∈E′ w(ei)|E′ ⊆ E} ∪ {+∞}.
(2) Partial order of kws. We propose the partial order ⪯ on
matu which is defined as follows. Suppose kws updates the
(partial or complete) matches by following an order ⪯. If
mat′u ⪯ matu, mat′u[q] ≤ matu[q] or matu[q] = null, then ⪯
is a partial order of kws. Intuitively, kws follows the partial
order and keeps refining the distances between the roots of
the matches and the query keywords to obtain the top-k
complete matches.
Remarks. A keyword search algorithm kws can be paral-
lelized and terminated with the correct answer (a.k.a. the
top-k matches) in a distributed environment if kws is correct
for the query Q on a single machine and has a monotonic
property. We follow the proof pipeline of Theorem 1 in [13].
(i) Termination. In each superstep, at least one matu has to
be updated. Given a graph G, the number of distinct values
to update matu is bounded since all matu are in a finite
domain and updates follow the partial order ⪯. Therefore,
the number of supersteps is bounded.
(ii) Correctness. Given that kws is correct for query Q, at the

superstep R = 1, kws returns a set of correct local matches
with roots in each fragment Fi. Matches with roots on portal
nodes are passed to their copies in other fragments (if any)
at the end of each superstep. At the superstep R = s, each
node u contains its local match matu from the superstep
R = (s − 1) and the matches mat′u which are rooted at
its copies in other fragments. Therefore, kws can compute
the correct match for the current superstep for each node.
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The correctness of the final matches is thus established by
induction on the supersteps.

3.2 Monotonic backward search (bkws)
We next present the major steps of backward search for
keyword search (bkws), which is essential to many previous
studies, e.g., [9], [16], [31], [47]. The detailed pseudocode is
illustrated with Lines 2-22 of Algo. 2, to be discussed with
PINE in Sec. 4.2. Given a keyword query, bkws goes through
three key steps. First, bkws initializes a set of search origins.
Second, bkws expands the search origins backward. Third,
a complete match is found once the node u is expanded by
all search origins. We elaborate the details below.
Answer A. The answer to the query is a set of the top-k
matches at the end of the query algorithm. If matu is a top-
k match, matu ∈ A. We use S to denote the score of the
current k-th match in A. Hence, S is the upper bound of the
score of any match in A. Given a complete match matu, if
scr(u) > S, we say that matu is a candidate match, i.e., it is not
among the current top-k matches. Candidate matches may
be refined and added to A by traversing adjacent fragments.
Maintenance of answer. bfkws maintains the top-k matches
A in a priority queue of a fixed size k and is ordered in
descending order according to the scores of the matches.
The match at the head of A has the highest priority to be
removed as it has the least compact structure. S is initialized
to +∞. It remains unchanged when |A|< k. Otherwise, it is
always set to the score of the match at the head of A. S will
be refined once there is a match found with a score which is
smaller than S. Formally, when a candidate match matu is
refined, the following are checked:
1) if |A|< k, matu is inserted into A directly; and
2) if |A|= k and scr(u) < S, the match at the head of A is

removed and matu is inserted into A.

(Step 1) Initialization. Consider a set of query keywords Q =
{q1, q2, . . . , ql}. We denote the set of vertices that contain
the keyword q ∈ Q as Oq (a.k.a. search origin), and the set
of vertices that could reach q (i.e., one of the vertices in Oq)
as Vq .

(Step 2) Backward expansion. bkws expands the vertex set Oq

backwardly. In each search step, bkws compares the next
vertex to be expanded for each query keyword, and the
vertex u with the smallest distance to the search origin is
selected. In the expansion, u is added to Vq and matu is
checked whether it is a complete match, where (u, v) is
an incoming edge of v. If (a)

∑︁
q∈Q dist(u, q) > S, where

u is the nearest vertex of Oq and has not been expanded
by query keyword q (i.e., ui = argminu dist(u, v), where
u ̸∈ Vq and v ∈ Oq) or (b) all adjacent vertices of Vqs are
expanded, the expansion stops. Otherwise, the backward
expansion continues.

(Step 3) Match discovery. It discovers a complete match
rooted at u such that u can reach at least one node that
contains q, for each q ∈ Q, i.e., u ∈

⋂︁
q∈Q Vq .

Example 3.1. Consider the graph in Fig. 6. Given a keyword
query (Q, τ, k), where Q = {q1, q2} that is q1 = a
and q2 = b, τ = 6 and k = 2. For brevity, Fig. 6
only shows the vertex labels relevant to Q. We illustrate
the backward search with Step (a) in Fig. 7. Initially,

x1

{a} {b} {a} {b} {a} {a}

2

1
1

2 19

5

3
3

2 6

9

. . .

- A query: Q = {a, b}, τ = 6, k = 2

- A graph: G

PADS
out(y1) = {(w1, 1)} PADS

out(y2) = {(w2, 10)} KPADS
out(a) = {(w2, 2)}KPADS

in(a) = {(w1, 4))}
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2
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4

xj v1 y1

w1

y2

w2

v9v8

v3

v7v6v5

v2

v4
Search origin
Oa = {v4, v6, v8, v9}
Ob = {v5, v7}

bkws

fkws

Query/Graph data/Index for keyword search

- Indices for distance estimation:

Fig. 6: A query, a data graph (top) and indexes (bottom) for
the illustration of the key steps of bkws and fkws

Oa = {v4, v6, v8, v9} and Ob = {v5, v7}. The backward
expansion iterates over Va. The first seven vertices are
[v4, v6, v8, v9, v2, v1, w1], which are ordered by the first
time the vertices expanded. Similarly, the vertices of
Vb can be expanded as follows: [v5, v7, v3, v2, y1, y2, v1].
Two complete matches rooted at v1 and v2 are discov-
ered. The score of matv1

(resp. matv2 ) is scr(v1) = 8
(resp. scr(v2) = 4). Hence, the upper bound S = 8.
The next vertex to expand for Va is x1. The next vertex
to expand for Vb is x1, too. dist(x1, a) + dist(x1, b) =
5 + 5 = 10 > S. The subsequent backward expansions,
such as xi (i ∈ [1, j]), are skipped since the termination
condition is met.

Analysis of bkws. We show that bkws identifies all the
partial and complete matches. We denote the union (resp.
intersection) of Vq by V =

⋃︁
q∈Q Vq (resp. V =

⋂︁
q∈Q Vq). We

note that u ∈ V\V reaches some of the query keywords but
not all of them, i.e., matu is a partial match. We denote the
set of roots by V̄ = V\V and have the following proposition.

Proposition 3.1. The node set visited by bkws, V, has the
following properties:
(1) ∀u ̸∈ V, matu ̸∈ A; and (2) ∀matu ∈ A, u ∈ V.

Proof: The proof is presented in Appx. A.1 of [17].
Intuitively, if a vertex is not visited during the backward

expansion of any query keyword, it cannot serve as the roots
of the top-k matches. Prop. 3.1 ensures that the roots of the
top-k matches are in V. Some vertices in V that are not roots
of the top-k matches will be further pruned in fkws (Sec. 3.3).

Example 3.2. We illustrate the key steps of bkws with
the graph in Fig. 7(a). Va = {v4, v6, v8, v9, v2, v1, w1}
and Vb = {v5, v7, v3, v2, y1, y2, v1} are expanded, af-
ter bkws. V = Va ∩ Vb = {v1, v2} are the roots
of the complete matches, i.e., they can reach the
vertices containing the query keywords {a, b}. V =
{v4, v6, v8, v9, v2, v1, w1, v5, v7, v3, y1, y2} are the ver-
tices which are traversed during bkws. V̄ = V \ V =
{v4, v6, v8, v9, w1, v5, v7, v3, y1, y2} are the vertices that
are not backward traversed by either keyword a or b.

Correctness. By using match refinement, bkws is monotonic.
Since matu[q] is refined when a shorter path between u
and q in a complete match matu or a new path between
u and a missing keyword q in a partial match matu is
identified, the refinement follows the partial order ⪯ on
matu. We recall that matu[q] is from a finite domain {

∑︁
ei∈E′
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Step (a) Backward search

- Complete matches rooted at Va ∩ Vb = {v1, v2}

scr(v2) = 4 scr(v1) = 8
Upper bound S = 8
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2 2

Step (b) Refinement and pruning
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Step (a1) init upper bound: S = +∞

Step (a2) bkws: V = Va ∪ Vb

estimated distance

- matv2
: a match rooted at v2

- maty1
: a match rooted at y1

matv2
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Upper bound of the 2nd match S = 7
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The top-2 matches: A = {matv2
,maty1

}
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and maty1

. . .
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Fig. 7: Key steps: backward search (Sec. 3.2), refinement and pruning (Example 3.3 and 3.4), and forward search (Sec. 3.3)

w(ei)} ∪ {+∞}, where E′ is any subset of E. By Def. 3.2,
bkws can be parallelized and terminated correctly.
Complexity. bkws takes O(|Q|(|E|+|V |log|V |)), where |Q|
is the number of query keywords. For simplicity, we provide
the analysis in Appx. B.5 of [17]. The size of a match,
matu, is bounded by O(|Q|). Hence, the space complexity is
bounded by O(|Q||V |).

3.3 Monotonic forward search (fkws)
The main purpose of fkws is to retrieve the missing key-
words of the partial matches via forward expansion. fkws is
also widely used in existing keyword search algorithms, e.g.,
[5], [16], [21], [34], [47]. Due to a potentially large number of
partial matches, forward expansion for the vertices V̄ could
be costly. Existing studies can be space-consuming [16] or do
not guarantee exact matches [21]. We describe the forward
expansion and propose new bounds for pruning in fkws.
Forward expansion. Consider a partial match matu. Sup-
pose a query keyword q ∈ Q is missing in matu. fkws
forward expands from u by using Dijkstra’s algorithm to
retrieve the nearest node that contains q.
Pruning in fkws. Some forward expansions do not lead to
complete matches and can be pruned as shown in Prop. 3.2.
Proposition 3.2. Consider the forward expansion for vertex

u. Suppose the next vertex to be expanded by Dijkstra’s
algorithm is v, the forward expansion is terminated
when any of the following conditions holds.

(i) q ∈ L(v), i.e., the keyword q is found;
(ii) dist(u, v) > τ , the vertex containing keyword q is

farther than τ from u or does not exist (i.e., dist(u, q) >
τ ); or

(iii) scr(u) + dist(u, v) > S ⇒ scr(u) + dist(u, q) > S.

As indicated by Condition (ii), if dist(u, q) has been in-
dexed, early termination can be determined if dist(u, q) > τ .
Furthermore, Condition (iii) posits that the current top k-
th match score, denoted as S, serves as an upper bound.
If dist(u, q) is indexed, we can employ a tightly estimated
upper bound of S to facilitate decisions on early termina-
tion. Thus, we engage state-of-the-art indexing techniques
— PageRank-based All-distances Sketches (PADS) and
PageRank-based Keyword Distance Sketches (KPADS) [19].
Specifically, PADS(u) is a sketch for u, which indexes the

shortest distance between u and the sketch’s centers (some
vertices in the graph). Given that PADS(vi) and PADS(vj)
may share common centers where q ∈ L(vi) ∩ L(vj), these
shared centers can be merged. In the process of merging,
only the smallest distance is retained. KPADS(q) sketch is
constructed through such merges and is used to index the
shortest distance between the keyword q and the centers.
These sketches assist in estimating both the upper and lower
bounds of the shortest distance between u and q, where u
belongs to V̄ and q is a missing keyword in matu.
Indexing. PADS and KPADS have been shown to be both
space- and time-efficient in practice with theoretical guar-
antees on the accuracy of the shortest distance which can be
readily distributed. However, we remark that [19] consid-
ered undirected graphs. To support directed graphs, we make
a modification to PADS as follows. The sketch of a node
u is two sets of vertices and their corresponding shortest
distances from (resp. to) u, denoted by PADSout(u) =
{(w, d)} (resp. PADSin(u) = {(w, d)}), where w ∈ V and
d = dist(u,w) (resp. d = dist(w, u)). Similarly, the sketch of
a keyword q is denoted by KPADSout(q) = {(w, d)} (resp.
KPADSin(q) = {(w, d)}), where w ∈ V and d = dist(q, w)
(resp. d = dist(w, q)). For brevity, we leave the construction
pseudo-code of PADS and KPADS in [17].

Since PADS yields estimated bounds, fkws needs to
handle both approximate and exact matches. Specifically,
fkws computes the upper bound of the score for any u ∈ V̄ ,
scr(u), by estimating the shortest distance between u and
the missing keywords, i.e., Σdist(u, qi) + Σmatu[qj ], where
qi, qj ∈ Q, qi is missing from matu whereas qj has been
found in matu. If the upper bound is smaller than S,
matu is inserted into A and S is refined accordingly. To
avoid ambiguity, we denote the A that may consist of exact
matches and approximate matches by Â. The approximate
matches in Â are further refined during forward expansion.
Â is eventually refined to yield A.

Next, we present the upper and lower bounds of
dist(u, q) for the termination of forward expansion from
u. These bounds can be applied to other keyword search
semantics as they involve numerous distance computations,
such as [16], [22], [23].
(1) Upper bound of the shortest distance. Given a shortest
distance query (u, q), the upper bound is computed by
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PADSout(u) and KPADSin(q) as follows:

dist(u, q) ≤ dist(u,w) + dist(w, q), (1)

where (w, dist(u,w)) ∈ PADSout(u), (w, dist(w, q)) ∈
KPADSin(q), and w is a common center in PADSout(u) and
KPADSin(q).

Example 3.3. Consider the graph in Fig. 7(b1).
PADSout(y1) = {(w1, 1)} and KPADSin(a) = {(w1, 4)}.
The common center of PADSout(y1) and KPADSin(a)
is w1. Hence, the upper bound of the shortest
distance between y1 and keyword a is derived by
dist(y1, w1) + dist(w1, a) = 5. Then, the upper bound of
the score of the match rooted at y1 is 7. Since the upper
bound is smaller than S, the approximate match maty1

is inserted into A to yield Â. S is refined accordingly,
S = scr(y1).

(2) Lower bound of the shortest distance. We also derive
a lower bound of the shortest distance between u and q by
exploiting PADSout(u) and KPADSout(q) to prune unneces-
sary traversals in an early stage of forward expansion. We
have the following inequality.

dist(u, q) ≥ dist(u,w)− dist(q, w), (2)

where (w, dist(u,w)) ∈ PADSout(u), (w, dist(q, w)) ∈
KPADSout(q), and w is a common center in PADSout(u)
and KPADSout(q). Therefore, the minimum of dist(u,w) −
dist(q, w) is the lower bound of dist(u, q).

If the lower bound is larger than τ , the forward expan-
sion from u is simply skipped, since dist(u, q) > τ , and
Prop. 3.2-Condition (ii) is already satisfied. Similarly, if the
lower bound of the score of the match rooted at u is larger
than S, Prop. 3.2-Condition (iii) is met.

Example 3.4. Consider the graph in Fig. 7(b2). Sup-
pose PADSout(y2) = {(w2, 10)} and KPADSout(a) =
{(w2, 2)}. The common center of PADSout(y2) and
KPADSout(a) is w2. The lower bound of the shortest dis-
tance between y2 and keyword a, dist(y2, a), is derived
by dist(y2, w2)−dist(a,w2) = 8. The lower bound of the
score of the match rooted at y2 is 10 > S. The forward
expansion of y2 is pruned.

Correctness. The analyses of partial order and the finite
domain of fkws are similar to those of bkws. Hence, fkws can
be parallelized correctly since it has the monotonic property.
Complexity. In the worst case, fkws performs a single
source shortest path computation for each vertex u ∈ V̄ .
Therefore, the time complexity of fkws is bounded by O(|V̄|
(|E|+|V |log|V |)). The space complexity fkws is identical to
that of bkws, which is bounded by O(|Q||V |), whereas the
space for PADS and KPADS is O(|V |log|V |) [19].

4 DISTRIBUTED KEYWORD SEARCH (DKWS)
We illustrate PIE [12] with a keyword search algorithm,
denoted as kws. (a) PEval is partial evaluation of kws. Par-
tial results are passed to the next function. (b) IncEval is
incremental evaluation of kws that takes partial results and
computes the changes. IncEval is repeated until no more
changes are computed. (c) Assemble collects local matches

Algorithm 1: API of DKWS

1 Function Notify (Worker id i, Local upper bound Si):
2 Worker Pi sends Si to notify the coordinator P0

3 Coordinator refines the global upper bound S by
min{S, Si}

4 Function Push (Worker id i, Global upper bound S):
5 Coordinator P0 pushes S to worker Pi

6 Worker Pi refines the local upper bound Si by min{S, Si}

from workers. These functions are evaluated in a non-
preemptive manner and defined formally as follows.

The partial evaluation (PEval) utilizes a query Q and
a fragment Fi of the graph G as inputs. PEval then con-
currently computes partial answers, represented as Q(Fi),
consisting of current matu for all u ∈ V at each worker Pi.

The incremental evaluation (IncEval) takes four inputs: a
query Q, a fragment Fi of graph G, partial results derived
from the application of the query to the fragment Q(Fi), and
a message Mi. The function then incrementally computes
Q(Fi ⊕ Mi), optimizing the computation of Q(Fi) from
the previous superstep to maximize efficiency. After every
execution of IncEval, DKWS updates its state by considering
Fi ⊕Mi and Q(Fi ⊕Mi) as the new Fi and Q(Fi), respec-
tively, forming the input for the incremental computation in
the next superstep.

Assemble starts its computation when Mi is empty for
any worker Pi. Assemble accepts Q(Fi ⊕ Mi) as inputs. It
consolidates for all i ∈ [1,m], Q(Fi ⊕ Mi), to compute the
final answer Q(G).
Architecture of DKWS (Fig. 8). The coordinator P0 is
responsible for receiving and transmitting the query to all
workers. Workers P1 to Pn are in charge of computing the
query on their fragments F1 to Fn. When receiving the
query, the workers perform PEval. During each superstep
(IncEval) of query computation, a selector of each Pi decides
to perform either bkws or fkws on Fi. When all workers meet
the termination condition, the coordinators assemble the
(local) top-k matches and select the (global) top-k matches
from the local ones.
Programming model of DKWS. DKWS differs from pre-
vious studies in two major ways: (1) DKWS is the first
to introduce a notify-push paradigm into a distributed pro-
gramming model. The notify-push paradigm allows the co-
ordinator and workers to asynchronously exchange refined
bounds (Sec. 4.1) at runtime; and (2) PINE consists of
PEval, IncEval (n subtasks), and one Assemble functions
(Sec. 4.2) that the users can use to solve their problems
by composing several PI algorithms and assembling the
matches at the end, rather than only one PIE algorithm.
DKWS runs the PI algorithms in a preemptive manner and
therefore interactions, such as exchange of tighter bounds
(presented in Sec. 3) between them are possible.

4.1 Notify-Push (NP) paradigm
With the Notify-Push paradigm, the bounds can be ex-
changed at run-time and provide a global scope for each
worker. The pruning techniques are more efficiently on the
workers with the tighter bounds.
Definition 4.1 (Notify API). Notify(i, Si) is an API that a

worker refines the global upper bound S with the local
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Fig. 8: Workflow of DKWS
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Fig. 9: Illustration of the change of bounds during query processing of DKWS

upper bound Si. Notify(i, Si) takes a worker’s id i and
a local upper bound Si as input. Notify must be invoked
by a worker Pi to notify the coordinator with its worker
id i and the local upper bound Si.

Local upper bound Si. For fragment Fi, DKWS maintains a
local upper bound Si to prune false matches locally. DKWS
maintains a priority queue Ai with a fixed size k to store
the local top-k matches, which are ordered in descending
order of the score of the matches for each fragment Fi.
Once a better match is inserted into Ai, Si is refined locally.
The worker Pi sends the refined local upper bound Si to
the coordinator P0 and notifies the coordinator to refine the
global upper bound by calling function Notify(i, Si).

Definition 4.2 (Push API). Push(i, S) is an API that the
coordinator P0 broadcasts the global upper bound S
to all the workers and refines the local upper bounds.
Push(i, S) takes a worker’s id i and the global upper
bound S in the coordinator P0 as input. Push is invoked
by the coordinator P0 and pushes the global upper
bound S to worker Pi.

Global upper bound S. When the coordinator receives
a local upper bound from a worker, it refines its local
upper bound table which records the local upper bounds
from all the workers. The global upper bound S is the
smallest among the local upper bounds. To avoid exces-
sive refinements, the coordinator maintains a notification
counter Ni for each fragment Fi. Consider any Ni. If
max{Nj |j ∈ [1,m]} − Ni is larger than a threshold, and
Si > S, this implies Pi may be doing unnecessary compu-
tation on the fragment Fi for a long time. The coordinator
pushes the global upper bound to Fi by calling Push(i, S).
Once Pi receives the global upper bound S, it refines the
local upper bound Si with S.

Note that the notify-push paradigm is established on the
fact that the local upper bound Si is the upper bound of the
global upper bound S. We formalize this as follows.

Lemma 4.1. ∀i ∈ [1,m], Si ≤ S.

Proof: We can prove this assertion by contradiction.
Let’s suppose that Si > S. By definition, Si (resp. S)
denotes the score of the local (resp. global) k-th match, rep-
resented by matuk

(resp. matu′
k

). Considering any local top-
k match matuj with j ∈ [1, k], scr(matuj ) ≤ scr(matuk

) <
scr(matu′

k
). This implies that matu′

k
is not included among

the global top-k matches, as there are k matches with lower
scores on Fi. Hence, we deduced that Si ≤ S.

Example 4.1. Given a distributed graph G, which has been
partitioned into three fragments (F1, F2, and F3), shown
in Fig. 9, assume that the query keywords are Q = {a, b}
and k = 2. In the first superstep of DKWS, P3 finishes
the computation earlier since the size of F3 is smaller.
The local upper bound S2 on F2 is 6. Without the NP
paradigm, P2 does not terminate until all vertices of F2

are traversed. The vertices x1, x2, and x3, are not pruned
by S2 since dist(x1, b) = 5 < S2 and the termination
condition of backward expansion is not met as presented
in Sec. 3.2. With the paradigm, P3 sends S3 = 5 to
the coordinator by Notify(3, S3). Then, the coordinator
refines the global upper bound S with S3 and pushes
the global upper bound to all the workers, e.g., P2, by
Push(2, S). Once P2 receives the global upper S = 5, it
refines the local upper bound S2 (denoted by 6

R−→ 5)
accordingly. Since the paradigm allows exchanging the
bounds during a superstep, if x1, x2 and x3 have not
been visited, they are pruned, since dist(xi, b) = 5 ≥ S2.
Then, the termination condition of backward search is
met. Similarly, in Superstep 2, the backward expansion
at v16 is skipped.

Remarks. DKWS is efficient for several reasons: (a) Notify
API provides a way for each worker to send refined bounds
which help to prune more false matches on stragglers; and
(b) The communication cost is small since DKWS only
exchanges the local upper bounds rather than intermediate
matches during distributed query evaluation.

4.2 PINE programming model

4.2.1 Overview of PINE
The overview of PINE is illustrated with Fig. 8. PINE

consists of PEval and IncEval of n subtasks, along with one
Assemble. In the first superstep, PEval of all subtasks are
executed in each worker Pi. In subsequent supersteps, each
worker Pi features an IncEval selector that decides which
subtask’s IncEval to execute. This granular level of execution
is designed to address the straggler problem (refer to the
Challenge 1 in Sec. 1).

We next illustrate the PINE programming model with an
efficient implementation of bfkws. There are two subtasks,
bkws (Sec. 4.2.2) and fkws (Sec. 4.2.3), respectively. For each
subtask, we only need to declare its messages, PEval and
IncEval. We propose preemptive execution of IncEvals in
DKWS (shown in Fig. 8). We use matbu (resp. matfu) to
denote the partial match found by bkws (resp. fkws) rooted



9

Algorithm 2: PEval for bkws
Input: Fi(V,E, L), Q = {q1, . . . , ql}, τ
Output: Q(Fi) consisting of current matbu for all u ∈ V

1 init a local upper bound Si with a large value
2 For each node u ∈ V , init a match variable matbu to null
3 foreach q ∈ Q do // init the searching origin
4 init search priority queue Pq = ∅
5 init visited vertices set Vq = ∅
6 foreach u ∈ Oq do
7 matbu[q] = 0
8 Pq .push(⟨u, 0⟩)
9 BackwardExpand(P)// P = {Pq |q ∈ Q}

10 Function BackwardExpand(P)
11 while ∃Pq is not empty and Si > ΣPq .top().d do
12 pick Pq from all the search queues with minimal

Pq .top().d
13 ⟨u, d⟩ = Pq .top()
14 Vq .add(u)
15 foreach e = (u′, u) ∈ E and u′ ̸∈ Vq do
16 d′ = w(e) + d
17 if d′ < τ and d′ < matb

u′ [q] then
18 matb

u′ [q] = d′

19 Pq .push(⟨u′, d′⟩)
20 if matbu is a complete match and scr(u) < Si

then
21 Ai.push(⟨u,matbu⟩)
22 Si = scr(Ai.top().u)
23 Notify(i, Si)

24 Message segment: Mi = {matbu|u ∈ Fi.I}

at u. Finally, we implement Assemble by collecting the local
top-k matches from all fragments to yield the global top-k
matches after both the IncEvals terminate.
4.2.2 PI for bkws

Message declaration. DKWS declares a variable matbu for each
vertex u, where matbu is a map such that matbu[q] = ⟨v, d⟩ is
used to denote the shortest distance between u and a query
keyword q ∈ L(v) ∩ Q, i.e., d = dist(u, q). Intuitively, u is
considered as the root of a match, while v is a leaf vertex of
the match, the labels of which contain a query keyword, q.

(1) Partial evaluation (PEval) for bkws (Algo. 2). Upon receiv-
ing a query Q, PEval computes the partial matches of bkws,
matbu on Fi locally, for all i ∈ [1,m] in parallel. Pi initializes
its local upper bound Si with a large constant value and
initializes a match variable matbu for each vertex (Lines 1-
2). Lines 3-8 initialize the search origins and the priority
queue for the search. Lines 11-22 present the pseudo-code
of bkws (described in Sec. 3.2). In addition, in the NP
paradigm, at runtime, PEval sends the local upper bound
Si to the coordinator and notifies it to refine the global
upper bound when Si is refined (Line 23). In Line 24, the
messages are grouped into Mi at the incoming portal nodes
on fragment Fi. Partial matches that are relevant to Fj

(Mi,j = {matbu|u ∈ Fi.I ∩ Fj .O} ∈ Mi) are transmitted
to worker Pj .

(2) Incremental computation (IncEval) for bkws (Algo. 3).
Upon receiving messages Mi, IncEval iteratively computes
the partial matches, matbu, on Fi with the updates (mes-
sages) Mi. Specifically, if the distance between u and q ∈ Q,
i.e., d = matbu[q], is refined by using message Mi, u is
pushed into the priority queue Pq with the refined distance.
Then, IncEval propagates the distance refinement to the
affected area by bkws. Worker Pi notifies the coordinator

Algorithm 3: IncEval for bkws
Input: Fi(V,E, L), Q = {q1, . . . , ql}, τ , Q(Fi), message Mi

Output: Q(Fi ⊕Mi) consisting of current matbu ∈ Ai, where
u ∈ V

1 init Vq , Pq for each query keyword q ∈ Q

2 foreach matb,inu ∈Mi do
3 foreach q ∈ Q and matbu[q] > matb,inu [q] do
4 matbu[q] = matb,inu [q]
5 Pq .push(⟨u,matbu[q]⟩)
6 BackwardExpand(P) // P = {Pq |q ∈ Q}
7 Message segment: Mi ={matbu|u ∈ Fi.I}
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(1)mat
b
u: sent from Pi to Pj

v2{c}

v3

v4

2 1

11

v5

v6

mat
b
v3

[a] = 2

mat
b
v4

[c] = 1

bkws

Fj on Pj

(2)fu: sent from Pi to Pj

v6
1

v5

v1{a}
fv6

[c] = 2

fv5
[c] = 3

v2{a}

v3

v4

2

2

2

1

fkws

mat
b
v3

[a] = 2 fv3
[c] = 4

mat
b
v4

[a] = 1 fv4
[c] = 5

(3)mat
f
u: sent from Pj to Pi

v6

1

v5

mat
f
v6

[c] = 1 mat
f
v5

[c] = 2

v7

{c} 1

Fi on Pi Fj on Pj Fi on Pi Fj on Pj Fi on Pi

Inner edges Crossing edges

Fig. 10: Message exchange during query processing (matbu
(resp. matfu): keep track the shortest distance between u and
a query keyword by bkws (resp. fkws); and fu: the longest
distance needed to be forward expanded starting from u)

P0 once the local upper bound Si is refined by invok-
ing Notify(i, Si). At the end of IncEval, the messages are
grouped into Mi at the incoming portal nodes and sent to
the relevant workers, similar to PEval.
Completeness. We assume that DKWS takes R supersteps
to finish the evaluation of a keyword query. We denote the
vertices that have been visited on Fi at the s-th (s ≤ R)
superstep for a query keyword qj ∈ Q by V s

qj ,i
. We de-

note the union set of all the visited vertices by V. Hence,
V =

⋃︁
i∈[1,m],j∈[1,l],s∈[1,R] V

s
qj ,i

, where m is the number of
workers and l = |Q|. We have the following proposition.
Proposition 4.1. Suppose the top-k matches of a keyword

query is A and all the visited vertices V, the following
hold:
(1) ∀u ̸∈ V, matu ̸∈ A; and (2) ∀matu ∈ A, u ∈ V.

Proof: The proof is presented in Appx. A.2 of [17].
Example 4.2. As shown in Fig. 10.(1), when bkws expands

from v1 to v3, matbv3 [a] = 2 is sent from Fi to Fj since
v3 ∈ Fi.I . Similarly, matbv4 [c] = 1 is sent from Fi to Fj .
IncEval of bkws is invoked in Fj to search for matches.

4.2.3 PI for fkws

Message declaration. DKWS declares a variable matfu, where
matfu is a map, matfu[q] = ⟨v, d⟩, where d is the shortest
distance between vertex u and a query keyword q ∈ L(v) ∩
Q, i.e., d = dist(u, q). matfu is to keep track of the updates
to u during the forward expansion. DKWS also declares a
variable fu for each vertex u to indicate the distances of the
longest forward expansion of retrieving missing keywords
starting from u. Formally, fu is a map (q, d), where q ∈ Q
is a query keyword and d is the longest distance needed to
be forward expanded starting from u to retrieve the query
keyword q.

(1) Partial evaluation (PEval) for fkws (Algo. 4). fkws mainly
conducts the forward expansion to complete the partial
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Algorithm 4: PEval for fkws
Input: Fi(V,E, L), Q = {q1, . . . , ql}, τ
Output: Q(Fi) consisting of current matu ∈ Ai for all u ∈ V

1 load the indexes PADS and KPADS
2 maintain the vertices to be forward expanded in V̄ , i.e., roots

of partial matches
3 for u ∈ V̄ , init a forward match matfu and a forward distance

fu
4 foreach u ∈ V̄ do
5 forwardExpand(u,Q, Si,Ai)
6 Function forwardExpand(u,Q, Si,Ai)
7 foreach v in the Dijkstra’s traversal of u do
8 if not isCandidate(u) or all the q ∈ fu are found then
9 break

10 foreach q ∈ fu do
11 if q ∈ L(v) then // missing keyword is

found

12 matfu[q] = dist(u, v)
13 marks that q ∈ fu is found
14 else if dist(u, v) > matfu[q] or

dist(u, v) + scr(u) > Si then
15 marks that q ∈ fu is found // Prop.3.2

Condition (iii) is met
16 else if dist(u, v) +matv [q] < τ then

// Refine matfu by a found match
matv

17 matfu[q] = min{matfu[q], dist(u, v) +matv [q]}
18 else if v ∈ Fi.O then

// foward expansion on other
fragments

19 fv [q] = max{fv [q], fu[q]− dist(u, v)}
20 if matu is a complete match and scr(u) < Si then
21 Ai.push(⟨u,matu⟩)
22 Si = scr(Ai.top().u)
23 Notify(i, Si)
24 Function isCandidate(u)
25 distˇ (u, Fi.O)← estimate the lower bound between u and

Fi.O by Eq 2
26 foreach q ∈ fu do
27 distˇ (u, q)← estimate the lower bound between u and

q by Eq 2
28 if distˇ (u, q) > fu[q] and distˇ (u, Fi.O) > fu[q] then
29 return False
30 return True

31 Message segment: M1
i = {matfu|u ∈ Fi.I} and

M2
i = {fu|u ∈ Fi.O}

matches. Lines 2-3 are the initialization of the vertices for the
expansion and match variables. In the forward expansion
starting from u, if any condition(s) in Prop. 3.2 is met,
the expansion is terminated (Lines 11-15). Suppose u is
expanded to vertex v and the missing keyword q is found
in matv = matbv ∪ matfv , matfu[q] is refined (Lines 16-17). If
v ∈ Fi.O, the remaining distance of the forward expansion
to retrieve the query keyword q on other fragments is stored
in fv[q] (Lines 23).

At the end of PEval (Line 31), messages matfu (resp. fu)
are grouped into M1

i (resp. M2
i ) in worker Pi. Mi,j ∈ Mi is

sent to worker Pj . Formally, M1
i,j = {matu|u ∈ Fi.I∩Fj .O}

and M2
i,j = {fu|u ∈ Fi.O ∩ Fj .I} are sent from worker Pi

to worker Pj . Moreover, PEval sends the refined Si to the
coordinator and notifies it to refine the global upper bound
S once the local upper bound is refined.

(2) Incremental computation (IncEval) for fkws is derived with
the following two modifications.

(2.1) Refinement propagation. Firstly, Pi receives the partial
matches, matfu in previous supersteps from other fragments

through the portal nodes. If a shorter path between u
and q is found crossing multiple fragments, the forward
match matfu[q] is refined. IncEval propagates the distance
refinement to the ancestor vertices.

(2.2) Incremental forward expansion. Secondly, upon receiving
some forward expansion requests from other fragments,
worker Pj further forward expands to retrieve missing
keywords on Fj through the incoming portal nodes, Fj .I .
Specifically, if f inu ∈ M2

j is received and u ̸∈ V̄ , u is added
to V̄ . Since search requests come from different fragments,
fu keeps the largest one for each keyword. If u is forward
expanded in previous iterations for query keyword q or
f inu [q] is smaller than fu[q], f inu [q] is skipped.

At the end of IncEval, the partial matches found by
forward expansions are grouped into M1

i and the remain-
ing forward expansion requests are grouped into M2

i , re-
spectively, for fragment Fi and sent to the corresponding
fragments, which is the same as that of PEval.

Example 4.3. As shown in Fig. 10.(2), when fkws expands
from v4 to v5 to search for the missing keyword c,
fv5 [c] = 3 is sent from Fi to Fj since v5 ∈ Fi.O. IncEval of
fkws is invoked in Fj to search on Fj forwardly. Once the
keyword c is retrieved in Fj as recorded in matfv6 [c] = 1
(shown in Fig. 10.(3)), matfv6 [c] = 1 is sent to Fi via the
portal node v6 ∈ Fj .I .

4.2.4 Preemptive execution of IncEvals in PINE
Even if the complexity of bkws (analyzed in Sec. 3.2)

is smaller than that of fkws (analyzed in Sec. 3.3), running
bkws first and then fkws may not exhibit the best query
performance in practice. In particular, we provide three
insights: (a) bkws increases the size of V̄ but k of top-k is
fixed. Relatively more vertices of V̄ may not be backward
expanded to final matches; (b) some early messages from
bkws may not effectively refine into tight upper bounds for
fkws; and (c) some workers running bkws can be stragglers,
as fkws is blocked by them, i.e., it cannot yet start. Hence,
PINE provides a lightweight selector (as shown in Fig. 8)
and allows the computation of bkws and fkws in a pre-
emptive manner. At runtime, each worker Pi determines to
execute either bkws or fkws, independently. Each of them main-
tains a set of status parameters to estimate the performance
improvement of executing either bkws or fkws.

Message buffers. Each worker Pi maintains two message
buffers Bb

i and Bf
i to keep track of backward and forward

messages from other workers. The more messages are ac-
cumulated in Bb

i (resp. Bf
i ), the earlier Pi should start bkws

(resp. fkws) computation, and vice versa.

Expansion distance. Denote matb,inu as a message generated
by bkws and maintained in Bb

i . If matbu[q] is larger than
matb,inu [q], DKWS needs to backward expand starting from
u. We call dbq = min{S − matb,inu [q], τ} backward expansion
distance starting from u for query keyword q. Without prior
statistics, if dbq is larger, the backward expansion is more
costly and the messages are less likely to finally yield
one of the top-k matches. Worker Pi may stop expanding
matbu[q] by postponing the execution of bkws, but start fkws
to prune some unyielding messages. Similarly, we define
dfq = min{f inu [q], τ}, the forward expansion distance.
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Fig. 11: Illustration of the preemptive execution

Staleness indicators. Inspired by the complexities of bkws and
fkws, we propose the staleness indicators of the accumu-
lated backward messages and forward messages for each
worker Pi, denoted by SIbi and SIfi . SIbi and SIfi are formally
defined below:

SIbi =

⎧⎪⎨⎪⎩
+∞, if Bb

i is empty∑︂
u∈Fi.O

∑︂
q∈Q

dbq

|Bbi |
, otherwise

(3)

SIfi =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
+∞, if Bf

i is empty∑︂
u∈Fi.I

|Q|∑︂
q∈Q

dfq

|Bfi |
, otherwise

(4)
where dbj (resp. dfj ) is the average backward (resp. forward)
searching distance for query keywords and |Bb

i | (resp. |Bf
i |)

is the size of backward (resp. forward) messages buffer.
If SIbi < SIfi , worker Pi conducts bkws. Otherwise,

worker Pi conducts fkws. PINE is able to simulate PIE by
enforcing SIbi to +∞ at the even supersteps and SIbi to +∞
at the odd supersteps.
Example 4.4. Consider the two cases in Fig. 11. In Case 1,

when the backward expansion from v1 is performed via
v2, the backward expansion distance starting from v2
is 4 and SIb2 = 4. When the forward expansion from
v3 is performed via v5, the forward expansion distance
from v5 is 2 and SIf2 = 2. Since SIf2 < SIb2, fkws has a
higher priority to be executed. We can observe that an
answer rooted at v3 is returned, and the upper bound S
is refined to 6. Consequently, dba is refined to 3, and fewer
traversals are required in the next iteration. Similarly,
in Case 2, bkws has a higher priority and produces the
matches earlier, which reduces the number of traversals
of fkws after the upper bound S is refined.

4.2.5 Assemble for bfkws
DKWS only collects the local top-k matches to yield the

global top-k matches A by selecting the top-k matches from⋃︁
i∈[1,m] Ai after the executions of IncEvals of bkws and fkws

have terminated. Hence, the cost of collecting local matches
from all the workers is bounded by O(km).
Example 4.5. Consider the graph and query in Fig. 9. Local

matches of F1 are rooted at v15 and v17 and scr(v15) = 4
and scr(v17) = 3. Similarly, we have two local matches
on F2 with scr(v11) = 4 and scr(v6) = 4 and two
local matches on F3 with scr(v4) = 2 and scr(v5) = 5.
Hence, the coordinator collects all the 6 local matches.
The matches rooted at v4 and v17 are returned since they
are the top-2 among the 6 matches.

4.3 Analysis of bfkws on DKWS

In this section, we present an analysis of the correctness
of PINE. Following [38] and [11], a parallel model model1

can be optimally simulated by another one model2 if there
exists a compilation algorithm that transforms any program
on model1 with a constant cost C to a program on model2
with a cost O(C).

Proposition 4.2. A PINE algorithm can be compiled into a
PIE algorithm with a cost O(C).

Proof: Any PINE algorithms developed on DKWS
can be compiled into a PIE algorithm. Given a PINE algo-
rithm algo that consists of n PEvals (denoted by Pi, where
i ∈ [1, n]), n IncEvals (denoted by Ii, where i ∈ [1, n]), and
one Assemble (denoted by E). algo is compiled into GRAPE
by a PIE algorithm as follows. (a) PEval of GRAPE runs Pis
sequentially over the workers. The messages are exchanged
by PEval after Pn is executed. (b) IncEval of GRAPE intro-
duces a selection control mechanism by a switch statement.
GRAPE plugs Ii into the i-th branch of the switch statement.
The control flow of IncEval execution is determined by
staleness indicators provided by users. The messages are
exchanged at the end of each round of IncEval. (c) Assemble
of GRAPE is identical to E.

Due to Prop. 4.2, DKWS inherits all properties of GRAPE
(Theorem 1 of [13]), including convergence and correctness
theorems.

Theorem 4.2. The general form of a PINE algorithm consists
of the following:

1) n PEvals (denoted by Pi, where i ∈ [1, n]),
2) n IncEvals (denoted by Ii, where i ∈ [1, n]), and
3) one Assemble (denoted by E), and any partition strategy

Par.
The PINE algorithm on DKWS terminates correctly if
(a) Ii satisfies the monotonic condition,4 for all i ∈ [1, n];

and
(b) Pi, Ii and E are correct w.r.t. Par.5

Proof: The proof is presented in A.1 of [17].
The correctness of bfkws implemented using PINE is

assured by the correctness of bkws and fkws (Sec. 3.2 and
3.3) and Theorem 4.2.
Complexities. The time complexity of bkws (resp. fkws)
is O(|Q|(|E|+|V |log|V |)) (resp. O(|V̄|(|E|+|V |log|V |))).
The space complexity of bkws and fkws is bounded by
O(|Q||V |). The size of PADS(u) is bounded by O(log|V |).
Hence, the overall index size of PADS is bounded by
O(V log|V |) (cf. [19]).

5 EXPERIMENTAL STUDY

We experimentally evaluate (1) efficiency, (2) performance
under different settings, and (3) communication costs on
massive graphs with competitors [31] and [9].

4. There exists a partial order on the variables attached on the vertices
such that IncEval updates the variables in the partial order [13].

5. Pi is correct if it returns correct answer on an input graph G for
any queries. Ii is correct if it returns correct answer on an input graph
G and a set of messages for any queries. E is correct if it yields the
answer on the input graph G by assembling all the local matches.



12

TABLE 3: Statistics of real-world datasets

Datasets |V | |E| avg. # of keywords per node
YAGO3 2,635,317 5,260,573 3.79
DBpedia 5,795,123 15,752,299 3.72

DBLP 2,221,139 5,432,667 10
WebUK 133,633,040 5,507,679,822 1

5.1 Experimental setup

Software and hardware. Our experiments were run on a
cluster with eight machines. Each machine had one Xeon
X5650 CPU, 128GB memory and was running CentOS 7.4.
The implementation was made memory-resident. We used
METIS [24] as the graph partition strategy.
Algorithms. We implemented all algorithms in C++. The
settings followed [31] and [9] whenever appropriate. Our
implementation of PINE was done by modifying the PIE
model running on the platform of GRAPE [13]. We used the
following implementations for algorithms.

1) DKWS-BF. We implemented bfkws using the PIE pro-
gramming model (detailed in Sec. 4).

2) DKWS-PADS. We applied PADS and KPADS to DKWS-
BF for deriving a lower bound between a vertex and a query
keyword for pruning the forward expansion as proposed
(detailed in Sec. 3).

3) DKWS-NP. We applied NP paradigm to DKWS-PADS.

4) DKWS-PINE. We applied PINE model to DKWS-NP.

5) Baseline. We implemented the distributed algorithms
proposed in [31] and [9], both of which share the same
keyword semantics as ours. These were established on
GRAPE [13], serving as our baseline algorithms. We did not
compare DKWS with [47] since their algorithm (a) returns
a set of approximate matches, and (b) proposes a different
subtree semantic.

6) BANKS-II. BANKS-II [21] is the only sequential algo-
rithm we could run on a single machine. In particular,
BANKS-II does not require massive indexes. BANKS-II is
widely used in the experimental comparison of existing
works, such as [16], [44].
Datasets. We used four popular real-world graphs: (a)
YAGO3 [26], a large knowledge base with 2.6 million en-
tities and 5.26 million factors; (b) WebUK [3], a large Web
graph with 106 million nodes and 3.7 billion edges; (c)
DBLP [1] is a social network with 2.2 million authors and 5.4
million collaboration relationships; and (d) DBpedia [2] is
a knowledge base with 5.8 million entities and 15.7 million
factors. These datasets are widely used in previous keyword
search works such as [16], [22], [23], [34] or used to test the
scalability of distributed graph evaluation systems, such as
[13], [42].
Queries. We followed [47] to generate the queries by vary-
ing the number of query keywords |Q|. The number ranged
from 2 to 6. The average query time is stable when the
number of queries is 50. Hence, we generated 50 random
synthetic keyword queries for each query size in our exper-
iments and reported the average evaluation time.
Default settings. We fixed k = 10, the number of query
keywords |Q| to 4, the number of workers to 8, and the τ to
3. Each worker was assigned one fragment. Unless specified

otherwise, we conducted experiments with default values of
the parameters and varied values of a specific parameter.

5.2 Experimental results

Exp-1: Efficiency. We firstly evaluated the efficiency of
DKWS by varying the number of query keywords |Q| from
2 to 6. All algorithms take longer when |Q| gets larger since
the size of search space increases. The results are shown in
Fig. 12(a) to Fig. 12(d).
(a) On YAGO3, DKWS-PADS is on average 1.24 times faster
than DKWS-BF. The main reason is that most forward
expansions are pruned by PADS. DKWS-NP is 2.32 times
faster than Baseline as DKWS-NP avoids the straggler prob-
lem. The slower workers are terminated early by using the
global upper bound. DKWS-PINE is 3.3 times faster than
Baseline since the computing tasks of DKWS-PINE are finer-
grained, avoiding the straggler problem and tighter bounds
are retrieved by taking advantage of both bkws and fkws.
(b) On WebUK, DKWS-BF is on average 14.6 times faster
than Baseline. The reason for such a significant speedup
is that a tight local upper bound on WebUK is derived
early, since WebUK is denser than the other three datasets.
Hence, the vertices, which require forward expansion, are
few. DKWS-PADS (resp. DKWS-NP and DKWS-PINE) is
17.05 (resp. 21.45 and 46.8) times faster than Baseline.
(c) On DBLP, the query time of DKWS-BF is 5.73 times
faster than Baseline. Since the diameter of DBLP is small,
the forward expansion distance is not far. DKWS-PADS is
6.12 times faster than Baseline. Pruning by PADS on DBLP
is not as obvious as that on the other three datasets due to
the small graph diameter. DKWS-NP (resp. DKWS-PINE) is
on average 9.22 (resp. 12.86) times faster than Baseline.
(d) The query performance improvement on DBpedia is
similar to that on YAGO3. DKWS-BF (resp. DKWS-PADS,
DKWS-NP, and DKWS-PINE) is 5.06 (resp. 5.31, 5.83, and
22.32) times faster than Baseline.

In a nutshell, the performance improvement is due to
the following reasons: (a) DKWS-BF avoids the exhaustive
explorations by the backward search and forward search;
(b) DKWS-PADS prunes the redundant forward search by
computing the tight lower bound of the shortest distance
between a vertex and a query keyword, which prunes some
unnecessary forward search at an early stage; (c) DKWS-NP
improves the query performance by exchanging the local
upper bounds to yield a global upper bound, which reduces
the stragglers’ computation; and (d) DKWS-PINE further
improves the query performance since it is finer-grained.

Exp-2: Scalability. We next investigated the scalability
of DKWS over real-life graphs by varying the number
of workers (m) from 2 to 12. a) All algorithms take a
shorter time when the number of workers becomes larger,
as expected. b) All algorithms scale reasonably well with the
increase of m. When m increases from 2 to 12, the running
time of Baseline (resp. DKWS-BF, DKWS-PADS, DKWS-
PINE and DKWS-NP) decreases to 21.63% (resp. 23.18%,
28.99%, 31.62%, and 25.75%) on average. c) DKWS-NP
consistently outperforms Baseline, DKWS-BF, DKWS-PADS
and DKWS-PINE for all queries. Specifically, the results are
shown in Fig. 12(f) to Fig. 12(h). DKWS-BF and DKWS-
PADS take less time when the number of workers increases.
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Fig. 12: Query performance on the four real-life datasets

More specifically, DKWS-BF is on average 1.65 (resp. 8.81,
2.65, and 1.60) times faster than Baseline on YAGO3 (resp.
WebUK, DBLP, and DBpedia), when the number of workers
varies from 2 to 12. DKWS-PADS is on average 1.81 (resp.
13.11, 2.92, and 2.11) times faster than Baseline on YAGO3
(resp. WebUK, DBLP, and DBpedia). The reason is that
DKWS-BF, and DKWS-PADS avoid exhaustive search and
prune some redundant stale computations. By exchanging
the local upper bounds, DKWS-NP exploits parallelism,
since it reduces the straggler problem. DKWS-NP is on
average 2.03 (resp. 21.19, 3.31, and 3.67) times faster than
Baseline on YAGO3 (resp. WebUK, DBLP, and DBpedia).
DKWS-PINE is the most efficient since the computing tasks
are finer-grained. On average, DKWS-PINE is 3.47 (resp.
26.94, 5.00, and 22.82) times faster than Baseline on YAGO3
(resp. WebUK, DBLP, and DBpedia). It is also worth noting
that in a single-machine environment, there is no difference
in the performance of DKWS-PINE, DKWS-NP, and DKWS-
PADS. This is because the fine-grained execution of PINE
and notify-push paradigm are not activated in a single-
machine setting.

Impact of the graph size |G|. We also evaluated the scalability

of DKWS over larger synthetic graphs. We use the graph
generator of [13] to produce graphs G = (V,E,L) with L
drawn from an alphabet L of 50 labels. It is controlled by
the numbers of nodes |V | and edges |E|, up to 200 million
and 5 billion, respectively. Fixing n = 12, we varied |G|
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Fig. 13: Scalability on synthetic graphs

from (40M, 1B) to (200M, 5B). As reported in Fig. 13, the
results are consistent with Fig. 12 over real-life graphs. (a)
All algorithms take a longer time when the G gets larger, as
expected. (b) DKWS scales reasonably well with the increase
of |G|. When G increased by 5 times, the running time
of Baseline (resp. DKWS-BF, DKWS-PADS, DKWS-PINE
and DKWS-NP) increases by 6.7 (resp. 6.3, 6.8, 6.3 and
6.1) times. DKWS-PINE consistently outperforms Baseline,
DKWS-BF, DKWS-PADS and DKWS-NP.
Exp-3: Impact of parameters. The elapsed time of keyword
search is relevant to the threshold, τ and the number of
matches, k. We next present the impact of these parameters.

Impact of threshold τ . τ has been a crucial parameter of key-
word search. According to the findings of [6], [47], τ = 5 is
large enough to obtain satisfactory matches in real applica-
tions. Hence, we next evaluated the scalability of DKWS by
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varying τ from 3 to 6. a) All algorithms take longer when τ
becomes larger, as expected, since there are more candidate
answers generated during the backward expansion and
forward expansion. b) All algorithms scale reasonably well
with the increase of τ . When τ increases from 3 to 6, the
running time of Baseline (resp. DKWS-BF, DKWS-PADS,
DKWS-PINE, and DKWS-NP) increases by 71.59% (resp.
82.61%, 138.97%, 81.38%, and 83.56%). c) DKWS-PINE
consistently outperforms Baseline, DKWS-BF, DKWS-PADS
and DKWS-NP for all queries. Specifically, the results are
presented in Fig. 12(m) to Fig. 12(p). In particular, DKWS-
BF is 1.08 times (resp. 9.18, 4.37, and 1.25) times faster than
Baseline on YAGO3 (resp. WebUK, DBLP, and DBpedia).
DKWS-PADS is 1.33 (resp. 11.80, 4.76, and 1.48) times
faster than Baseline on YAGO3 (resp. WebUK, DBLP, and
DBpedia). DKWS-PADS is more efficient on τ since it can
prune longer forward searches when τ increases. DKWS-NP
is 3.02 (resp. 19.0, 6.10, and 2.66) times faster than Baseline
on YAGO3 (resp. WebUK, DBLP, and DBpedia). DKWS-NP
is more efficient since it pushed and notified tighter bounds
early which was more efficient when τ was large. DKWS-
PINE is 3.71 (resp. 29.32, 6.65, and 16.2) times faster than
Baseline on YAGO3 (resp. WebUK, DBLP, and DBpedia).

Impact of k. We evaluated the scalability of DKWS by vary-
ing k. a) All algorithms take longer when k gets larger since
more matches are retrieved. b) All algorithms perform well
with the increase of k. When k increases from 5 to 30, the
running time of Baseline (resp. DKWS-BF, DKWS-PADS,
DKWS-PINE, and DKWS-NP) increases by 4.63% (resp.
1.65%, 9.99%, 60.20%, and 47.22%). c) DKWS-NP outper-
forms Baseline, DKWS-BF, DKWS-PADS and DKWS-PINE
for all queries. Specifically, the experiments are shown in
Fig. 12(r) to Fig. 12(s). On average, DKWS-BF is 1.58 (resp.
14.96, 4.07, and 1.30) times faster than Baseline on YAGO3
(resp. WebUK, DBLP, and DBpedia). DKWS-PADS is 1.67
(resp. 15.97, 4.39, and 1.39) times faster than Baseline on
YAGO3 (resp. WebUK, DBLP, and DBpedia). DKWS-NP is
1.98 (resp. 22.92, 5.83, and 6.37) times faster than Baseline
on YAGO3 (resp. WebUK, DBLP, and DBpedia). DKWS-
PINE is 2.54 (resp. 35.63, 7.14, and 19.66) times faster than
Baseline on YAGO3 (resp. WebUK, DBLP, and DBpedia).
Exp-4: Communication costs. We further investigated the
communication cost in terms of the total message size. The
communication costs on WebUK and DBLP are reported
in Fig. 12(j) and Fig. 12(k). The results on other datasets
exhibit similar trends. We obtained the following findings.
(a) The communication cost of DKWS-PADS is the same
as that of DKWS-BF since DKWS-PADS only prunes the
local traversals. DKWS-BF and DKWS-PADS ship 33.6%
(resp. 36%) of data transmitted by Baseline on WebUK (resp.
DBLP). (b) DKWS-NP ships 29.8% (resp. 30.4%) compared
to that of Baseline on WebUK (resp. DBLP). This is because
DKWS-NP yields tighter bounds and reduces unnecessary
message exchange early. (c) DKWS-PINE ships 13.0% (resp.
18%) compared to that of Baseline on WebUK (resp. DBLP).
DKWS-PINE takes the advantage of preemptive execution
of both bkws and fkws, which reduces long or useless traver-
sals. Consequently, the communication cost is reduced since
the messages caused by such traversals have been avoided.
Exp-5: Impact of notification counter threshold. We ob-
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served that on the four real-life datasets, setting the notifica-
tion counter threshold to 2 or 3 resulted in a comparatively
good performance. However, when the threshold exceeded
4, there was no substantial difference in the performance
improvement compared to when the notify-push paradigm
was not used. This can be attributed to the fact that on
these datasets, the number of times the local bounds were
refined rarely exceeded 4; thus, the push function was
seldom invoked. The threshold of the notification counter in
the coordinator can be determined by a simple experiment
offline on the dataset. The details are presented in [17].
Exp-6: Impact of graph partition. We evaluated the im-
pact of different partition strategies, including METIS [24],
HASH [12], and FENNEL [37] in Fig. 14. Among these
strategies, all algorithms, except for the Baseline, demon-
strated faster performance under METIS partitioning. Con-
sidering the significance of efficiency, we selected METIS as
the default partition strategy for our experiments, as men-
tioned earlier. Furthermore, we observed that METIS im-
proved performance in DKWS-NP and DKWS-PINE. This
can be attributed to the notify-push paradigm employed
that helps alleviate the impact of load imbalances.
Exp-7: Comparison with a sequential algorithm. We fur-
ther compared our works with a sequential algorithm,
BANKS-II [21]. The results are shown in Fig. 12(a) to
Fig. 12(d). On average, DKWS-PINE is 82.58 times faster
than BANKS-II. This verifies that DKWS-PINE has exploited
the efficiency of a distributed environment.

6 RELATED WORK

Keyword search semantics. Recently, keyword search has
attracted a lot of interest from both industry and research
communities. Bhalotia et al. [5] proposed keyword search on
relational databases. He et al. [16] proposed an index, called
Blinks to reduce the search time. Kargar et al. [22] proposed
distance restrictions on the keyword nodes, i.e., the distance
between each pair of keyword nodes is smaller than τ . Shi
et al. [34] proposed hub labelings to solve Group Steiner
Trees (GST). Kargar et al. [23] proposed an approximate
algorithm to retrieve the GST on weighted graphs. These
studies optimize a specific keyword search semantic. Jiang
et al. [18] proposed a generic index for keyword search
semantics running on a standalone machine.
Distributed systems. Several distributed systems have
been proposed for graphs. Popular graph systems in-
clude Pregel [27], Giraph [4], GraphX [41], GraphLab [25],
PowerGrapah [15], Giraph++ [35], Blogel [42], GPS [32],
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GRAPE [13], and AAP [11]. Pregel [27] and Giraph [4] are
implemented with the vertex-centric programming model.
A superstep executes a user-defined function at each vertex
in parallel. GraphX [41] is a component built on top of Spark
for graphs which exposes a set of operators (e.g., subgraph,
joinVertices, and aggregateMessages) as well as an opti-
mized variant of the Pregel [27]. Blogel [42], Giraph++ [35]
and GRAPE [13] are implemented with the block-centric
programming model. AAP [11] proposes an adaptive asyn-
chronous parallel model for graph computations on [13].
These systems are general-purpose. Keyword search algo-
rithms have not been exploited. For instance, DKWS can
also be beneficial to existing systems. By integrating PINE,
the systems could make the query evaluation more fine-
grained. By integrating the notify-push paradigm, DKWS
allows each worker to broadcast local information to their
peer workers which can alleviate the straggler problem.
Distributed kws algorithms. Lu et al. [31] proposed a
scalable algorithm for keyword search in MapReduce. How-
ever, the false matches were pruned at the last superstep,
which may cause large messages. Yuan et al. [47] pro-
posed a search strategy based on a compressed signature
to avoid the exhaustive flooding search. [47] sent all the
local candidate matches to the coordinator at runtime which
may require large messages and extra synchronization cost.
DKWS differs from the above in the following aspects: (a)
each worker computes the top-k matches locally. DKWS
sends the local matches to the coordinator when all of the
workers terminate rather than sends massive local candi-
dates matches; and (b) DKWS exchanges the local upper
bounds which prune some traversals early.

7 CONCLUSIONS AND FUTURE WORKS

In this paper, we propose a distributed keyword search
system called DKWS. We derive new bounds for prun-
ing some keyword searches that tackle the performance
challenges of a general distributed system. We show that
bfkws, which can be used to express query algorithms for
popular keyword semantics, has a monotonic property that
ensures the correct parallelization. We propose a notify-
push paradigm allows asynchronously exchanging the up-
per bounds across the workers and the coordinators. We
also propose a programming model PINE for DKWS which
fits keyword search algorithms as they have distinguished
n phases, to allow preemptive searches to mitigate staleness
in a distributed system. We verify that DKWS significantly
reduces the runtimes of distributed top-k keyword searches.

In the future, we plan to implement PINE into the
latest codebase of GRAPE. Moreover, we will extend DKWS
to support approximate analysis for some keyword search
semantics, such as [22], [23], [34].
Acknowledgements. This work is supported by HKRGC
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APPENDIX A
APPENDIX

A.1 Proof of Prop. 3.1

Proposition A.1. The node set visited by bkws, V, has the
following properties:

1) ∀u ̸∈ V, matu ̸∈ A; and
2) ∀matu ∈ A, u ∈ V.

Proof: 1) Suppose u ̸∈ V. We assume that the last
vertex which is backward expanded for keyword qi as vi.
The distance between vi and the query keyword qi ∈ Q is
dist(vi, qi). It is worth noting that in Step 2 of the backward
search, the vertex with the shortest distance to Oi is chosen
for expansion.

Since u has not been visited,

dist(u, qi) ≥ dist(vi, qi) (5)

Hence,

scr(u) = Σdist(u, qi) ≥ Σdist(vi, qi) > S (6)

The match rooted at u is not among the top-k matches.
Therefore, matu ̸∈ A.

2) We prove the second part of the proposition by con-
tradiction. Suppose matu ∈ A. If u ̸∈ V, we have scr(u) > S
based on the proof above. This contradicts with that the
matu is among the top-k matches.

A.2 Proof of Prop. 4.1

Proposition A.2. (Completeness) Suppose the top-k
matches to a keyword query is A and all the visited
vertices V, we have:

1) ∀u ̸∈ V, matu ̸∈ A; and
2) ∀matu ∈ A, u ∈ V.

Proof: 1) Suppose u ̸∈ V, and u ∈ Fi.V . The match
rooted at u is matu. We consider the nearest query keyword
qx ∈ Q of u, i.e., dist(u, qy) ≥ dist(u, qx), where qy ∈ Q. We
denote the shortest path between u and qx by Path(u, qx).

We consider the following cases:
Case 1: Path(u, qx) is localized on Fi completely, i.e.,

Path(u, qx) is a subgraph of fragment Fi. The proof is the
same with that of Proposition 3.1.

We assume that the last vertex which to be backward
expanded for keyword qy on Fi as vy . Since u has not been
visited, we have

dist(u, qx) ≥ dist(vy, qy) (7)

Hence,

scr(u) =
∑︂

y∈[1,l]

dist(u, qy) ≥ ldist(u, qx) ≥
∑︂

y∈[1,l]

dist(vy, qy)

(8)
Based on the termination condition (Algo. 3), we have∑︂

y∈[1,l]

dist(vy, qy) > Si (9)

Combining Equ 8 and Equ 9, we derive

scr(u) > Si (10)

Hence, matu is not among the local top-k matches on Fi.
It is not among the global top-k matches either in nature,
i.e., matu ̸∈ A.

Case 2: Path(u, qx) is not localized on Fi completely,
i.e., the path spans through multiple fragments. We denote
all the vertices which have been visited by the backward
expansion of the query keyword qx on fragment Fi by
Vqx,i =

⋃︁
s∈[1,R] V

s
qx,i

. We consider the vertex u and all
the portal nodes on Path(u, qx). Since u is never visited,
we denote the sequence of u and the portal nodes by
P = {pn, . . . , pz+1, pz, . . . , p1}, where pn = u, such that
pz ∈ Vqx,j , pz+1 ̸∈ Vqx,j , pz ∈ Fj .O and pz+1 ∈ Fj .I or
pz+1 = u, where j ∈ [1,m]. Intuitively, pz+1 is the first
portal node which is not expanded by bkws in the portal
node sequence.

The proof is similar to the Case 1. We assume that the
last vertex to be backward expanded for keyword qy on Fj

as vy . Since pz+1 has not been visited by bkws of the query
keyword qx on Fj , we have

dist(pz+1, qx) ≥ dist(vy, qy) (11)

Hence,

scr(u) =
∑︂

y∈[1,l]

dist(u, qy) ≥ ldist(u, qx) ≥ ldist(pz+1, qx) ≥
∑︂

y∈[1,l]

dist(vy , qy)

(12)
Based on the termination condition (Algo. 3), we have∑︂

y∈[1,l]

dist(vy, qy) > Sj (13)

Combining Equ 12 and Equ 13, we derive

scr(u) > Sj (14)

Hence, matu is not better than the local top-k matches on
Fj . It is not among the global top-k matches, i.e., matu ̸∈ A.

Theorem A.1. Consider a PINE algorithm which consists of
n PEvals (denoted by Pi, where i ∈ [1, n]), n IncEvals
(denoted by Ii, where i ∈ [1, n]), and one Assemble
(denoted by E), and any partition strategy Par. If (a) Pi

and Ii satisfy the monotonic condition, and (b) Pi, Ii and
E are correct w.r.t. Par, then DKWS with Pi, Ii and E
guarantee to terminate correctly.

Proof: In each superstep, PINE performs Ii (i ∈ [1, n])
selected by the switch statement. Hence the monotonic
condition of PINE is identical to that of Ii.

A.3 Pseudocode of IncEval of fkws

(2) Incremental computation (IncEval) for fkws (Algo. 5).
IncEval is derived from fkws of bfkws with the following
two modifications.

(2.1) Refinement propagation. Firstly, Pi receives the partial
matches, matfu, to the forward expansion request fu in
previous supersteps from other fragments in M1

i via the
portal nodes, where u ∈ Fi.O. If a shorter path between u
and q is found crossing multiple fragments (Line 3), the
forward match matfu[q] is refined (Line 5). Then, IncEval
propagates the distance refinement to the ancestor vertices.
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Algorithm 5: IncEval for fkws
Input: Fi(V,E, L), Q = {q1, . . . , ql}, τ , message Mi

Output: Q(Fi ⊕Mi) consisting of current matu ∈ Ai

1 foreach q ∈ Q do
2 init a priority queue Pq = ∅ for q to store the refinement
3 foreach matf,inu ∈M1

i do
4 if matfu[q] > matf,inu [q] then
5 matfu[q] = matf,inu [q]

6 Pq .insert(⟨u,matfu[q]⟩)
7 PropagrateUpdate(Pq , q)
8 foreach f inu ∈M2

i do
9 if u ̸∈ V̄ then

10 V̄.add(u)
11 else
12 foreach q ∈ f inu do
13 fu[q] = max{fu[q], f inu [q]}
14 foreach u ∈ V̄ do
15 forwardExpand(u,Q, Si,Ai)
16 Function PropagrateUpdate(Pq , q)
17 init a visited vertices set Vis = ∅
18 while Pq is not empty do
19 ⟨u, d⟩ = Pq .top()
20 Vis.add(u)
21 Pq .pop()
22 foreach e = (u′, u) ∈ E and u′ ̸∈ Vis do
23 d′ = w(e) + d

24 if d′ ≤ matf
u′ [q] then

25 matf
u′ [q] = d′

26 Pq .insert(⟨u′, d′⟩)

27 Message segment: M1
i = {matfu|u ∈ Fi.I} and

M2
i = {fu|u ∈ Fi.O}

It also notifies the coordinator once the local upper bound
is refined in forwardExpand (Line 15).

(2.2) Incremental forward expansion. Secondly, upon receiving
some forward expansion requests from other fragments,
worker Pi further forward expands to retrieve missing
keywords on Fi via the incoming portal nodes, Fi.I . Specif-
ically, if f inu ∈ M2

i is received and u ̸∈ V̄ , u is added into V̄
(Line 9). Since the search requests come from different frag-
ments, fu keeps the largest one for each keyword (Line 12).
If u is forward expanded in previous iterations for query
keyword q or f inu [q] is smaller than fu[q], f inu [q] is skipped.

At the end of IncEval, the partial matches found by
forward expansions are grouped into M1

i and the remain-
ing forward expansion requests are grouped into M2

i , re-
spectively, for fragment Fi and sent to the corresponding
fragments, which is the same as that of PEval.

APPENDIX B
OPTIMIZATIONS FOR DKWS

B.1 Backtrack graph for refinement propagation

Refinement propagation is potentially costly when mes-
sages are large. If we conduct the refinement propaga-
tion from the portal nodes in F.O, one by one, the time
complexity is bounded by O(|Q||F.O|(|E|+|V |log|V |)). To
address this issue, we propose backtrack pointers for fkws
and extend them to the outgoing portal nodes to build a
backtrack graph.
Backtrack pointer. To reduce duplicate forward traversals,
fkws maintains a backtrack pointer I for each visited vertex
v in the forward expansion of u. Specifically, let’s assume

the sequence of the shortest path that starts from u and ends
with v is [v1, . . . , vn] such that v1 = u, vn = v, Ivj+1

= vj
and q ∈ L(vn). Once vn is expanded, bfkws refines the
matches as follows: matvj [q] = matvj+1

[q] + w(vj , vj+1)
recursively, for all j ∈ [1, n− 1].
Backtrack graph. Given a query keyword q ∈ Q, a
backtrack graph Gq

I = (V q
I , E

q
I) stores all the paths be-

tween the vertices in V̄ and the outgoing portal nodes
F.O when conducting the forward expansion to retrieve
the missing keyword q. DKWS propagates the refinement
in one batch of the outgoing portal nodes for one query
keyword rather than vertex by vertex from all the outgoing
portal nodes. The time complexity on fragment F is reduced to
O(|Q|(|Eq

I |+|V q
I |log|V

q
I |)).

Construction of backtrack graph. We consider a vertex u ∈ V̄ .
For any vertex v ∈ F.O that is forward expanded during
the forward expansion starting from u for retrieving query
keyword q, the sequence of the shortest path between u and
v, [v1, . . . , vn] (such that v1 = u, vn = v), is added into Gq

I .
That is, DKWS inserts the edge (vj , vj+1) (j ∈ [1, n− 1]) to
Eq

I , implemented by backtrack pointers.

Proposition B.1. The size of Gq
I is bounded by O(|V |+|E|).

B.2 Indexing for pruning false matches

As proposed in Sec. 3, PADS and KPADS prune some partial
matches locally. Here, we extend PADS and KPADS to
propose BPADS that skips some forward expansions that
span across multiple fragments.
Boundary-PADS (BPADS). For each fragment F , we build
a sketch for all the out-portal nodes F.O, denoted by
BPADS(F ). BPADS(F ) is built by merging PADSout of out-
portal nodes, i.e.,PADSout(v), where v ∈ F.O. Formally,
given a center (wj , dj) ∈ PADSout(v), (wj , dj) ∈ BPADS(F )
iff ∀(wj , d

′
j) ∈ PADSout(v′) and v′ ∈ F.O, d′i ≥ di.

Pruning by indexes. Consider a vertex u ∈ V̄ that needs to
be forward expanded. The forward expansion starting from
u can be skipped if there is either no local path or no path
across multiple fragments between u and q whose length is
smaller than fu[q]: a) pruning forward expansion locally. We
denote the lower bound of the shortest distance between u
and each missing keyword q ∈ Q by distˇ (u, q). If distˇ (u, q)
> fu[q], then there is no local path between u and q whose
length is smaller than fu[q] in F . distˇ (u, q) is derived by Eq 2
with PADSout(u) and KPADSout(q) (Line 27 of Algo. 4); and
b) pruning forward expansion across multiple fragments.
We denote the lower bound of the shortest distance be-
tween u and the nearest out-portal node by distˇ (u, F.O). If
distˇ (u, F.O) is larger than fu[q], then no path across multiple
fragments between u and q which is smaller than fu[q] could
be found. distˇ (u, F.O) is derived by PADSout(u) and BPADS
(Line 25 of Algo. 4). If distˇ (u, q) and distˇ (u, F.O) are both
larger than fu[q], the forward expansion starting from u can
simply be skipped, since such expansion cannot yield any
matches.

Complexities. This optimization does not change the time
complexity of fkws. A vertex u ∈ V̄ that needs to be forward
expanded may be pruned in O(ln|V |) time. Given a vertex
u, the size of PADS(u) is O(ln|V |). Given a keyword q,
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Fig. 16: Performance of the backtrack graph

the size of KPADS(q) is O(|V |). The space complexity of
BPADS is O(|F.O|ln|V |).

B.3 Forward expansion order for fkws
A vertex may be expanded multiple times in different
forward expansions. To reduce this, we propose forward
expansion orders, i.e., Lines 4-5 of Algo. 4 and Line 14 of
Algo. 5. DKWS stores V̄ in a priority queue of the match score
scr(u) in descending order. Intuitively, the larger scr(u) is, the
easier scr(u) exceeds the upper bound S. As a consequence,
the smaller region is expanded for u. Consider a forward
expansion that starts from another vertex u′ ∈ V̄ , where
scr(u′) < scr(u). If the expansion meets u, the following
expansion starting from u could be skipped, since dist(u, q)
has already been computed and stored at matu[q] (Line 16
of Algo. 4). And the distance between u′ and q via u is
computed by dist(u′, u) +matu[q].
Exp-5: Effectiveness of the optimizations. We performed
a set of experiments to investigate the effectiveness of the
proposed optimizations on WebUK and DBLP. The results
on other datasets exhibit similar trends and are hence not
shown.

Effectiveness of expansion order. We turned the expansion or-
der of fkws on and off. The results are reported in Fig. 15.
With the optimization of expansion order, DKWS-PINE
is 1.13 (resp. 1.86) times faster on WebUK (resp. DBLP).
The improvement with expansion order is more signifi-
cant on DBLP than that on WebUK since shorter forward
expansions are computed early and some longer forward
expansions can be computed from the shorter ones.

Effectiveness of backtrack graph. We also investigated the ef-
fectiveness of the backtrack graph by turning the optimiza-
tion on and off. The results are reported in Fig. 16. With the
optimization of the backtrack graph, DKWS-PINE is 1.34
(resp. 2.22) times faster on WebUK (resp. DBLP) on average.
The improvement of this optimization is more significant on
DBLP than that on WebUK since more refinement propaga-
tion on DBLP is shared.
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B.4 Supplementary experiment

Impact of Notification Counter. As depicted in Fig. 17, we
normalized the execution time by the time taken when the
notify-push paradigm was not activated. We observed that
on the four real-life datasets, setting the notification counter
to 2 or 3 resulted in a comparatively good performance.
However, when the notification counter exceeded 4, there
was no substantial difference in the performance acceler-
ation compared to when the notify-push paradigm was
not used. In the context of keyword search semantics, this
observed behavior can be traced back to the fact that, within
these datasets, the discrepancy in the number of times each
worker refines the bounds rarely surpasses four times; thus,
the push function was seldom invoked. We also noted that,
on larger graphs, setting the threshold to 2 performed better
than setting it to 3. This is because the rapid synchronization
of global bounds on larger graphs provides more significant
performance acceleration.

B.5 Time complexity of bkws

bkws takes O(|Q|(|E|+|V |log|V |)), where |Q| is the number
of query keywords. To derive the complexity, we add a
dummy vertex vdi for each query keyword qi ∈ Q. Also,
we add a set of dummy edges to connect vdi and the
vertices in the search origin Vqi . We denote the graph
with the dummy vertex vdi and edges by Gd

i . The com-
plexity of bkws for each query keyword on G is identi-
cal to that of Dijkstra’s algorithm starting at vdi on Gd

i ,
i.e., O(|E|+|V |log|V |). Hence, the complexity of bkws is
bounded by O(|Q|(|E|+|V |log|V |)).

B.6 PageRank-based All Distance Sketches (PADS)

In this subsection, we review ADS and then propose our
index. It is known that ADS is small in size, accurate, and
efficient in answering shortest distance queries. Our main
idea is to use PageRank to determine the chance of a node
to be included in the sketch (i.e., the index).
All-Distances sketches (ADS). Recall that in [7], given a
graph G = (V,E), each vertex v is associated with a sketch,
which is a set of vertices and their corresponding shortest
distances from v. To select the vertices in V and put them as
the centers in the sketch of v, each vertex is initially assigned
a random value in [0, 1]. If a vertex u ∈ V has the k-th largest
value among the vertices which have been traversed from
v in the Dijkstra order, then u is added to the sketch of v.
k is a user-defined parameter set by user. A larger k results
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Algorithm 6: PADS construction
Input: Graph G = (V,E)
Output: PADS

1 compute the PageRank pr of the vertices in G
2 initialize PADS(v) = {(v, 0)} for each vertex v ∈ V
3 sorted the vertices V by the descending order of pr(v)
4 for v ∈ V do
5 for u in the Dijkstra’s traversal do
6 if |{(w, d) ∈ PADS(u) | d ≤ d(v, u)}|< k then
7 add (v, d(v, u)) into PADS(u)
8 else
9 continue the traversal on the next vertex

10 return PADS

in larger and more accurate sketches. The shortest distance
between u and v can be estimated by the intersection set of
ADS(u) and ADS(v) (a.k.a. the common centers).

A drawback of ADS is that it does not consider the
relative importance of the vertices when generating the
sketch. The vertices with high PageRanks, which roughly
estimates the importance of the vertices in a graph, should
be added to the sketch to cover the shortest paths. On the
contrary, the vertices with low PageRanks are unlikely to
be on many shortest paths and should not be added to the
sketch.

PageRank. We employ any efficient algorithms to obtain the
PageRank of the vertices of a graph G. We use a function
pr: V → [0,1] to denote the PageRank of a vertex v by pr(v).

Dijkstra rank. We recall that we can efficiently obtain the
Dijkstra rank of a vertex v w.r.t a source vertex s as follows.
We run the Dijkstra’s algorithm starting at s and obtain the
order of the visited nodes [v1, v2, . . . , vl]. The Dijkstra rank
of vi w.r.t s is i, denoted as π(s, vi) = i.
PageRank based all-distances sketches (PADS). Given a
Dijkstra rank π, the PageRank, a vertex v, and a threshold
k, the PADS of v is defined as follows:

PADS(v) = {(u, d(v, u)) | pr(u) ≥ k(v, u)}, (15)

where k(v, u) is the k-th largest PageRank among the nodes
from v to u according to π.
Example B.1. (PADS construction) Consider the graph G

in Fig. 18. Assume k = 1. We compute the PageRank
values for all the vertices in the graph, as shown below
the vertices’ labels. v13 covers 41 out of 156 shortest
paths in the graph G in total, which is the largest
among all the vertices. This shows that the node having
a large PageRank value, pr(v13) = 0.130, can be an
effective center. To determine the PADS of v1, we run the
Dijkstra’s algorithm by taking v1 as the source vertex to
obtain the Dijkstra ranked list [v1, p1, p2, v13, v4, . . . , p7].
Since the PageRank value of v13 is the highest among
the first four vertices in the ranked list, v13 is added to
PADS(v1) with its distance to v1. Similarly, v1 is added
to PADS(v1).

Shortest distance estimation. Given a shortest distance query
(u, v) and the PADS, d̂(u, v) is computed by the intersection
of PADS(u) and PADS(v) as follows:

d̂(u, v) = min{(d1 + d2)}, (16)

where (w, d1) ∈ PADS(u), (w, d2) ∈ PADS(v).
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Fig. 18: A graph (fragment) and the PageRank

TABLE 4: An ADS label for the graph in Fig. 18

Vertex ID ADS
v0 {(v0, 0), (p4, 1), (v1, 3), (p1, 4), (p7, 6)}
p4 {(p4, 0), (v1, 2), (p1, 3), (p7, 5)}
v13 {(v13, 0), (p4, 1), (v1, 1), (p1, 2), (p7, 4)}
v1 {(v1, 0), (p1, 1), (p7, 5)}
p1 {(p1, 0), (p7, 6)}
p2 {(p2, 0), (v1, 1), (p1, 2), (p7, 5)}
v4 {(v4, 0), (v13, 1), (v9, 1), (p4, 2), (v1, 2), (p1, 3), (p7, 3)}
v9 {(v9, 0), (p4, 3), (v1, 3), (p7, 3)}
p6 {(p6, 0), (v4, 1), (v13, 2), (v9, 2), (p7, 2)}
v16 {(v16, 0), (v9, 1), (p7, 2)}
v7 {(v7, 0), (v16, 1), (p7, 1)}
p5 {(p5, 0), (v9, 2), (p7, 3)}
p7 {(p7, 0)}

Spae complexity. The expected size of PADS(v) is O(k lnn),
where n is the number of nodes reachable from v, which is
bounded by O(k ln|V |). (The analysis of [7] can be applied
to PADS.)

Time complexity. The time complexity is bounded by
O(k|E|ln|V |).

Consider the graph G in Fig. 18. We set k = 1 and
compute its ADS shown in Tab. 4 and its PADS shown in
Tab. 5. We can see that there are two advantages of PADS.
First, the size of PADS is significantly smaller than that of
ADS. Second, the PADS’s estimation is much more accurate
than that of ADS.
Example B.2. (Shortest distance estimation.) Consider the

graph G in Fig. 18 and its PADSs in Tab. 5. Given two
vertices v9 and v7, there are two common centers v16 and
v13 in PADS(v9) and PADS(v7). The shortest distance is
estimated by Eq 16, i.e., d̂(v9, v7) = 2 (i.e., 0% error). By
ADS, d̂(v9, v7) = 4 is returned (i.e., 100% error). More
specifically, we compare the estimation accuracy of ADS
and PADS between all pairs of the vertices in Fig. 18. The
average error of PADS (resp. ADS) is around 3% (resp.
38%).

It is worth noting that PADS exhibits the theoretical guar-
antee of the shortest path estimation stated below.
Lemma B.1. The distance between two vertices u and v

is estimated using Eq 16 with an approximation factor
(2c − 1), where c = ⌈ ln|V |

ln k ⌉ with a constant probability,
i.e., d̂(u, v) ≤ (2c− 1)d(u, v).

Proof: Let d = d(u, v). Let Ni(u) denote the neighbors
of vertices u within id hops. For simple exposition, we
denote the intersection and union of Ni(u) and Ni(v) as
Ii = Ni(u) ∩ Ni(v) and Ui = Ni(u) ∪ Ni(v), respectively.
It is worth noting that Ii ⊆ Ui ⊆ Ii+1. Consider the ratio
of |Ii|

|Ui| and a ratio threshold m
k . Given the vertices with k

largest pr values in Ui, if one of them (say w) hits Ii, w
belongs to both PADS(v) and PADS(u). The real distance d
can be estimated within 2id. The probability of at least one of
the vertices, which has the k largest PageRank values in Ui, hits
the Ii is 1− (1− α

k )
k ≈ 1− e−α. Since there are n vertices in
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TABLE 5: The PADS label for the graph in Fig. 18

Vertex ID PADS
v0 {(v0, 0), (p4, 1), (v13, 2)}
p4 {(p4, 0), (v13, 1)}
v13 {(v13, 0)}
v1 {(v1, 0), (v13, 1)}
p1 {(p1, 0), (v1, 1), (v13, 2)}
p2 {(p2, 0), (v1, 1), (v13, 1)}
v4 {(v4, 0), (v13, 1)}
v9 {(v9, 0), (v4, 1), (v16, 1), (v13, 2)}
p6 {(p6, 0), (v4, 1), (v7, 1), (v13, 2)}
v16 {(v16, 0), (v7, 1), (v13, 3)}
v7 {(v7, 0), (v16, 1), (v13, 3)}
p5 {(p5, 0), (v16, 1), (v7, 2), (v13, 4)}
p7 {(p7, 0), (v7, 1), (v16, 2), (v13, 4)}

TABLE 6: The KPADS label for the graph in Fig. 18

Terms KPADS
a {(v9, 0), (v4, 1), (p4, 1), (v7, 0), (v13, 2), (v16, 1), (v0, 0)}
b {(v0, 0), (v13, 2), (p4, 1)}
c {(v13, 1), (v4, 0)}
d {(v13, 4), (v7, 1), (p7, 0), (v16, 2)}
e {(v13, 1), (v4, 0), (v1, 1), (v7, 0), (p4, 0), (v16, 0), (p1, 0)}
f {(p5, 0), (v1, 0), (v13, 0), (p4, 1), (v7, 1), (v16, 0), (v0, 0), (p7, 0)}
g {(p6, 0), (v1, 0), (v4, 1), (v13, 1), (v7, 1), (p2, 0)}

graph G at most, |Ui|≤ n. Hence, there exists i ≤ logk/α n.

B.7 PageRank-based Keyword Distance Sketches
(KPADS)
We denote the shortest distance between a vertex v and a key-
word t by d(v, t), where d(v, t) = min{d(v, u)|t ∈ L(u), u ∈
V }. To estimate the distance between a given vertex and
keyword, we propose KPADS, which is constructed by
PADS-merging: Given any two vertices u and u′ where
t ∈ L(u) and t ∈ L(u′), there may exist common centers in
PADS(u) and PADS(u′). Hence, we only keep the smallest
one among d̂(v, u′) and d̂(v, u), since both of them are the
upper bound of d(v, t).
Keyword-PADS (KPADS). For each keyword t ∈ Σ, we
build a sketch KPADS(t). KPADS(t) can be built by merging
PADS of those vertices that contain t, i.e.,PADS(v) where
t ∈ L(v). More formally, given a center (wi, di) ∈ PADS(v),
(wi, di) ∈ KPADS(t) iff ∀(wi, d

′
i) ∈ PADS(v′) and t ∈ L(v′),

d′i ≥ di.

Shortest keyword-vertex distance estimation. Given a vertex v

and a keyword t, the shortest distance d̂(v, t) can be com-
puted as follows:

d̂(v, t) = min{(d1 + d2)|(w, d1) ∈ PADS(v) and (w, d2) ∈ KPADS(t)}
(17)

Example B.3. Consider the graph G in Fig. 18 and its PADS
in Tab. 5. The KPADS is shown in Tab. 6. Consider
the shortest distance between a and p4. The distance
can be estimated by the intersection of KPADS(a) and
PADS(p4). There are two common centers, p4 and v13.
d̂(a, p4) = 1 is returned by the common center p4.
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